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Abstract: In the huge literature dedicated to stability of time-delay systems, the most popular
approach remains the use of Lyapunov-Krasovskii functionals. This framework allows to study
a large class of time-delay systems including constant or time-varying delays. Since several
years, the main challenge is to propose new functionals and techniques for deriving less and
less conservative stability conditions. Nevertheless, all these approaches usually adopt the same
procedure which is based on the well-known Jensen’s inequality which generally induces some
conservatism difficult to overcome. This paper analyses firstly the conservatism induced by the
Jensen’s inequality and secondly proposes a wide class of new parametrized inequalities. All
these are based on an extensive use of Wirtinger inequality which has been recently introduced
in Liu and Fridman [2012] and Seuret and Gouaisbaut [2012b] for stability analysis.
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1. INTRODUCTION

Proving stability of time-delay systems is a recurrent prob-
lem since delays are inherent in many practical problems
in engineering fields and control theory (see Sipahi et al.
[2011] for a recent survey). Several methods have been
employed, from frequential approaches (see Sipahi et al.
[2011] for a recent survey) to state space approaches using
Lyapunov functionals (Gu et al. [2003]) along with robust
analysis counterpart (like Small gain Theorem Niculescu
and Chen [1999], Zhang et al. [2001]), IQC approach
(Kao and Rantzer [2007]) or quadratic separation ap-
proach (Ariba et al. [2010]). In the case of stable linear
time-delay system, a Lyapunov-Krasovskii functional can
be constructed but it relies on a delay Lyapunov ma-
trix (Kharitonov and Plischke [2006]). The parameters
involved in the so-called complete Lyapunov functional are
solutions of a linear differential-difference equation with
boundary conditions. As it is therefore quite complicated
to solve, many works have been dedicated to the construc-
tion of approximate complete Lyapunov-Krasovskii func-
tionals. By definition, the choice of such functionals entails
a certain part of conservatism and many efforts have been
put on improving such results. Several ways have been
therefore explored. One possible solution is to construct
more and more complex Lyapunov-Krasovskii functionals
by choosing extended state variables, which generally goes
along with a certain numerical burden (Ariba and Gouais-
baut [2009], Kim [2011]). Often associated with these new
functionals, the authors introduce extra variables called
slack variables in order to relax the optimization problem,
expressed in terms of LMIs. Getting numerically tractable
inequalities (generally some LMIs to be optimized) have
been then the core of many research since several years.
In all these works, Jensen’s inequality has been recognized

as a powerful tool to obtain efficient results even if it is
at a price of an unavoidable conservatism. Surprisingly,
this has been barely studied yet except in a few papers
(Briat [2011], Seuret and Gouaisbaut [2012a,b]). In Briat
[2011], an upperbound of the conservatism induced by
Jensen inequality is proposed by using Grüss inequality.
This last result is then employed to derive equivalent new
inequalities well fitted for an optimization scheme like
LMIs. In Seuret and Gouaisbaut [2012a,b], the benefits
of using the Wirtinger’s inequalities instead of Jensen’s
one has been shown successfully. In particular it has been
proved that the choice of a particular signal (denoted in the
sequel by z) which satisfies the necessary assumptions to
apply the Wirtinger inequalities, leads to a new inequality
which encompasses the well-known Jensen’s inequality.
The resulting inequality does not only depend on the

classical terms x(t) or x(t − h) but also on
t∫

t−h
x(s)ds.

This last signal is then directly integrated into a new
suitable Lyapunov-Krasovskii functional, highlighting the
features of Wirtinger inequality. Notice that this new class
of inequalities has been already employed in stability of
sampled-data systems by Liu and Fridman [2012]. A new
Lyapunov functional is derived using directly this new
inequality.

In this work, the first part is devoted to the construction
of a lower bound for Jensen gap. Then, we aim at reducing
the conservatism of Lyapunov-Krasovskii techniques by
considering an accurate integral inequality which includes
the Jensen’s one as a special case : the Wirtinger’s inequal-
ity. We explore the possible choices of signal z which sat-
isfies the assumptions of the Wirtinger’s inequality. Based
on the general formulation, our objective is to investigate
in the optimal choice of the signal z if possible.



