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LOG-UNIRULED AFFINE VARIETIES WITHOUT CYLINDER-LIKE OPEN SUBSETS

ADRIEN DUBOULOZ AND TAKASHI KISHIMOTO

Abstract. A classical result of Miyanishi-Sugie and Keel-Mckernan asserts that for smooth affine surfaces, A1-uniruledness
is equivalent to A1-ruledness, both properties being in fact equivalent to the negativity of the logarithmic Kodaira dimension.
Here we show in contrast that starting from dimension three, there exists smooth affine varieties which are A1-uniruled but not
A1-ruled.

Introduction

Complex uniruled projective varieties are nowadays considered through the Mori Minimal Model Program (MMP) as
the natural generalization to higher dimensions of birationaly ruled surfaces (see e.g. [12]). In particular, as in the case of
ruled surfaces, these are the varieties for which the program does not yield a minimal model, but a Mori fiber space. These
varieties are also conjectured to be the natural generalization to higher dimensions of surfaces of negative Kodaira dimension,
the conjecture being in fact established as long as the abundance conjecture holds true [11], hence in particular for smooth
threefolds. During the past decades, the systematic study of the geometry of rational curves on these varieties has been the
source of many progress in the structure theory for higher dimensional, possibly singular, projective varieties to which the
MMP can be applied. The situation is much less clear for non complete varieties, in particular affine ones.

The natural analogue of ruledness in this context is the notion of A1-ruledness, a variety X being called A1-ruled if it
contains a Zariski dense open subset U of the form U ≃ A1 × Y for a suitable quasi-projective variety Y . A landmark result
of Miyanishi-Sugie [14] asserts that a smooth affine surface is A1-ruled if and only if it has negative logarithmic Kodaira
dimension [6]. For such surfaces, the projection prY : U ≃ A1 × Y → Y always extends to a fibration p : X → Z with
general fibers isomorphic to the affine line A1 over an open subset of the smooth projective model of Y , providing the affine
counterpart of the fact that a smooth birationaly ruled projective surface has the structure of a fibration with general fibers
isomorphic to P1 over a smooth projective curve. This result, together with the description of the geometry of degenerate
fibers of these fibrations, has been one of the cornerstones of the structure theory of smooth affine surfaces developed during
the past decades. But in contrast, the foundations for a systematic study of A1-ruled affine threefolds have been only laid
recently in [5]. On the other hand, from the point of view of logarithmic Kodaira dimension, the appropriate counterpart of
the notion of uniruledness for a non necessarily complete variety X is to require that X is generically covered by images of
the affine line A1, in the sense that the set of points x ∈ X with the property that there exists a non constant morphism
f = fx : A1 → X such that x ∈ fx(A

1) is dense in X with respect to the Zariski topology. Such varieties are called A1-
uniruled, or log-uniruled after Keel and McKernan [8], and can be equivalently characterized by the property that they admit
an open embedding into a complete variety X which is covered by proper rational curves meeting the boundary X \X in at
most one point. In particular, a smooth A1-uniruled quasi-projective variety X has negative logarithmic Kodaira dimension.
It is conjectured that the converse holds true in any dimension, but so far, the conjecture has been only established in the
case of surfaces by Keel and McKernan [8].

It follows in particular from these results that for smooth affine surfaces the notions of A1-ruledness and A1-uniruledness
coincide. Pursuing further the analogy with the classical projective notions, it seems then natural to expect that these do
no longer coincide for higher dimensional affine varieties. Our main result confirms that this is indeed the case. Namely, we
establish the following:

Theorem. For every n ≥ 3, the complement of a smooth hypersurface Qn of degree n in Pn is A1-uniruled but not A1-ruled.

The anti-ampleness of the divisor KPn + Qn enables to easily deduce the A1-uniruledness of affine varieties of the form
Pn \ Qn from the general log-deformation theory for rational curves developed by Keel and McKernan [8]. The failure of
A1-ruledness is then obtained in a more indirect fashion. Indeed, it turns out that for the varieties under consideration,
A1-ruledness is equivalent to the stronger property that they admit a non trivial action of the additive group Ga. We then
exploit two deep results of projective geometry, namely the non rationality of the smooth cubic threefold in P4 in the case
n = 3 and the birational super-rigidity of smooth hypersurfaces Qn ⊂ Pn if n ≥ 4, to exclude the existence of such non
trivial actions.

In the last section, we consider more closely the case of complements of smooth cubic surfaces in P3 which provides a
good illustration of the subtle but crucial difference between the two notions of A1-ruledness and A1-uniruledness in higher
dimension. We show in particular that even though such complements are not A1-ruled they admit natural fibrations by
A1-ruled affine surfaces. We study automorphisms of such fibrations in relation with the problem of deciding whether every
automorphism of the complement of a smooth cubic surface is induced by a linear transformation of the ambient space P3.

The first author was partialy supported by ANR Grant "BirPol" ANR-11-JS01-004-01. The second author was supported by a Grant-in-Aid

for Scientific Research of JSPS No. 24740003. This work was done during a stay of the first author at Saitama University and a stay of the second
author at the Institut de Mathématiques de Bourgogne (Dijon). The authors thank these institutions for the hospitality.
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1. Recollection on affine ruled and affine uniruled varieties

1.1. Affine ruledness and algebraic Ga-actions. Here we review general properties of affine ruled varieties, with a
particular focus on the interplay between A1-ruledness of an affine variety and the existence of non trivial algebraic actions
of the additive group Ga on it. We refer the reader to [4] for basic properties of the correspondence between such actions on
affine varieties and their algebraic counterpart, the so-called locally nilpotent derivations of their coordinate rings.

Definition 1. A quasi-projective variety X is called affine ruled or A1-ruled if it contains a Zariski dense open subset U of
the form U ≃ A1 × Y for a suitable quasi-projective variety Y . An open subset of this type is called an A1-cylindrical open
subset of X .

