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This is the first paper of a series devoted to the micro-mechanical modeling of clayey soils, by means of
discrete element simulations. We specifically focus here on the effect of the platy shape of particles by reducing
the interactions between particles to mechanical contact forces (i.e., neither electrostatic repulsion nor van
der Waals forces are taken into account). The particles are three-dimensional square plates, approximated as
spheropolyhedra. Several samples composed of particles of different levels of platyness (related to the ratio of
length to thickness) were numerically prepared and sheared up to large deformations. We analyzed the shear
strength, packing fraction, orientation of the particles, connectivity, fabric of the interactions network, and
interaction forces as functions of the platyness. We find that both the mechanical behavior and microstructure are
strongly dependent on the degree of platyness. The principal underlying phenomenon is the alignment of particle
faces along a particular direction. This ordering phenomenon, which emerges even for shapes that deviate only
slightly from that of a sphere, enhances the ability of the packing to develop an anisotropic structure leading to
large shear strength, especially as a consequence of the fabric and mobilization of friction forces. Moreover, the
connectivity of the packings and their packing fraction also evolve with the platyness. In particular, the packing
fraction evolves in a nonmonotonic fashion, as observed in other granular materials composed of elongated or
angular particles.
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I. INTRODUCTION

Over the past two decades, simulations with discrete
element methods (DEM) have proven to be a privileged
analysis tool in various domains of science and engineering.
One of these domains is soil mechanics [1], for which DEM
simulations are useful because they allow for exploring,
based on the scale of the grains and their interactions (the
microscale), various phenomena that have been investigated
experimentally for decades, or even centuries for some
properties. As surprising as this may seem, many of these
phenomena, which are considered today to be quite classical
for the mechanical description of the material at the scale of
an elementary representative volume (the macroscale), still
lack a clear, physically based explanation. Examples of such
phenomena are internal friction, strain localization, strain-rate
dependent behavior, creep, and stress relaxation [2]. Obvi-
ously, the technical difficulties associated to the experimental
observation of what really happens at the microscale are some
of the reasons why the mechanisms at the origin of these
phenomena have remained elusive.

However, the application of DEM for the investigation of
soils has been restricted to a class of soils: coarse soils. Soils
not belonging to this class (i.e., fine soils, such as clays) have
been left out of the scope of this analysis tool. The reasons why
DEM simulations of fine soils are difficult, when compared
to those of coarse soils, can be understood when analyzing
two essential differences between the two materials. The first
difference is the shape of the particles. On one hand, particles
in a coarse soil typically have bulky shapes. These particles can
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be approximated by simple shapes such as disks or spheres,
which are easy to deal with in a numerical simulation. On the
other hand, particles in a fine soil typically have platy shapes.
These shapes are difficult to manage efficiently in a numerical
simulation, because of tasks such as contact detection. The
second difference is the interaction between particles. On one
hand, the interactions between coarse particles can be reduced
to contact forces, usually decomposed in a normal repulsion
force and a friction force (additionally, a cohesion force is
introduced in the case of partially saturated or cemented
materials). These interactions can be prescribed as simple
contact laws such as the linear spring-dashpot model and
Coulomb law. On the other hand, the interactions between fine
particles include, besides contact forces, electrostatic repulsion
due to chemical interactions and fluid, and attraction due to
van der Waals forces. These interactions cannot be prescribed
as contact laws, but require an integration procedure over the
particle surfaces, which can be extremely time consuming in
simulations with a large number of particles. These technical
problems explain why DEM simulations of fine soils are so
scarce [3–6].

This paper is the first of an ongoing investigation devoted
to the mechanical behavior of clayey soils by means of DEM
simulations. Specifically, the aim of the present work is to
explore the effect of the platy shape of particles, typically
observed in clay particles, on the mechanical behavior and
microstructure of a granular material. Singling out the effects
of particle shape as compared to other characteristics such
as the complex particle-particle or particle-fluid interactions
is an important step forward in a general modeling strategy
of clays. For this reason, in this paper we consider only
“dry” assemblies of particles, and these particles interact only
through “conventional” interactions, i.e., normal repulsion and
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friction forces, as traditionally implemented for simulating
coarse granular materials. In this sense, the findings presented
in this paper are rather generic and apply also to other granular
materials made up of flat particles. A few examples could be
granular soils derived from shale, edible seeds such as lentils,
and industrial goods such as PET flakes.