Notations: Throughout the paper Rn denotes the n-
dimensional Euclidean space with vector norm | · |, Rn×m

is the set of all n × m real matrices, and the notation
P > 0, for P ∈ Rn×n, means that P is symmetric and

positive definite. The symmetric matrix

[
A B
∗ C

]
stands for[

A B
BT C

]
. For any differentiable z : [a, b]→ Rn, we denote

the norm ‖z‖22 = 1
b−a

∫ b

a
zT (u)z(u)du.

2. PRELIMINARIES

Using Lyapunov-Krasovskii functionals to derive stabil-
ity conditions for time-delay systems usually leads to
some matrix inequalities quite difficult to optimize. Using
Jensen’s inequality often allows to derive useful inequality
which can be directly incorporated in an optimization set-
up. For our purpose, let us recall the Jensen’s inequality
in the following lemma.

Lemma 1. For a given matrix R > 0 and for any differ-
entiable signal ω in [a, b] → Rn, the following inequality
holds:∫ b

a

ω̇T (u)Rω̇(u)du ≥ (ω(b)− ω(a))TR(ω(b)− ω(a))

b− a
.

(1)

Following Briat [2011], the Jensen gap gR(ω) is referred
as:

gR(ω̇) =

∫ b

a

ω̇T (u)Rω̇(u)du

− (ω(b)− ω(a))TR(ω(b)− ω(a))

b− a
.

(2)

In the present article, our objectives are twofold. Firstly,
by employing a new class of integral inequalities called
Wirtinger’s inequalities, we aim at giving a lower-bound
for the Jensen gap. Secondly, based on this first pre-
liminary result, we propose some numerically tractable
inequalities which can be useful for stability tests of time
delays systems and sampled data systems as well. Let us
recall the original Wirtinger inequality in the following
lemma.

Lemma 2. Let z a differentiable function and z(a) = z(b)

and
∫ b

a
z(u)du = 0. Then for any n× n matrix R > 0, the

following inequality holds∫ b

a

żT (u)Rż(u)du ≥ 4π2

(b− a)2

∫ b

a

zT (u)Rz(u)du. (3)

There exist also other versions of the Wirtinger’s inequal-
ity, which can be found in Kammler [2007], and which
could be of great interests. For instance the second ver-
sion of the Wirtinger’s inequality proposed anther integral
inequality which requires less constraints on the function z
to be considered. This correspond to the following lemma.

Lemma 3. Let z a differentiable function and z(a) =
z(b) = 0. Then for any n× n matrix R > 0, the following
inequality holds∫ b

a

żT (u)Rż(u)du ≥ π2

(b− a)2

∫ b

a

zT (u)Rz(u)du. (4)

This last inequality have been recently adopted Seuret
and Gouaisbaut [2012a,b] to exhibit interesting inequal-
ities which drastically reduce the conservatism of classical
Lyapunov-Krasovskii methods. In this paper, we aim at
understanding how these inequalities can help to assess
stability of time-delay systems. In particular, in the next
section, we propose a novel inequality which is proved to
be less conservative than the Jensen’s one.

Remark 1. Another version of the Wirtinger inequality
can be found in Liu and Fridman [2012] but will not be
presented here.

The following section constructs a link between the
Jensen’s and the Wirtinger’s inequalities. This is not
straightforward, since in the Jensen’s Lemma, no assump-
tion on the considered signal are needed contrary to
Wirtinger Lemma which requires strong assumptions on
the signal z. Recall that the objectives of the present
paper is to obtain new lower bounds of the integral∫ b

a
ω̇(u)Rω̇(u)du, in order to be consistent with the

Jensen’s inequality. Thus a first step consists in defining
appropriate function z such that this integral appears
naturally in the developments. Thus a necessary condition
is that the function z as the following form

z(u) = γω(u)− y(u). (5)

where γ is a scalar and where y(·) is a vector function of
appropriate dimension.