1.1.1. An A1-ruled variety X is in particular ruled in the usual sense, the inclusion A1 × Y →֒ X of an A1-cylindrical open
subset of X inducing a dominant birational map P1 × Y 99K X . The converse is not true since for instance the product
of the punctured affine line A1

∗ = A1 \ {0} with a smooth projective curve of positive genus is ruled but does not contain
any A1-cylinder. In particular, in contrast with ruledness, the property of being A1-ruled is not invariant under birational
equivalence. Note similarly that the existence of an A1-cylindrical open subset of X is a stronger requirement than that of a
dominant birational morphism A1 × Y → X for a suitable variety Y : for instance, the affine cone X ⊆ A3 over a projective
plane curve C ⊆ P2 of positive genus does not contain A1-cylinders but on the other hand, blowing-up the vertex of the cone
X yields a smooth quasi-projective variety σ : X̃ → X with the structure of a locally trivial A1-bundle ρ : X̃ → C hence,
restricting to a subset Y of C over which ρ is trivial, a dominant birational morphism σ |ρ−1(Y ): ρ

−1(Y ) ≃ A1 × Y → X .

1.1.2. Typical examples of A1-ruled varieties are normal affine varieties X = Spec(A) admitting a nontrivial algebraic
action of the additive group Ga. Indeed, if X is equipped with such an action induced by a locally nilpotent C-derivation
∂ of A, then for every local slice f ∈ Ker∂2 \ Ker∂, the principal open subset X∂f = Spec(A∂f ), where A∂f denotes the
localization A[(∂f)−1] of A, is Ga-invariant and the morphism Ga × (V (f)∩X∂f )→ X∂f induced by the Ga-action on X is
an isomorphism. In particular, X∂f

is a principal A1-cylindrical open subset of X . Note on the contrary that the existence of

an A1-cylindrical open subset U ≃ A1×Y of an affine variety X = Spec(A) is in general not enough to guarantee that X can
be equipped with a Ga-action whose general orbits coincide with the general fibers of the projection prY : U ≃ A1×Y → Y .
For instance, the general fibers of the projection pr1 : X = P1 × P1 \ ∆ → P1, where ∆ ⊂ P1 × P1 denotes the diagonal,
cannot coincides with general orbits of an algebraic Ga-action on X . Indeed, otherwise every invariant function on X would
descend to a regular function on P1 and hence would be constant, in contradiction with the fact that for an affine variety X ,
the field Frac(Γ(X,OX)Ga) has transcendence degree dimX − 1 over C.

In fact, it is classically known that the general fibers of an A1-cylindrical affine open subset U ≃ A1×Y of a normal affine
variety X = Spec(A) coincide with the general orbits of an algebraic Ga-action on X if and only if U is a principal affine
open subset of X (see e.g. [9, Proposition 3.1.5]). Let us briefly recall the argument for the convenience of the reader: the
existence of a principal A1-cylinder in X is equivalent to the existence of an element a ∈ A \ {0} and an isomorphism of

C-algebra ϕ : Aa
∼
→ B[t], where t is transcendental over Frac(B). The derivation ∂0 = ϕ∗ ∂

∂t
of Aa is then locally nilpotent

and since A is a finitely generated algebra, there exists n ≥ 0 such that an∂0 induces a C-derivation ∂ of A. Noting that
being invertible in Aa, a is necessarily contained in the kernel of ∂0, we conclude that ∂ is a locally nilpotent derivation of
A, defining a Ga-action on X whose restriction to the principal invariant open subset U = Spec(Aa) ≃ Spec(B) × A1 is by
construction equivariantly isomorphic to that by translations on the second factor.

It follows in particular that for a normal affine variety X whose divisor class group Cl(X) is torsion, the existence of
A1-cylindrical open subsets is essentially equivalent to that of nontrivial Ga-actions. More precisely, we have the following
criterion:

Proposition 2. Let X = Spec(A) be a normal affine variety such that Cl(X) ⊗Z Q = 0. Then for every A1-cylindrical
open subset U ≃ A1 × Y of X there exists an action of Ga on X whose general orbits coincide with the general fibers of the
projection prY : U → Y . In particular, X admits an A1-cylinder open subset if and only if it admits a nontrivial Ga-action.

Proof. By replacing Y by an affine open subset of it, we may assume that U is affine whence that its complement D = X \U
has pure codimension one in X as X itself is affine. The hypothesis guarantees precisely that D is the support of a principal
divisor and hence the assertions follow immediately from the discussion above. �

1.2. Basic facts on log uniruled quasi-projective varieties.

Definition 3. A quasi-projective variety X is called A1-uniruled, or (properly) log-uniruled after [8] if it contains a Zariski
dense open subset U with the property that for every x ∈ U , there exists a non constant morphism fx : A1 → X such that
x ∈ fx(A

1).