The simulated particles are square plates, which we approx-
imate as spheropolyhedra [7–9] simulated by means of the
soft-sphere Molecular Dynamics (MD) method. The degree of
platyness is described by a parameter η, related to the ratio of
length to thickness, and is varied systematically from η = 0,
which corresponds to spherical particles, to η = 0.8, which
corresponds to particles 5 times longer than thick. Several
monodisperse assemblies were built numerically, one for each
value of η, and then sheared in the quasistatic limit up to
the “critical state” (as termed in the soil mechanics literature),
where the memory of the initial state is fully erased and a steady
shear state is reached. In this state we analyze the mechanical
behavior of the material at the macroscale, in terms of shear
strength and packing fraction, as well as its microstructure, in
terms of particle connectivity and orientations, fabric of the
interaction network, and forces.

In the following, we introduce the numerical model, system
characteristics, and simulation parameters in Sec. II. In Sec. III
we focus on the mechanical behavior of the material at the
macroscale, and, in Sec. IV, we analyze its microstructure.
Finally, in Sec. V we end with a summary of the most salient
results followed by a brief discussion.

II. NUMERICAL MODEL

A. Platy shaped particles

The particles are square plates with rounded edges, built as
a sphero-polyhedra resulting from sweeping a sphere around a
polyhedron. Mathematically, this corresponds to a Minkowsky
addition of a sphere with a polyhedron (for some examples of
nonspherical particles built as spheropolyhedra, see Refs. [11]
and [7] for cylinders; Ref. [12] for particles with shapes as
complex as that of a cow; Ref. [8] for cylinders, tetrahedra, and
intersecting cylinders; and Ref. [13] for irregular polyhedra).
Specifically, our particles are spheroplates resulting from a
Minlowsky addition of a square plate and a sphere. Each
of these plates has three kind of constitutive entities: (1)
four vertices, (2) four edges, and (3) one plane, as shown
in Fig. 1(a).

Vertices (4)
Edges (4)

Plane (1) (a) (b)

FIG. 1. (Color online) (a) Scheme of a spheroplate and its
constitutive elements. (b) Definition of the maximum and minimum
radii, R and r , respectively.

The platyness η of these spheroplates is defined as

η = R − r

R
, (1)

where R and r are, respectively, the maximum and minimum
radii of the spheroplate as defined in Fig. 1(b) (r is also called
the spheroradius of the spheroplate). Note that η varies from 0
for a sphere to 1 for an infinitely thin plate. The platyness η is
related to the more common aspect ratio λ through the simple
expression η = 1 − 1/λ.

B. Simulation method

We employed the MD method, adapted first by Cundall
and Strack for simulating granular materials [10]. In applying
MD to spheroplates, we should distinguish the contacts
between different elements (vertices, edges, and faces) of
two interacting particles. Each interaction represents single
or multiple contacts c, each contact occurring between two
elements belonging to either of the spheroplates. All possible
contacts are resolved by considering two cases: a contact
between two edges and a contact between a vertex and a
face [14]; see Fig. 2.

The forces f at a contact between two elements are
calculated using a linear spring-dashpot model. The normal
component f n is given by

f n = −n
{

0, δn � 0,

knδn + γnδ̇n, δn > 0,
(2)

where n is a unitary vector normal to the contact, δn is the
normal overlap, kn is the normal stiffness, and γn is the
normal damping coefficient. The normal direction is defined
as the direction of the vector d joining the two closest points
belonging to the contacting elements (see Fig. 3). Note that
this definition of the normal direction implies that all the

(a)

(b)

(c)