3. HOW CONSERVATIVE JENSEN’S INEQUALITY
IS?

This section aims at showing how Jensen’s inequality
could be conservative by providing a lower bound for
the Jensen’s gap. To this end, we provide the following
Corollary:

Corollary 4. For a given symmetric positive definite ma-
trix R > 0, any function any differentiable signal ω in
[a, b]→ Rn, then the following inequality holds:∫ b

a

ω̇(u)Rω̇(u)du− (ω(b)− ω(a))TR(ω(b)− ω(a))

b− a

≥ 4π2

(b− a)2

∫ b

a

zT (u)Rz(u)du,

(6)

where the function z is defined as follows:

z(u) = ω(u)− 1

b− a

∫ b

a

ω(u)du

−
[

(u− a)

b− a
− 1

2

]
(ω(b)− ω(a)).

(7)

Proof : Remark that the function z defined by (7) is
of the form given in (5) and has been constructed in
order to fulfill the assumption on the function z described
in Lemma 2. Then, computing the left-hand side of the
inequality (3) leads to∫ b

a

żT (u)Rż(u)du =

∫ b

a

ω̇T (u)Rω̇(u)du

− 1

(b− a)
(ω(b)− ω(a))TR(ω(b)− ω(a)).

Hence, applying Lemma 2 allows to conclude. ♦
Compared to Jensen’s inequality which simply states that



gR(ω) ≥ 0, this previous corollary provides a new inter-
esting lower bound of the Jensen’s gap. This bound cor-
responds to an integral quadratic function and is positive
definite. Simple calculations show that this equality can
be also rewritten as follows:∫ b

a

zT (u)Rz(u)du=

∫ b

a

ωT (u)Rω(u)du

− 1

b− a

∫ b

a

ωT (u)duR

∫ b

a

ω(u)du

+
b− a

12
((ω(b)− ω(a))TR((ω(b)− ω(a))

+ Ξ,

where

Ξ = (

∫ b

a

ω(s)ds− 2

b− a

∫ b

a

∫ b

u

ω(s)dsdu)TR(ω(b)−ω(a)).

A simple inspection of this last expression shows that this
may be difficult to handle especially if we are looking for
numerically tractable inequalities. A naive approach to
derive efficient relations could be the use of Jensen lemma
on
∫ b

a
zT (u)Rz(u)du,∫ b

a

zT (u)Rz(u)du ≥ 1

b− a

∫ b

a

zT (u)du

∫ b

a

z(u)du,

but as
∫ b

a
z(u)du = 0, this last inequality does not lead

to any improvements. The constraint on the signal z and
its integral are thus very restrictive. They lead to many
difficulties when constructing other admissible signals z.
Thus in the next section, an analysis of the possible
inequalities based on the second version of the Wirtinger’s
inequality is provided in Lemma 3.

Remark 2. We can also draw a parallel with the result of
Briat [2011], where an upperbound is given using Grüss
inequality. Indeed, using Corollary 2.1 from Briat [2011],
one exhibits the following inequality:

gR(ω̇) ≤ (b− a)3

4
(sup
[a,b]

|ω̈|)TR(sup
[a,b]

|ω̈|).

As a matter of fact, we get the following result:

Corollary 5. The Jensen gap is such that:

4π2

(b− a)2

∫ b

a

zT (u)Rz(u)du ≤ gR(ω̇)

≤ (b− a)3

4
(sup
[a,b]

|ω̈|)TR(sup
[a,b]

|ω̈|),

where the function z is defined by (7).

4. APPLICATION OF THE SECOND WIRTINGER’S
INEQUALITY

This section focusses on exploiting the second version of
the Wirtinger’s inequality given in Lemma 3. As it is
mentioned above, the use of the second version of the
Wirtinger’s inequality leads to a additional flexibility in
the definition of the function z employed in this lemma.
Thus, in the following, we will propose a general method
to construct such class of function z of the form (5).

Consider a scalar function f defined over [a, b]. Then define
the associated function (5) given by

z(u) = (f(b)− f(u))ω(a)
+(f(u)− f(a))ω(b)
−(f(b)− f(a))ω(u),

where u ∈ [a, b]. By construction, the function z(u)
satisfies the conditions of Lemma 3, i.e. z(a) = z(b) = 0.