1.2.1. Equivalently, X is A1-uniruled if through a general point there exists a maximally affine rational curve, that is, an
affine rational curve whose normalization is isomorphic to the affine line A1. An A1-uniruled variety is in particular uniruled
in the usual sense, i.e. there exists a dominant, generically finite rational map P1 × Y 99K X for a suitable quasi-projective
variety Y . More precisely, letting (V,D) be a pair consisting of a projective model V of X and a, possibly empty, boundary
divisor D such that V is smooth along D, it follows from [8, 5.1] that there exists a closed sub-scheme Y of Mor(P1, V )
consisting of morphisms f : P1 → V with the property that f−1(f(P1) ∩D) consists of at most one point and on which the
restriction of the canonical evaluation morphism ev : P1 ×Mor(P1, V )→ V induces a dominant morphism P1 × Y → V .
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1.2.2. It is not difficult to check that a smooth A1-uniruled quasi-projective variety X has logarithmic Kodaira dimension
κ(X) = −∞ (see e.g. [8, 5.11]). The converse holds true in dimension ≤ 2 thanks to the successive works of Miyanishi-Sugie
[14] and Keel-McKernan [8] and in fact, for a smooth affine surface X , the three conditions κ(X) = −∞, X is A1-uniruled and
X is A1-ruled turn out to be equivalent to each other. Furthermore, the surface X has then the stronger property that every
of its point belongs to a maximally affine rational curve. This follows from the fact that the projection prY : U ≃ A1×Y → Y
from an A1-cylindrical open subset U extends to a fibration p : X → Z over an open subset of a smooth projective model
of Y , with general fibers isomorphic to A1 and whose degenerate fibers consist of disjoint unions of affine lines (see e.g.
[13]). Meanwhile, much less is known in higher dimension where one lacks in particular a good logarithmic analogue of
Mori’s Bend-and-Break techniques. Nevertheless, the following simple criterion due to Keel and McKernan [8, Corollary 5.4]
enables to easily confirm A1-ruledness of certain smooth affine varieties and will be enough for our purpose:

Theorem 4. Let X be a smooth affine variety and let X →֒ (V,D) be a projective completion where V is a smooth projective
variety and D = V \X a reduced divisor on V . If −(KV +D) is ample then X is A1-uniruled.

Example 5. The above criterion guarantees for instance that for every n ≥ 1, the complement X of a hypersurface D ⊆ Pn

of degree d ≤ n is A1-uniruled. In dimension 2, we recover in particular the fact that the complement of smooth conic Q2

in P2 is A1-uniruled, actually A1-ruled say for instance by the restriction to P2 \Q2 of the rational pencil generated by Q2

and two times its tangent line at a given point. On the other hand, even though the criterion does not require D to be
an SNC divisor, it does not enable to deduce the fact that the complement of a cuspidal cubic D is A1-uniruled, in fact
again A1-ruled, namely via the restriction of the rational pencil on P2 generated by D and three times its tangent line at the
singular point.

2. Complement of smooth hypersurfaces of degree n in Pn, n ≥ 3

According to Theorem 4, the complement X of a hypersurface Qn of degree n in Pn, n ≥ 2, is a smooth A1-uniruled affine
variety. If n = 2, then Q2 is a smooth conic whose complement is in fact A1-ruled (see Example 5). Here we show in contrast
that for every n ≥ 3, the complement of a smooth hypersurface Qn ⊆ Pn is not A1-ruled. It is worthwhile to note that the
strategy to establish this fact in case of n = 3 is quite different from that of the case of n ≥ 4.

2.1. The case n ≥ 4. Here we will exploit the birational super-rigidity of smooth hypersurfaces Qn ⊂ Pn of degree n ≥ 4 to
deduce that the corresponding affine varieties X = Pn \Qn are not A1-ruled. Let us first briefly recall the notion of birational
super-rigidity for a class of variety which is enough for our needs (see e.g. [17] for the general definition).

Definition 6. A smooth Fano variety V with Pic(V ) ≃ Z is called birationaly super-rigid if the following two conditions
hold:

a) The variety V is not birational to a fibration V ′ → S onto a variety of dimS > 0 whose general fibers are smooth
varieties with Kodaira dimension −∞,

b) Any birational map from V to another smooth Fano variety V ′ with Pic(V ′) ≃ Z is a biregular isomorphism.

The essential ingredient we will use is the following result, first established by Pukhlikov [17] under suitable generality
assumptions and recently extended to arbitrary smooth hypersurfaces by De Fernex [3]:

Theorem 7. Let n ≥ 4 and let Qn ⊆ Pn be a smooth hypersurface of degree n. Then Qn is birationaly super-rigid.

Remark 8. A noteworthy consequence of the above result is that every birational map Qn 99K Q′
n ⊂ Pn between smooth

hypersurfaces of degree n is in fact a biregular isomorphism which has the additional property to be induced by the restriction
of a linear transformation of the ambient space Pn. This follows from the fact that anti-canonical divisors on Qn coincide
with hyperplane sections of Qn. In particular, the group Bir(Qn) of birational automorphisms of Qn coincides with that of
projective automorphisms Lin(Qn) and the latter is a finite group.

Now we are ready to prove the following:

Proposition 9. The complement of every smooth hypersurface Qn ⊆ Pn of degree n ≥ 4 is A1-uniruled but not A1-ruled.

Proof. The A1-uniruledness of X = Pn \ Qn is an immediate consequence of Theorem 4. Since Cl(X) = Z/nZ, it follows
from Proposition 2 that the A1-ruledness of X is equivalent to the existence of a non trivial algebraic Ga-action on it. Every
given Ga-action on X induces a one parameter family of automorphisms {ϕt}t∈Ga

of X that we interpret through the open
inclusion X = Pn \Qn →֒ Pn as birational automorphisms Φt : P

n
99K Pn, t ∈ Ga. Since Qn is birationally super-rigid by

virtue of Theorem 7 above, it follows that every Φt is in fact a biregular automorphism. Indeed, otherwise, noting that Φt

cannot be an isomorphism in codimension one (see e.g. [2]) and letting Pn p
← V

q
→ Pn be a resolution of it, where p consists

of successive blow-ups of smooth centers, it would follow that the proper transform q−1
∗ Qn of Qn in V is an exceptional

divisor of p whence is birationally ruled in contradiction with condition a) in Definition 6. Therefore the Ga-action on X
extends to a linear one on Pn which leaves X whence Qn invariant. Since the automorphism group Aut(Qn) is finite (see
Remark 8 above), the induced Ga-action on Qn is the trivial one and so, being linear, the Ga-action on Pn extending that
on X is trivial on the linear span of Qn. But Qn is obviously not contained in any hyperplane of Pn and hence the initial
Ga-action on X is necessarily trivial, which completes the proof. �
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2.2. The case n = 3: complements of smooth cubic surfaces in P3. Since a smooth cubic surface Q3 in P3 is rational,
the same argument as in the previous section depending on birational super-rigidity is no longer applicable to deduce the
non A1-ruledness of its complement X = P3 \ Q3. Instead, we will derive it from the unirationality but non rationality of
smooth cubic threefolds in P4 together with a suitable finite étale covering trick.