FIG. 2. (Color online) (a) Interactions comprising only edge-edge
contacts (stars). (b) Interactions comprising only vertex-face contacts
(diamonds). (c) Interactions comprising both edge-edge and vertex-
face contacts.
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FIG. 3. (Color online) Definition of the vectors d and �vt used to
define the normal n and tangential t directions of a contact between
two elements.

contacts c composing an interaction share the same vector n.
The normal overlap δn is given by (ri + rj ) − d, where ri and
rj correspond, respectively, to the spheroplates i and j , and d

is the norm of d. Note that the linear-spring dashpot model can
lead to attractive forces when the particles are separating and
δn approaches zero [15]. In our simulations, fn is set to zero
whenever it becomes attractive. The tangential component f t

is given by

f t = t

{
sgn(f̂t )μfn, |f̂t | � μfn,

f̂t , |f̂t | < μfn,
(3)

where t is a unitary vector tangent to the contact, μ is the
friction coefficient, and f̂t is a test function defined as

f̂t = −ktδt − γt δ̇t , (4)

where kt is the tangential stiffness, δt is the tangential overlap,
and γt is the tangential damping coefficient. The tangential
direction is defined as the direction of the vector �vt = v

j
t −

vi
t , where vi

t and v
j
t are the projections of the velocities of

the interacting particles onto the plane whose normal is d (see
Fig. 3). Note that this definition of the tangential direction
implies that all the contacts c composing an interaction share
the same vector t . The tangential overlap δt is the relative
displacement of the interacting particles along the tangential
direction. Then the force F of the interaction ξ between two
particles is calculated by adding the forces f exerted at each
contact c:

F =
∑
c∈ξ

f c. (5)

The particle translations are integrated by means of a
Leap-Frog algorithm. The rotations are integrated using the
algorithm presented in Appendix A.

C. Sample construction and shear test

Ten monodisperse samples made up of 8000 spheroplates
are built. The difference between these samples is their
platyness, which varies from η = 0 to 0.8. The spheroradius
r = 30 nm is the same for all samples, and the density ρ is
set to 2700 kg/m3. The normal and tangential stiffnesses, kn

and kt respectively, are set to 1.5 × 10−3 N/μm. Note that
the particle size, density, and stiffness are typical of fine
grained soils [2–6]. As recommended in Ref. [17], the damping
coefficients are calibrated in order for the restitution coefficient

(a)

fixed wall (b)

FIG. 4. (Color online) (a) Sample construction and isotropic
compression. (b) Shear test.

in binary collisions between spheroplates to be around 0.6.
However, it has been shown that this parameter has practically
no effect in the rheology if the system is sheared quasistatically
and if the particles are frictional; see Refs. [15,16]. The friction
coefficient is set to μ = 0.58 � tan(30◦), which is close to that
of kaolinite clay [2–6].

Initially, the particles are placed at the nodes of a cubic
grid of side 2

√
2R and each of them is randomly oriented.

These samples are isotropically compressed under a stress σ0;
see Fig. 4(a). Once the system attains static equilibrium, the
lateral walls are removed and replaced by periodic boundaries.
The samples are then sheared by imposing a constant velocity
vw and a constant confining stress σw to the upper wall [see
Fig. 4(b)], allowing for the volume of the sample to vary during
the test. The particles in contact with the walls are “glued” to
them in order to avoid strain localization at the boundaries. In
all simulations presented in this paper the gravity is set to zero
in order to get homogeneous stress fields inside the packings.

As mentioned in Introduction, the focus of this work is
on the quasistatic mechanical behavior in the steady state.
Therefore, the samples are sheared up to a large cumulative
shear strain γ = xw/yw � 2.5, where xw is the horizontal
displacement of the upper wall and yw is its vertical position.
Figure 5 shows the shear stress ratio τw/σw, where τw and σw

are, respectively, the shear and normal stresses at the moving
wall, as a function of γ , for all values of the platyness η. We
see that all packings reach the steady state, since, at the end of
the shear test, τw/σw fluctuates around a mean value.