In the sequel, the following issues will be addressed.

- For a such class of functions f , is it possible to derive
an inequality related to the Jensen Lemma?

- Is it possible to find an optimal function f̄ which en-
sures that the resulting inequality is less conservative
than the ones obtained by any other functions f?

The answers to these questions are given below.

4.1 A second inequality

The following lemma is proposed.

Lemma 6. For given matrix R > 0 and differentiable
signal ω in [a, b]→ Rn and a twice differentiable function
[a, b] → R such that f(b) 6= f(a), the following inequality
holds: ∫ b

a

ω̇(u)Rω̇(u)du ≥ α1(f)
ηT (a, b)RηT (a, b)

b− a

+π2 ν
T (a, b)RνT (a, b)

b− a
,

(8)

where
η(a, b) = ω(b)− ω(a)

ν(a, b) = (1 + α2(f))ω(b)− α2(f)ω(a)−
∫ b

a

ω(u)

b− a
du,

where

α1(f) =
b− a

f(b)− f(a)

(
‖ḟ‖2 −

(b− a)2

π2
‖f̈‖2

)
,

α2(f) =
1

f(b)− f(a)


(∫ b

a
f(u)du

)
b− a

+
(b− a)

π
(ḟ(b)− ḟ(a))− f(b)

)
.

Proof : Let f be a continuous and twice differentiable
scalar function f defined over [a, b] such that f(a) 6= f(b).
As suggested previously consider the signal z given by

z(u) = (f(b)− f(u))ω(a)
+(f(u)− f(a))ω(b)
−(f(b)− f(a))ω(u),

where u ∈ [a, b].

Since z(a) = z(b) = 0, Lemma 3 can be applied to this
signal. This leads to:∫ b

a

żT (u)Rż(u)du ≥ 4π2

(b− a)2

∫ b

a

zT (u)Rz(u)du.

The right-hand-side of Lemma 3 is rewritten as:∫ b

a

żT (u)Rż(u)du = (f(b)− f(a))2
∫ b

a

ω̇T (u)Rω̇(u)du

+

(∫ b

a

ḟ2(u)du

)
(ω(b)− ω(a))TR(ω(b)− ω(a))

−2(f(b)− f(a))(ω(b)− ω(a))TR

∫ b

a

ḟ(u)ω̇(u)du.

(9)



An integration by parts of the last term leads to∫ b

a

ḟ(u)ω̇(u)du = ḟ(b)ω(b)− ḟ(a)ω(a)−
∫ b

a

f̈(u)ω(u)du.

Combining the previous expression with (9) yields∫ b

a

żT (u)Rż(u)du = (f(b)− f(a))2
∫ b

a

ω̇T (u)Rω̇(u)du

+Ψ,
(10)

where

Ψ =

(∫ b

a

ḟ2(u)du

)
(ω(b)− ω(a))TR(ω(b)− ω(a))

+2(f(b)− f(a))(ω(b)− ω(a))TR×(∫ b

a

f̈(u)ω(u)du− [ḟ(b)ω(b)− ḟ(a)ω(a)]

)
.

Introduce the vector

ξ(u) =
π

(b− a)
z(u) +

(b− a)

π
f̈(u)(ω(b)− ω(a)).

Following this definition, we have∫ b

a

ξT (u)Rξ(u)du =
π2

(b− a)2

∫ b

a

zT (u)Rz(u)du

+
(b− a)2

(∫ b

a
f̈2(u)du

)
π2

(ω(b)− ω(a))TR(ω(b)− ω(a))

+2(ω(b)− ω(a))TR

∫ b

a

f̈(u)z(u)du.

(11)
The following developments focus on the last term of (11).
Performing an integration by parts yields to∫ b

a

f̈(u)z(u)du = (f(b)− f(a))
[
ḟ(b)ω(b)− ḟ(a)ω(a)

]
−

(∫ b

a

ḟ2(u)du

)
(ω(b)− ω(a))

−(f(b)− f(a))

∫ b

a

f̈(u)ω(u)du.