The divisor class group of the complement X of a smooth cubic surface Q3 ⊆ P3 being isomorphic to Z/3Z generated by
the class of a hyperplane section, it follows again from Proposition 2 that X is A1-ruled if and only if it admits a non trivial
algebraic Ga-action. On the other hand, since algebraic Ga-actions lift under finite étale covers (see e.g. [18]), to establish

the non A1-ruledness of X it is enough to exhibit a finite étale cover π : X̃ → X of X with the property that X̃ does not
admit any non trivial algebraic Ga-action.

Proposition 10. Let X = P3 \Q3 be the complement of a smooth cubic surface and let π : X̃ → X be the canonical étale

Galois cover of degree three associated with the canonical sheaf ωX ≃ OP1(−1) |X of X. Then X̃ is a smooth affine threefold
which does not admit any non trivial algebraic Ga-action. Consequently, X is not A1-ruled.

Proof. Letting Q3 ⊆ P3 = Proj(C[x, y, z, u]) be defined as the zero locus of a homogeneous polynomial F (x, y, z, u) ∈

C[x, y, z, u] of degree three, it is straightforward to check that the canonical triple étale covering X̃ of X is isomorphic to the

affine variety A4 = Spec(C[x, y, z, u]) defined by the equation F (x, y, z, u) = 1, and that the morphism π : X̃ → X coincides

with the restriction of the natural morphism A4 \ {0} → P3, (x, y, z, u) 7→ [x : y : z : u]. Note that by construction, X̃ is an
open subset of the smooth cubic threefold V ⊆ Proj(C[x, y, z, u, v]) with equation F (x, y, z, u)− v3 = 0, hence is unirational
but not rational by virtue of a famous result of Clemens-Griffiths [1]. Now suppose that there exists a non trivial algebraic

Ga-action on X̃. Then by virtue of [19], the algebra of invariants Γ(X̃,OX̃)Ga is a finitely generated integrally closed domain

of transcendence degree two over C. Letting q : X̃ → Z̃ = Spec(Γ(X̃,OX̃)Ga) be the corresponding quotient morphism, the

unirationality of X̃ implies that of Z̃ whence its rationality since these two notions coincide in dimension two. But then the
existence of a principal affine open subset Z̃a of Z̃ such that q−1(Z̃a) ≃ A1× Z̃a (see § 1.1.2 above) would imply in turn that

X̃ itself is rational, a contradiction. �

Remark 11. Complements of singular cubic surfaces Q3 ⊆ P3 may turn out to be A1-ruled. For instance, it is shown in
[10] that if Q3 has Du Val singularities worse than A2 then P3 \ Q3 admits a non trivial algebraic Ga-action. It may even
happen that P3 \ Q3 contains an A2-cylinder, i.e., an open subset of the form A2 × Y for a smooth curve Y . This holds
for instance for the complement of the cubic surface Q ⊆ P3 = Proj(C[x, y, z, u]) defined as the vanishing locus of the
homogeneous polynomial F (x, y, z, u) = yu2 + z(xz + y2) which has a unique isolated singularity [1 : 0 : 0 : 0] of type D5.
Indeed, noting that f(x, y, z) = F (x, y, z, 1) is a component of the Nagata automorphism [15], it follows that the general
fibers of the morphism ρ : P3 \ Q → A1 induced by the restriction of the rational pencil on P3 generated by Q and three
times the hyperplane {u = 0} are isomorphic to A2 hence, by virtue of [7], that there exists an open subset Y ⊆ A1 such
that ρ−1(Y ) ≃ A2 × Y . A similar construction holds for all normal cubic surfaces listed in [16] which arise as closures in P3

of zero sets of components of automorphisms of A3.

3. Rigid rational fibrations on complements of smooth cubic surfaces in P3

In contrast with the higher dimensional case where a similar argument as the one used in the proof of Proposition 9 shows
that for every smooth hypersurface Qn of the degree n in Pn, n ≥ 4, the group Aut(Pn \ Qn) is embeded as a subgroup
of Aut(Qn) hence consists of a finite group of linear transformations, it is not known whether every automorphism of the
complement of a smooth cubic surface Q = Q3 in P3 is induced by a linear transformation of P3.

Even though P3\Q is not A1-ruled (cf. Proposition 10), it turns out that it is fibered in a natural way by A1-ruled affine
surfaces whose general closures in P3 are smooth cubic surfaces. Since A1-ruled affine surfaces are usually good candidates
for having non trivial automorphisms, one can expect that these fibrations have interesting automorphisms, in particular
automorphisms induced by strictly birational transformations of the ambient space P3.

In this section, we first review the construction of these fibrations ρ : P3 \Q→ A1 by A1-ruled affine surfaces. We describe
the automorphism groups of their general fibers and we check in particular that for a general smooth cubic hypersurface
Q ⊆ P3, these fibers do indeed carry interesting automorphisms induced by strictly birational Geiser involutions of their
projective closures. We show in contrast that every automorphism of the full fibration comes as the restriction of a linear
transformation of P3.