Figure 6 shows the profiles of the time-averaged horizontal
velocity 〈vx〉 of the particles as a function of their normalized
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FIG. 5. (Color online) Shear stress ratio τw/σw as a function of
the shear strain γ for all values of η.

vertical position y/yw, for all values of the platyness η. We
see that the packing is sheared in the whole bulk with no sign
of strain localization in the steady state.

The quasistatic feature of the simple shear tests and the
stiffness of the particles can be evaluated, respectively, with
two dimensionless parameters [15,16]: the inertia parameter I

and the dimensionless stiffness κ defined as

I = γ̇ r

√
ρ

σw

and κ = kn

σwr
, (6)

where γ̇ is the shear rate. A sheared system is in a quasistatic
regime if I � 1 and the contact interactions can be considered
to be in the rigid limit if κ is large. In all our tests, we
have I ≈ 10−3 and κ � 103. Video samples of some of the
simulations analyzed in this paper can be found at www.cgp-
gateway.org/ref021.

III. MECHANICAL BEHAVIOR AT THE MACROSCALE

In this section we analyze both stresses and strains in the
steady state, in terms of shear strength and packing fraction.
All presented quantities correspond to the average over the last
40% of cumulative shear strain (i.e., from γ = 1.5 to 2.5).
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FIG. 6. (Color online) Profiles of the time averaged horizontal
velocity 〈vx〉 of the particles as a function of their normalized vertical
position y/yw for all values of the platyness η.
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FIG. 7. Shear strength q/p as a function of the platyness η. The
inset shows q/p as a function of the aspect ratio λ. Error bars indicate
the standard deviation.

A. Shear strength

The shear strength was calculated from the stress tensor σ ,
defined by

σ = 1

V

∑
ξ∈V

F ξ
α 


ξ
β, (7)

where V is the volume containing the interactions ξ , F is the
interaction force, � is the branch vector, i.e., the vector joining
the centroids of the interacting particles, and α and β denote
the components in the reference frame. The partial mean stress
p = (σ1 + σ3)/2 and partial deviatoric stress q = (σ1 − σ3)/2
are then calculated from the principal stresses σ1 and σ3. We
exclude the intermediate principal stress σ2, since the simple
shear test here is under plane strain conditions, the strain being
zero in the intermediate direction.

The shear strength of the material can be expressed by the
stress ratio q/p. Figure 7 shows q/p as a function of the
platyness η; the inset shows q/p as a function of the aspect
ratio λ. We can see that q/p increases with η, approximately
from 0.3 to 0.7. This means that, as the particle platyness
increases, the material’s shear strength also increases.

B. Packing fraction

The packing fraction is defined as ν = Vp/V , where Vp is
the volume occupied by the particles and V is the total volume.
Figure 8 shows ν as a function of platyness η, the inset shows
ν as a function of the aspect ratio λ. We can see that ν first
increases with η, reaches a maximum at η � 0.3, and then
declines as η further increases. As later discussed in Sec. V,
this is commonly obtained when varying particle shape.

IV. MICROSTRUCTURE

In this section we analyze the microstructure of the samples,
in terms of particle orientations, connectivity, fabric, and force
networks. Again, all presented quantities correspond to the
average over the last 40% of cumulative shear strain (i.e., from
γ = 1.5 to 2.5).

032206-4



QUASISTATIC RHEOLOGY AND MICROSTRUCTURAL . . . PHYSICAL REVIEW E 87, 032206 (2013)

0 0.2 0.4 0.6 0.8

0.45

0.55

0.65

2 4 6

0.45

0.55

0.65

FIG. 8. Packing fraction ν as a function of the platyness η. The
inset shows ν as a function of the aspect ratio λ. Error bars indicate
the standard deviation.