Combining the previous expression with (11) yields to∫ b

a

ξT (u)Rξ(u)du =
π2

(b− a)2

∫ b

a

zT (u)Rz(u)du−Ψ

−α1(f)(f(b)− f(a))2

(b− a)
(ω(b)− ω(a))TR(ω(b)− ω(a)).

(12)
By combining (9) and (12) in order to eliminate Ψ, we
obtain

(f(b)− f(a))2
∫ b

a

ω̇T (u)Rω̇(u)du =

α1(f)

(b− a)
(f(b)− f(a))2(ω(b)− ω(a))TR(ω(b)− ω(a))

+

∫ b

a

ξT (u)Rξ(u)du

+

∫ b

a

żT (u)Rż(u)du− π2

(b− a)2

∫ b

a

zT (u)Rz(u)du.

(13)
Then Lemma 3 and Jensen’s inequality ensure that the
following inequality holds

∫ b

a

ω̇T (u)Rω̇(u)du ≥
1

(b− a)

[
α1(f)(ω(b)− ω(a))TR(ω(b)− ω(a))

+
1

(f(b)− f(a))2

∫ b

a

ξT (u)duR

∫ b

a

ξ(u)du

]
.

(14)

The last step of the proof consists in the computation of

the integral
∫ b

a
ξT (u)du, which is obtained by performing

an integration by parts as follows∫ b

a

ξT (u)du =

π

b− a

∫ b

a

[(f(u)− f(a))ω(b) + (f(b)− f(u))ω(a)] du

− π

b− a
(f(b)− f(a))

∫ b

a

ω(u)du

+
(b− a)

π

∫ b

a

f̈(u)du(ω(b)− ω(a)),

= π

(∫ b

a
f(u)du

b− a
+

(b− a)

π2
(ḟ(b)− ḟ(a))

)
(ω(b)− ω(a))

−π (f(b)− f(a))

b− a

∫ b

a

ω(u)du− π(f(a)ω(b)− f(b)ω(a)).

(15)
Finally we get that∫ b

a

ξT (u)du = π(f(b)− f(a))ν(a, b),

where ν(a, b) is defined in the statements of the Lemma.
This allows to get the inequality proposed in Lemma 6. ♦

The previous lemma presents a wide class of inequalities.
Depending on the choice of the function f , the coefficients
α1 and α2 may have different values. In the following
section, a maximization of the coefficients is proposed.

4.2 How to encompass Jensen’s inequality?

It is relevant to see if one may find the function which
reduces the conservatism of the inequality. As the first
step, the proposition is derived.

Proposition 7. For any β ∈ R+, γ ∈ R and any function
f satisfying the conditions of Lemma 6, then α1(βf +
γ) = α1(f) and α2(βf + γ) = α2(f).

Proof : The proof is performed by simple computations. ♦

Finding the function f which maximizes the right-hand
side of (8) is quite ambitious and difficult. This is the
reason why we propose to investigate only in the maxi-
mization of the coefficient α1(f). This is achieved in the
following proposition.

Proposition 8. For any twice differentiable function f ,
α1(f) ≤ 1 and the equality holds when f is an affine
function.

Proof : Consider a scalar function f which satisfies the
conditions of Lemma 6 . Using the Fourier series of the
function ḟ , the Parseval identity ensures that



1

b− a

∫ b

a

ḟ2(u)du = a20 +
1

2

∑
i∈N\{0}

(
a2i + b2i

)
,

1

b− a

∫ b

a

f̈2(u)du =
2π2

(b− a)2

∑
i∈N\{0}

n2
(
a2i + b2i

)
,

where

a0 =
1

b− a

∫ b

a

ḟ(u)du =
f(b)− f(a)

b− a
,

ai =
2

b− a

∫ b

a

ḟ(u)ci(u)du,

bi =
2

b− a

∫ b

a

ḟ(u)si(u)du,

si(u) = sin

(
2iπ

b− a
(u− a)

)
,

ci(u) = cos

(
2iπ

b− a
(u− a)

)
.