3.1. Special rational pencils on the complement of a smooth cubic surface. Given a smooth cubic surface Q ⊆ P3

and a line L on it, the restriction to Q of the rational pencil HL = |OP3(1)⊗ IL| on P3 generated by planes containing L can
be decomposed as HL |Q= L+L where L is a base point free pencil defining a conic bundle ΦL : Q→ P1 with five degenerate
fibers, each consisting of the union of two (−1)-curves intersecting transversally. The restriction ΦL |L: L→ P1 is a double
cover and for every branch point x ∈ P1 of ΦL |L, the intersection of Q with the corresponding hyperplane Hx ∈ HL consists
either of a smooth conic tangent to L or of two distinct lines intersecting L in a same point, which is called an Eckardt point
of Q. Letting say H0(L) and H∞(L) be the planes in HL such that ΦL |L is ramified over the points ΦL(Ht(L) |Q −L),
t = 0,∞, the divisors Q and 3Ht(L) generate a pencil of cubic surfaces ρt(L) : P

3
99K P1 with a unique multiple member

3Ht(L) and whose general members are smooth cubic surfaces.

3.1.1. From now on we consider a pencil ρ = ρt(L) as above associated to a fixed line L ⊆ Q and a fixed distinguished plane
H ∈ HL intersecting Q either along the union L ∪ C of a line and conic intersecting each other in a single point p or along
the union L∪L1∪L2 of three lines meeting at an Eckardt point p of Q. We denote by ρ : P3 \Q→ A1 the morphism induced
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by the restriction of ρ to the complement of Q. By construction, the closure in P3 of a general fiber S of ρ is a smooth cubic
surface V such that the reduced divisor D = H ∩ V has either the form D = L + C or D = L + L1 + L2. In each case we
denote by α : W → V the blow-up of p, with exceptional divisor E. If p is an Eckardt point, then we let Ṽ = W and we
denote by D̃ ⊆ Ṽ the reduced divisor α−1(D)red = L + L1 + L2 + E. Otherwise, if p is not an Eckardt point, then we let

Ṽ be the variety obtained from W by blowing-up further the intersection point of E and of the proper transform of C, say
with exceptional divisor E2, and we let D̃ ⊆ Ṽ be the reduced divisor D̃ = L+ C + E + E2. By construction, D̃ is an SNC
divisor and the induced birational morphism σ : (Ṽ , D̃)→ (V,D) provides a minimal log-resolution of the pair (V,D).

The following lemma summarizes basic properties of the general fibers of fibrations of the form ρt(L) : P
3 \Q→ A1, t = 0,∞.

Lemma 12. For a general fiber S = V \D of ρt(L) : P
3 \Q→ A1, the following holds:

a) S is a smooth affine surface with a trivial canonical sheaf and logarithmic Kodaira dimension κ(S) = −∞,
b) If D = L+ C (resp. D = L+ L1 + L2) then the Picard group of S is isomorphic to Z5 (resp. Z4).

Proof. The affineness of S is clear as D is a hyperplane section of V . Since V is a smooth cubic surface, it follows from
adjunction formula that ωV ≃ ωP3 ⊗OP3(3) |V≃ OP3(−1) |V≃ OV (−D). This implies in turn the triviality of the canonical

sheaf of S as ωS ≃ ωV |S≃ OV (−D) |S≃ OS . We may identify S with Ṽ \D̃ via the birational morphism σ : (Ṽ , D̃)→ (V,D)

constructed above. Since D̃ is an SNC divisor by construction, we have κ(S) = κ(Ṽ ,KṼ + D̃). Using the fact that −D is a
canonical divisor on V , we deduce from the logarithmic ramification formula for σ that

{

KṼ + D̃ = −E if D = L+ L1 + L2

KṼ + D̃ = −E2 if D = L+ C.

Since E and E2 are exceptional divisors, one has H0(Ṽ ,m(KṼ + D̃)) = 0 for every m > 0 and hence κ(S) = −∞.
To determine the Picard group of S, we will exploit the conic bundle structure ΦL : V → P1 described in the beginning

of 3.1. By contracting a suitable irreducible component of each of the five degenerate fibers of ΦL : V → P1, we obtain a
birational morphism τ : V → P1 × P1 fitting into a commutative diagram

V
τ
→ P1 × P1

ΦL ↓ ↓ pr1

P1 = P1

and such that the proper transform of L is a smooth 2-section of pr1 with self-intersection 4, whence a section of the second
projection pr2 : P1 × P1 → P1. We can then identify the divisor class group Cl(V ) ≃ Z7 of V with the group generated by
the proper transforms of a fiber of pr1, a fiber of pr2, and the five exceptional divisors of τ . The proper transform τ∗(D) of
D in P1 ×P1 is the union of the proper transform of L and of a fiber of pr1. Thus if D = L+C then L and C together with
the five exceptional divisors of τ generate Cl(V ) and hence Cl(S) ≃ Pic(S) is isomorphic to Z5 generated by the classes of
the intersections of these exceptional divisors with S. Similarly, if D = L+L1 +L2 then L1 or L2, say L2, is an exceptional
divisor of τ and so Cl(V ) is generated by L, L1, L2 and the four other exceptional divisors of τ . This implies in turn that
Cl(S) ≃ Pic(S) is isomorphic to Z4 generated by the classes of the intersections of these four exceptional divisors with S. �

3.1.2. Since a general fiber S = V \D of ρt(L) : P
3 \Q → A1 has logarithmic Kodaira dimension −∞ by Lemma 12, it is

A1-ruled and hence, by virtue of [13], it admits an A1-fibration q : S → C over a smooth curve. Let us briefly explain how to
construct such fibrations using the birational morphism τ : V → P1 × P1 which contracts an irreducible component of each
of the five degenerate fibers of ΦL : V → P1 as described in the proof of the previous Lemma. According to the configuration
of D, we have the following:

a) If D = L + C where C is a smooth conic, then each of the points blown-up by τ is the intersection point of the
proper transform of L with a fiber of pr2 : P1 × P1 → P1. The proper transforms F1, . . . , F5 ⊆ V of these fibers are disjoint
(−1)-curves which do not intersect L. Let µ : V → P2 be the contraction of L and F1, . . . , F5. Since each Fi, i = 1, . . . , 5
intersects C transversally and L is tangent to C, the image of C in P2 is a cuspidal cubic. The rational pencil on P2 generated
by the image of C and three times its tangent line T at its unique singular point lifts to a rational pencil q : V 99K P1 having

the divisors C +
∑5

i=1 Fi and 3T + L as singular members. Its restriction to S = V \D is an A1-fibration q : S → P1 with
two degenerate fibers: one is irreducible of multiplicity three consisting of the intersection of the proper transform of T with
S and the other is reduced, consisting of the disjoint union of the curves Fi ∩ S ≃ A1, i = 1, . . . , 5.