A. Particle orientations

The particle orientation is defined as the orientation of
the vector m, normal to the particle face; see Fig. 9(a). The
distribution of particle orientations can be represented by the
probability density function Pm(�) of particles whose vector
m is along the solid angle � = (θ,φ); see Fig. 9(b). Figure 10
shows the distributions Pm(�) for three samples composed
of particles with platyness η = 0.33, 0.5, and 0.8, at γ = 2.
Because of the planar symmetry of our simple shear tests,
we consider the restriction of Pm(�) to the xy plane, i.e., the
function Pm(θ ), which can be approximated by its lowest order
Fourier expansion:

Pm(θ ) � 1/π [1 + am cos 2(θ − θm)], (8)

where am is the anisotropy of particle orientations and θm is
the principal direction of Pm(θ ). Even though the parameters
am and θm can be calculated by fitting the measured values of
Pm(θ ) to the approximation presented in Eq. (8), in practice
it is more convenient to calculate these parameters using the
nematic tensor defined by

M = 1

Np

∑
p∈V

mp
αm

p

β, (9)

where Np is the number of particles p in the volume V , m is
the particle orientation, and α and β denote the components
in the reference frame. The anisotropy of particle orientations
is am = 2(M1 − M3), and the principal direction θm is that of
the first eigenvalue of M.

(a) (b)

FIG. 9. (Color online) (a) Definition of the particle orientation
vector m (normal to the particles face). (b) Orientation angles θ and
φ of the vector m at the reference system.

FIG. 10. (Color online) Probability density functions Pm(�) of
particle orientations and their restrictions Pm(θ ) to the xy plane for
three samples composed of particles of platyness η = 0.33, 0.5, and
0.8, at γ = 2.

Figure 11 shows the anisotropy of particle orientations am

and the principal direction θm as functions of platyness η. We
can see that am increases from 0 to approximately 0.6, showing
that, as platyness increases, the number of particles aligning
their faces along a particular direction increases. Following an
opposite trend, θm decreases with η, approximately from 120◦
to 105◦, showing that, as platyness increases, the direction
along which these particles align gradually approaches the
vertical direction. Note that this type of ordering appears even
in the samples composed of particles with very low values
of η, e.g., for η = 0.14, whose shape deviates only slightly
from that of a sphere. This ordering phenomenon has a strong
influence on the response of the material, as it will be shown
in the following sections and as explained in detail in Sec. V.

0 0.2 0.4 0.6 0.8
0

0.2
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0 0.4 0.8
100

110

120

FIG. 11. Anisotropy of particle orientations am as a function of the
platyness η. The inset shows the principal direction θm as a function
of η. Error bars indicate the standard deviation.
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FIG. 12. (a) Coordination number Z as a function of the platyness
η. (b) Proportion χ of floating particles as a function of η. Error bars
indicate the standard deviation.

B. Connectivity and fabric of the interactions network

Figure 12(a) shows the coordination number Z as a function
of the platyness η. Note that Z is the mean number of
interactions per particle, where an interaction can comprise
several contacts; see Sec. II A. We can see that Z increases
with η, approximately from 3.6 to 4.3, and stabilizes for the
larger values of η. This shows that, as platyness increases, the
particle connectivity also increases. This is a counterintuitive
result, since, as was shown in Sec. III B, these very connected
samples are also the loosest ones.

Figure 12(b) shows the proportion χ of floating particles as
a function of platyness η. These are particles that have zero or
one interaction and, thus, do not take part in the force carrying
structure. We can see that χ decreases with η, approximately
from 0.20 to 0.05. This shows that, as platyness increases,
the number of particles participating in the force-carrying
network also increases. This is consistent with the increase
in coordination as a function of platyness.

Let us now define an interaction frame, associated to each
interaction between two interacting particles, as (n,t); see
Sec. II B for a definition of n and t . The interaction frame is
such that, in an interaction comprising several contacts, all of
these contacts share the same normal and tangental directions.
The fabric of the interaction network can be represented by
the probability density function Pn(�) of interactions along
�. Figure 13 shows Pn(�) for four samples composed of
particles with platyness η = 0, 0.33, 0.5, and 0.8, at γ = 2.
Again, because of the planar symmetry, we are interested in
the restriction Pn(θ ) in the xy plane. It can be approximated

FIG. 13. (Color online) Probability density functions Pn(�) of
interaction orientations and their restrictions Pn(θ ) to the shear xy

plane for four samples composed of particles with platyness η = 0,
0.33, 0.5, and 0.8, at shear strain γ = 2.