Hence the coefficient α1(f) can be rewritten as

α1(f) =

1 +
∑

i∈N\{0}

(1− 4i2)

(
a2i + b2i

)
2a20

 .
Since 1−4i2 is always negative for any non negative integer
i, the coefficient α1(f) is maximized when the Fourier

coefficients an and bn of ḟ are zero for all integer n > 0.
This implies that the function f is an affine function.
Moreover, according to Proposition 7, any affine scalar
functions yields the same result, i.e. α1(f(u) = u). This
concludes the proof. ♦

According to the previous proposition, the following corol-
lary is provided.

Corollary 9. For a given symmetric positive definite ma-
trix R > 0, any function any differentiable signal ω in
[a, b] → Rn and any twice differentiable function [a, b] →
R, then the following inequality holds:∫ b

a

ω̇(u)Rω̇(u)du ≥ ηT (a, b)Rη(a, b)

b− a

+
ν0

T (a, b)Rν0(a, b)

b− a
,

(16)

where η(a, b) is defined in Lemma 6 and

ν0(a, b) =
ω(b) + ω(a)

2
− 1

b− a

∫ b

a

ω(u)du.

Proof : Simple computations yield α1(f(u) = u) = 1 and
α2(f(u) = u) = − 1

2 which conclude the proof. ♦

Remark 3. The previous lemma has already been pre-
sented in the Seuret and Gouaisbaut [2012b]. However the
optimality of the choice of the function f has not been
discussed there. Thus the previous contributions aim at
showing this first choice was the optimal one regarding
the particular definition of the function z. Of course, the
present paper does not provide an optimal choice of f for
both coefficients α1 and α2 but just gives a clue of which
function would be suitable to consider.

Remark 4. As shown in Corollary 4, the previous corollary
provides a lower bound on the Jensen’s gap. Indeed the
previous inequality can be rewritten as follows

Fig. 1. Graph representing a signal ω and its interpolating
polynomial ω̄

gr(ω̇) ≥ ν0
T (a, b)Rν0(a, b)

b− a

4.3 Some additional remarks

As it was mentioned in the previous section, Corollary 9
provides an more accurate inequality than the Jensen
inequality. Despite of this main characteristic, several
additional comments on the signal z can be added. When
f is the identity function, the function z becomes

z(u) = (b− a)

(
u− a
b− a

ω(b) +
b− u
b− a

ω(a)− ω(u)

)
.

Note that this signal corresponds to the error of an arbi-
trary signal ω and its Lagrange interpolating polynomial
of degree 1 considered over the interval [a, b] and given by

ω̄(u) =
u− a
b− a

ω(b) +
b− u
b− a

ω(a).

This is represented in Figure 1. Thus it would be inter-
esting, in future works, to investigate other interpolating
polynomials with, for instance, a higher degree or consider-
ing additional information of the signal ω over the interval
[a, b] as, for instance, ω((a+ b)/2). This last consideration
refers some how to a discretization method.

Following this idea, an other important remark concerns
the resulting signal ν(a, b). Recall that in Corollary 9, this
signal becomes

ν(a, b) =
1

b− a

[
(b− a)

ω(b)− ω(a)

2
−
∫ b

a

ω(u)du

]
.

This term corresponds to the approximation error of the
integral of an arbitrary signal ω and the area enclosed in
the trapeze defined by the ω(a) and ω(b) and the abscissa
axis as shown in Figure 2. This last remark is completely
in accordance with the trapezoidal rule using Lagrange
polynomial of order 1. As a matter of fact, there exists
other relevant methods to approximate the integral of a
function over an interval of the form [a, b] and it should
be interesting to investigate on these other methods which
could deliver improved results.



Fig. 2. Graphical representation of ν(a, b) for an arbitrary
signal ω.

5. CONCLUSIONS

This paper investigates the use of a new inequality called
Wirtinger inequality for stability purpose. Firstly, this
inequality is linked to the Jensen inequality and provides
some explanations on the conservatism induced by the use
of Jensen Lemma. Secondly, we use this new inequality
to establish some new numerically tractable inequalities
which outperform the well known Jensen inequality often
used in the context of time delay systems / sampled data
stability.
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