b) The construction in the case where D = L + L1 + L2 is very similar: we may suppose that L1 is contracted by τ
so that contracting the same irreducible components F1, . . . , F4 of the degenerate fibers of ΦL : V → P1 but L2 instead of
L1, we obtain a birational morphism τ1 : V → F1. The image of L in F1 is a smooth 2-section of the P1-bundle structure
π1 : F1 → P1 with self-intersection 4. Letting C0 be the exceptional section of π1 with self-intersection (−1), one has
necessarily L ∼ 2C0 + 2F where F is a fiber of π1. So L does not intersect C0 and its image in P2 by the morphism
q : F1 → P2 contracting C0 is a smooth conic. Since L1 is tangent to L in F1, its image in P2 is the tangent to the image of
C at a point distinct from the one blown-up by q. The rational pencil on P2 generated by the image of L and two times that
of L1 lifts to a rational pencil ρ : V 99K P1 having 2L1+L2+2C0 and L+

∑4
i=1 Fi as degenerate members. Its restriction to

S = V \D yields an A1-fibration ρ : S → P1 with two degenerate fibers : one is irreducible of multiplicity two consisting of
the intersection of the proper transform of C0 with S and the other is reduced, consisting of the disjoint union of the curves
Fi ∩ S ≃ A1, i = 1, . . . , 4.
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Remark 13. It follows from Corollary 15 below that the automorphism group of a smooth affine surface S = V \D as above
is finite. In particular, such surfaces are A1-ruled but do not admit non trivial Ga-actions and so the complement of a
smooth cubic surface Q ⊆ P3 is a smooth affine A1-uniruled threefold without non trivial Ga-action which has the structure
of a family ρt(L) : P3 \ Q → A1 of A1-ruled affine surfaces without non trivial Ga-actions. In contrast, the total space of
a family of affine varieties with non trivial Ga-actions often admits itself a non trivial Ga-action. For instance, suppose
that ϕ : X = Spec(B) → S = Spec(A) is a dominant morphism between complex affine varieties and that ∂ : B → B is an
A-derivation of B which is locally nilpotent in restriction to general closed fibers of ϕ, defining non trivial Ga-actions on these
fibers. Then ∂ is a locally nilpotent A-derivation of B and hence X carries a non trivial Ga-action. Indeed, up to shrinking
S if necessary, we may assume that for every maximal ideal m ∈ Specmax(A), the A/m-derivation ∂m : B/mB → B/mB
induced by ∂ is locally nilpotent. Given an element f ∈ B and an integer n ≥ 0, denote by Kn(f) the closed sub-variety of
S whose points are the maximal ideals m ∈ Specmax(A) for which the residue class of f in B/mB belongs to Ker∂n

m
. The

hypothesis implies that S is equal to the increasing union of its closed sub-variety Kn(f), n ≥ 0, and so this sequence must
stabilizes as the base field C is uncountable. So there exists n0 = n0(f) such that the restriction of ∂n0f to every closed
fiber of ϕ : X → S is the zero function, and hence ∂n0f = 0 since these fibers form a dense subset of X .

3.2. Automorphisms of general fibers of special rational pencils. This sub-section is devoted to the study of auto-
morphisms of general fibers of the rational fibrations ρ : P3 \Q→ A1 constructed as above. We show in particular that such
general fibers admit biregular involutions induced by Geiser involutions of their projective closures.

3.2.1. To simplify the discussion, let us call a pair (V,D) as in 3.1.1 special if V is a smooth cubic hypersurface in P3 and
D is composed of three concurrent lines L+L1 +L2 meeting in an Eckardt point p of V , or of the union of L and a smooth
conic C intersecting L with multiplicity two in a single point p. Similarly as in § 3.1.1, we denote by α : W → V the blow-up
of p and we denote by E its exceptional divisor.

By construction, W is a weak del Pezzo surface (i.e., −KW is nef and big) of degree 2 on which the anticanonical linear
system | −KW | defines a morphism θ : W → P2. The latter factors into a birational morphism W → Y contracting L (resp.
L, L1 and L2) if D = L+C (resp. if D = L+L1 +L2) followed by a Galois double covering Y → P2 ramified over a quartic
curve ∆ with a unique double point (resp. three double points) located at the image of L (resp. at the images of L, L1 and
L2). The non trivial involution of the double covering Y → P2 induces an involution GW : W →W fixing L and exchanging
the proper transform of D and the exceptional divisor E (resp. fixing L, L1 and L2). The latter descends either to birational
involution GV,p : V 99K V if D = L + C, or to a biregular involution GV,p : V → V having p as an isolated fixed point if
D = L+ L1 + L2.

In each case, we say that GV,p is the Geiser involution of V with center at p. By construction, GV,p restricts further to a
biregular involution jGV,p

of the affine surface S = V \D which we call the affine Geiser involution of S with center at p.