by its lowest-order Fourier expansion:

Pn(θ ) � 1/π [1 + an cos 2(θ − θn)], (10)

where an represents the leading anisotropy of interaction
orientations and θn is the priviledged direction of θ ; see Fig. 13.
Again, the parameters an and θn can be calculated by fitting
the measured values of Pn(θ ) to the approximation presented
in Eq. (10), but in practice it is more convenient to calculate
these parameters using the fabric tensor, defined as

Fαβ = 1

Nξ

∑
ξ∈V

nξ
αn

ξ
β, (11)

where Nξ is the number of interactions ξ in the volume V , n is
the normal vector, and α and β denote the components in the
reference frame. The anisotropy of interaction orientations is
an = 2(F1 − F3), and the principal direction θn is the direction
of the first eigenvalue of F.

Figure 14 shows the anisotropy of interaction orientations
an and the principal direction θn as functions of the platyness
η. We see that an increases with η, approximately from 0.3
to 1.2, showing that, as platyness increases, the number of
interactions aligning along a particular direction also increases.
Then, as observed for θm, θn decreases with η, approximately
from 135◦ to 110◦. In other words, as platyness increases,
the direction along which these interactions align gradually
approaches the vertical direction. The similarities between the
parameters describing the distributions Pm(θ ) and Pn(θ ) are to
be expected, since, by construction, the vectors m and n are
correlated in interactions involving the particle faces, and, as
the particle platyness increases, the proportion of this type of
interactions is expected to increase.

Other descriptors of the fabric can be calculated using the
branch vector �, which can be decomposed in the normal and
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FIG. 14. Anisotropy of interaction orientations an as a function
of the platyness η. The inset shows the principal direction θn as a
function of η. Error bars represent the standard deviation.

tangential directions:

� = 
nn + 
t t, (12)

where 
n and 
t are, respectively, the normal and tangential
branch lengths, as shown in Fig. 15.

The angular distributions of branch lengths can be rep-
resented by 〈
n〉(�) and 〈
t 〉(�), which are, respectively, the
average branch lengths in the normal and tangential directions.
By construction, 
n is always positive whereas 
t can take
positive or negative values. Figure 16 shows 〈
n〉(�) and
〈
t 〉(�) for four samples composed of particles with platyness
η = 0, 0.33, 0.5, and 0.8, at shear strain γ = 2. Again, because
of the symmetry of our simple shear tests, we are interested in
the restrictions 〈
n〉(θ ) and 〈
t 〉(θ ), which can be approximated
by their lowest order Fourier expansions:

〈
n〉(θ ) = 〈
n〉[1 + a
n cos 2(θ − θ
n)], (13)

〈
t 〉(θ ) = 〈
n〉a
t sin 2(θ − θ
t ), (14)

where aln and alt are, respectively, the anisotropies of normal
and tangential branch lengths, and θln � θlt are, respectively,
the priviledged directions of 〈
n〉(θ ) and 〈
t 〉(θ ). Again, the
parameters aln, alt , and θln can be calculated by fitting the
measured values of 〈
n〉(θ ) and 〈
t 〉(θ ) to the approximations
presented in Eqs. (13) and (14), but in practice it is more
convenient to calculate these parameters from the following

particle i
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 j
tictticictticictticiciicicici centroid

ttiiiiiiciciitt ciciciiiiiiitiiiiiiic
centroid

FIG. 15. (Color online) Definition of the vectors 
n and 
t using
the normal n and tangential t directions of a interaction between two
particles.