Proposition 14. Let ϕ : S = V \D
∼
→ S′ = V ′ \D′ be an isomorphism between affine surfaces associated to special pairs

(V,D) and (V ′, D′) respectively. Then the following assertions hold:

a) If either D or D′ consists of three concurrent lines then ϕ extends to an isomorphism of pairs ϕ : (V,D)
∼
→ (V ′, D′).

b) Otherwise, if both D = L+C and D′ = L′+C′ consist of the union of a line and a conic, then the induced birational map
ϕ : V 99K V ′ is either an isomorphism of pairs, or it can be decomposed as ϕ = Ψ ◦GV,p or ϕ = GV ′,p′ ◦Ψ′ where Ψ,Ψ′ are
isomorphisms of pairs and where GV,p and GV ′,p′ denote the Geiser involutions of V and V ′ with centers are p = L∩C and
p′ = L′∩C′ respectively. Furthermore, every birational map V 99K V ′ of the form Ψ◦GV,p (resp. GV ′,p′ ◦Ψ′) can be uniquely

re-written in the form GV ′,p′ ◦Ψ′ (resp. Ψ◦GV,p). In particular, if there exists an isomorphism ϕ : S = V \D
∼
→ S′ = V ′ \D′

then V and V ′ are isomorphic smooth cubic surfaces.

Proof. Let σ : (Ṽ , D̃) → (V,D) and σ′ : (Ṽ ′, D̃′)→ (V ′, D′) be the minimal log-resolutions of the pairs (V,D) and (V ′, D′)

respectively described in § 3.1.1. Since V \D ≃ Ṽ \ D̃ and V ′ \D′ ≃ Ṽ ′ \ D̃′ by construction, every isomorphism ϕ : S → S′

extends in a natural way to a birational map ϕ̃ : Ṽ 99K Ṽ ′ restricting to ϕ on S. We claim that ϕ̃ is in fact a biregular

isomorphism of pairs. Indeed, suppose on the contrary that ϕ̃ is strictly birational and let Ṽ
β
← X

β′

→ Ṽ ′ be its minimal
resolution. Recall that the minimality of the resolution implies in particular that there is no (−1)-curve in X which is

exceptional for β and β′ simultaneously. Since Ṽ is smooth and D̃ is an SNC divisor, β′ decomposes into a finite sequence of
blow-downs of successive (−1)-curves supported on the boundary B = β−1(D̃)red = (β′)−1(D̃)red. In view of the structure

of D̃, the only possible (−1)-curve in B which is not exceptional for β is the proper transform of E if D = L + L1 + L2 or
the proper transform of E2 if D = L + C. But after the contraction of these curves, the boundary would no longer be an
SNC divisor, a contradiction. This implies that ϕ̃ : Ṽ → Ṽ ′ is a morphism and the same argument shows that it does not
contract any curve in the boundary D̃. So ϕ̃ : Ṽ → Ṽ ′ is an isomorphism restricting to an isomorphism between Ṽ \ D̃ and

Ṽ ′ \ D̃′ whence an isomorphism between the pairs (Ṽ , D̃) and (Ṽ ′, D̃′). It follows in particular that the intersection matrices

of the divisors D̃ and D̃′ must be the same up to a permutation. In view of the description given in § 3.1.1, we conclude
that either D and D′ simultaneously consist of three concurrent lines or of the union of a line and a smooth conic.

In the first case, since the exceptional divisors E of the blow-up of V at p and E′ of the blow-up of V ′ at p′ are the only
(−1)-curves in D̃ and D̃′ respectively, the biregular isomorphism ϕ̃ : Ṽ → Ṽ ′ extending ϕ necessarily maps E isomorphically
onto E′. So ϕ̃ descends to an isomorphism of pairs ϕ : (V,D)→ (V ′, D′) which gives a).

In the second case, letting D = L + C and D′ = L′ + C′, a similar argument implies that the isomorphism ϕ̃ : Ṽ → Ṽ ′

maps E2 onto E′
2 and the proper transform of L onto that of L′. This implies in turn that ϕ̃ descends to an isomorphism

ϕ̃1 : W → W ′ between the surfaces obtained from V and V ′ by blowing-up the points p = L ∩ C and p′ = L′ ∩ C′ with
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respective exceptional divisors E and E′. Now we have the following alternative: either ϕ̃1 maps E and C onto E′ and C′

respectively, and then it descends to a biregular isomorphism of pairs ϕ : (V,D)→ (V ′, D′), or ϕ̃1 maps E and C onto C′ and
E′ respectively. In the second case, by composing ϕ : V 99K V ′ either by GV,p on the left or by GV ′,p′ on the right, we get
a new birational maps Ψ,Ψ′ : V 99K V ′ which lift to a birational map Ψ1 : W 99K W ′ mapping L, E and C isomorphically
onto L′, E′ and C′ respectively. The previous discussion implies that Ψ and Ψ′ are isomorphism of pairs and so we get the
desired decompositions ϕ = Ψ ◦G−1

V,p = Ψ ◦GV,p and ϕ = G−1
V ′,p′ ◦Ψ′ = GV ′,p′ ◦Ψ′. The last assertion about the uniqueness

of the re-writing is clear by construction. �

Corollary 15. Let (V,D) be a special pair and let S = V \D be the corresponding affine surface. Then the following holds:
a) If D consists of three concurrent lines then Aut(S) is a nontrivial finite subgroup of PGL(4,C) which coincides with

the automorphism group Aut(V,D) of the pair (V,D).
b) Otherwise, if D consists of a line and a smooth conic, then we have an exact sequence

0→ Aut(V,D)→ Aut(S)→ Z2 · jGV,p
→ 0

and an isomorphism Aut(S) = Aut(V,D)⋊Z2 ·jGV,p
, where the affine Geiser involution jGV,p

acts on Aut(V,D) by jGV,p
·Ψ =

Ψ′ where for every Ψ ∈ Aut(V,D), Ψ′ is the unique automorphism of the pair (V,D) such that Ψ ◦GV,p = GV,p ◦Ψ
′.

Proof. Since V ⊆ P3 is embedded by its anti-canonical linear system | − KV |, every automorphism of V is induced by a
linear transformation of P3. Furthermore, since D is a hyperplane section of V , Aut(V,D) is an algebraic sub-group of the
group of linear transformation of P3 preserving globally the corresponding hyperplane. The automorphism group of a smooth
cubic surface in P3 being finite, it follows that Aut(V,D) is a finite algebraic group. If D consists of three concurrent lines,
then their common point p is an Eckardt point of V which is always the isolated fixed point of a biregular involution of V
preserving D. This shows that Aut(V,D) is never trivial in this case. In case b), where D = L+C is the union of a line and
smooth conic, the assertion is an immediate consequence of the previous Proposition 14. �

Remark 16. If D = L+C then every automorphism Ψ of the pair (V,D) preserves the rational pencil q : V 99K P1 constructed
in § 3.1.2. Indeed such an automorphism certainly preserves the conic C and it maps the five (−1)-curves F1, . . . , F5 to five
other (−1)-curves each intersecting C transversally. But it follows from the construction of V from P2 that F1, . . . , F5 are the
only five (−1)-curves in V with this property. Similarly, since L and p = L ∩ C are Ψ-invariant, the image of T by Ψ must
be a smooth rational curve intersecting L and C transversally at p but the construction of V again implies that T is the only
curve in V with this property. It follows that the divisors C +

∑5
i=1 Fi and 3T + L which generate the pencil q : V 99K P1

are Ψ-invariant whence that q is globally preserved by Ψ as claimed. This implies in turn that every automorphism ϕ of S
which extends to a biregular automorphism of the pair (V,D) fits into a commutative diagram

S
ϕ
→ S

q ↓ ↓ q

P1 ξ
→ P1,

where ξ ∈ PGL(2,C) fixes the two points of P1 corresponding to the non isomorphic degenerate fibers 3T ∩S and
∑5

i=1 Fi∩S
of q. In contrast, it is straightforward to check from the construction that q : S → P1 is not globally preserved by the affine
Geiser involution jGV,p

of S with center at p = D∩L and hence that S carries a second A1-fibration q ◦ jGV,p
: S → P1 whose

general fibers are distinct from that of q. In particular, if V is chosen generally so that Aut(V,D) is trivial, then Aut(S)
is isomorphic to Z2, generated by the affine Geiser involution jGV,p

(cf. Corollary 15, (b)), and S carries two conjugated

A1-fibrations q : S → P1 and q ◦ jGV,p
: S → P1, each of these having no non trivial automorphism.

3.3. Automorphisms of special rational pencils.

This subsection is devoted to the proof of the following result:

Proposition 17. Let Q ⊆ P3 be a smooth cubic surface and let ρ : P3
99K P1 be the special pencil associated to a line L ⊆ Q

and a distinguished hyperplane H ∈ |OP3(1)⊗ IL| as in § 3.1.1. Then every automorphism of the induced rational fibration
ρ : P3 \Q→ A1 is the restriction of an automorphism of P3.

Proof. Let us denote by Aut(P3 \ Q, ρ) the subgroup of Aut(P3 \ Q) consisting of automorphisms preserving the fibration
ρ : P3 \Q→ A1 = Spec(C[λ]) fiberwise. Taking restriction over the generic point η of A1 induces an injective homomorphism
from Aut(P3 \ Q, ρ) to the group Aut(Sη) of automorphisms of the generic fiber Sη of ρ, and we identify from now on
Aut(P3 \Q, ρ) with its image in Aut(Sη). By definition, Sη is a nonsingular affine surface defined over the field C(λ) whose
closure in P3

C(λ) is a nonsingular cubic surface Vη such that Dη = Vη\Sη consists of either three lines Lη, Lη,1 and Lη,2 meeting

a unique C(λ)-rational point or the union of a line Lη and nonsingular conic Cη intersecting Lη at a unique C(λ)-rational
point p. The same argument as in the proofs of Proposition 14 and its Corollary 15 implies that Aut(Sη) = Aut(Vη, Dη)
in the first case whereas Aut(Sη) = Aut(Vη , Dη) ⋊ Z2 · jGVη,p

, where jGVη,p
denotes the affine Geiser involution with the

center at p, in the second case. In the first case, we conclude that every automorphism of Aut(P3 \ Q, ρ) is generically of
degree one when considered as a birational self-map of P3 and hence is the restriction of an automorphism of P3. So it
remains to show that in the second case, one has Aut(P3 \ Q, ρ) ⊆ Aut(Vη, Dη) necessarily. Suppose on the contrary that
Aut(P3 \Q, ρ) 6⊆ Aut(Vη, Dη). Then since we have an extension

0→ Aut(Vη, Dη)→ Aut(Sη)→ Z2 · jGVη,p
→ 0,
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it would follow that jGVη,p
∈ Aut(P3 \Q, ρ). On the other hand, letting πp : P3

99K P2 be the projection from the point p,

the rational map (ρ, πp) : P
3
99K P1×P2 is generically of degree 2, contracting the plane H to a line πp(H) ∈ ρ(H)×P2 ≃ P2

and inducing a Galois double covering

P3 \ (Q ∪H)→ P1 \ {ρ(Q) ∪ ρ(H)} × P2 \ (πp(Q) ∪ πp(H)) ≃ A1
∗ × A2 \ (πp(Q)).

By definition, the affine Geiser involution jGVη,p
of Sη is simply the restriction to the generic fiber of ρ of the nontrivial

involution J of this covering. So jGVη,p
∈ Aut(P3\Q, ρ) considered as a birational self-map of P3 would coincide with J which

is absurd since the latter contracts H whence the fiber ρ−1(ρ(H)) of ρ. Thus Aut(P3 \Q, ρ) ⊆ Aut(Vη, Dη) as desired. �
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