FIG. 16. (Color online) Distributions 〈
n〉(�) and 〈
t 〉(θ ) of
average branch lengths in the normal and tangential directions,
respectively, for four samples composed of particles with platyness
η = 0, 0.33, 0.5, and 0.8, at a shear strain γ = 2.

tensors:

χ ln
αβ = 1

Nξ

∑
ξ∈V


ξ
nn

ξ
αn

ξ
β, (15)

χ lt
αβ = 1

Nξ

∑
ξ∈V



ξ
t n

ξ
αt

ξ
β , (16)

χ l = χ ln + χ lt , (17)

where Nξ is the number of interactions ξ in a volume V , � is the
branch vector, n is the normal vector, t is the tangential vector,
and α and β denote de components in the reference frame.
Note that, by construction, we have χ lt = 0. From Eq. (17),
assuming that θln � θlt � θn, the following relations are easily
obtained:

aln = 2
(
χln

1 − χln
3

)/(
χln

1 + χln
3

) − ac, (18)

alt = 2
(
χl

1 − χl
3

)/(
χl

1 + χl
3

) − ac − aln. (19)

Figure 17 shows the anisotropies of normal and tangential
branch lengths, aln and alt respectively, as well as the principal
direction θln, as functions of the platyness η. First, we can
see that aln decreases with η, from 0 to approximately −0.2.
This happens because, as platyness increases, the interactions
oriented along the principal orientation defined in the previ-
ous section tend to be predominantly face-face interactions,
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FIG. 17. (Color online) Anisotropies of normal (black) and
tangential (red) branch lengths, aln and alt , respectively, as functions
of the platyness η. The inset shows the principal direction θln as a
function of η. Error bars represent the standard deviation.

characterized by short branch lengths, while the interactions
oriented orthogonally to these principal orientation tend to be
predominantly edge-edge interactions characterized by long
branch lengths. Second, we see that alt decreases with η,
from 0 to approximately −0.4. This shows that, as platyness
increases, the possibility of having tangential branch lengths
also increases, as the vectors n and � can have different
orientations. Third, as previously observed for θm and θn,
θln decreases with η, approximately from 135◦ to 110◦. This
means that, as platyness increases, the direction along which
the face-face interactions are predominantly forming gradually
approaches the vertical direction.

C. Interaction forces

As mentioned in Sec. II B, the interaction force F between
two particles is calculated by adding the forces f exerted at
each contact point. As f , F can be decomposed in the normal
and tangential directions:

F = Fnn + Ft t. (20)

The angular distributions of interaction forces can be repre-
sented by 〈Fn〉(�) and 〈Ft 〉(�), which are, respectively, the
average forces in the normal and tangential directions, as
shown in Fig. 18.

By construction, Fn is always positive whereas Ft can
take positive or negative values. Figure 19 shows 〈Fn〉(�)
and 〈Ft 〉(�) for four samples composed of particles with
platyness η = 0, 0.33, 0.5, and 0.8, at shear strain γ = 2. Here

i

pa
rt

ic
le

 j
ticicictticicicicicicicicccccccc centroid
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centroid

particle 

FIG. 18. (Color online) Definition of the vectors Fn and Ft using
the normal n and tangential t directions of a interaction between two
particles.

FIG. 19. (Color online) Distributions 〈Fn〉(�) and 〈Ft 〉(θ ) of
average forces in the normal and tangential directions, respectively,
for four samples composed of particles with platyness η = 0, 0.33,
0.5, and 0.8, at shear strain γ = 2.

again, because of planar symmetry, we consider the restrictions
〈Fn〉(θ ) and 〈Ft 〉(θ ) in the shear plane. These functions can be
approximated by their lowest order Fourier expansions:

〈Fn〉(θ ) = 〈Fn〉[1 + af n cos 2(θ − θf n)], (21)

〈Ft 〉(θ ) = 〈Fn〉af t sin 2(θ − θf t ), (22)

where af n and af t are, respectively, the anisotropies of normal
and tangential forces, and θf n � θf t are, respectively, the
principal directions of 〈Fn〉(θ ) and 〈Ft 〉(θ ). The parameters
af n, af t , and θf n can be calculated by fitting the measured
values of 〈Fn〉(θ ) and 〈Ft 〉(θ ) to the approximations presented
in Eqs. (21) and (22), but it is more convenient to calculate
these parameters using the following tensors:

χ
f n

αβ = 1

Nξ

∑
ξ∈V

F ξ
n nξ

αn
ξ
β, (23)

χ
f t

αβ = 1

Nξ

∑
ξ∈V

F
ξ
t nξ

αt
ξ
β , (24)

χf = χf n + χf t , (25)
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FIG. 20. (Color online) Anisotropies of normal (black) and
tangential (red) interaction forces, af n and af t respectively, as
functions of the platyness η. The inset shows the principal direction
θf n as a function of η. Error bars represent the standard deviation.

where Nξ is the number of interactions ξ in a volume V , F
is the interaction force, n is the normal vector, and α and β

denote de components in the reference frame. Note that, by
construction, we have χf t = 0. From Eq. (25), assuming that
θln � θlt � θn, the following relations are easily obtained:

af n = 2
(
χ

f n

1 − χ
f n

3

)/(
χ

f n

1 + χ
f n

3

) − ac, (26)

af t = 2
(
χ

f

1 − χ
f

3

)/(
χ

f

1 + χ
f

3

) − ac − af n. (27)

Figure 20 shows the anisotropies of normal and tangential
interaction forces, af n and af t respectively, as well as their
principal direction θf n, as functions of the platyness η. First, we
see that af n increases slowly with η, approximately from 0.2 to
0.3. This shows that the particle platyness has little effect on the
magnitude of the normal forces transmitted between particles.
Second, af t increases with η, approximately from 0 to 0.7.
This means that, as platyness increases, the magnitude of the
tangential forces transmitted between particles also increases.
Third, as observed for θm, θn and θln, θf n decreases with η,
approximately from 130◦ to 115◦, showing that, as platyness
increases, the direction along which the largest normal forces
are transmitted, gradually approaches the vertical direction;
the direction along which the largest tangential forces are
transmitted is shifted by approximately 45◦.

The slow increase of the anisotropy of normal interaction
forces af n and the fast increase of the anisotropy of tangential
interaction forces af t with platyness η suggest that, as
platyness increases, the stability of the interactions depends
more and more strongly on friction forces. At the lowest
order, this can be quantified by considering the proportion
Ks of “sliding” interactions (i.e., those interactions in which
Ft/Fn � μ). Figure 21 shows Ks as a function of η. It can
be seen that Ks increases with η, approximately from 0.1
to 0.4. Hence, as platyness increases, the level of friction
mobilization, which reflects de dependence of the mechanical
stability of the material on friction forces, also increases. The
relationship between particle shape and friction mobilization
seems to be a robust feature of granular materials composed
of complex-shaped particles, as shown in Sec. V.
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0.1
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0.3

0.4

0.5

FIG. 21. Proportion of sliding interactions Ks as a function of the
platyness η. Error bars indicate the standard deviation.

D. Micromechanical origins of the shear strength

Throughout this section, we introduced a series of
anisotropy parameters (anisotropies of particle orientations
am, interaction orientations an, normal branch lengths aln, tan-
gential branch lengths alt , normal interaction forces af n, and
tangential interaction forces af t ). Each of these anisotropies
encodes part of the anisotropic structure of the packings.
In fact, as shown in Ref. [18], these anisotropies sum up
to produce the shear strength of the material, as expressed
by the following relation based on the assumption that the
cross-products of the anisotropies can be neglected:

q/p � 1
2 [ac cos 2(θn − θσ ) + aln cos 2(θln − θσ )

+alt cos 2(θlt − θσ ) + af n cos 2(θf n − θσ )

+af t cos 2(θf t − θσ )]. (28)

This is a useful decomposition, since it allows for exploring
the different micromechanical origins of the shear strength
q/p. Figure 22 shows the shear strength q/p, both measured
in the shear tests and predicted from Eq. (28), as functions of
the platyness η. We see that this expression approximates well
the shear strength, especially at the low values of η (η � 0.3).
For the large values of η, this approximation overestimates the
shear strength indicating that the assumptions involved in the
development of Eq. (28) gradually lose their validity.
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FIG. 22. (Color online) Shear strength from the data (squares)
and its harmonic approximation (triangles) as a function of the
platyness η.
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Finally, from Figs. 14 to 20, we can deduce that the
increase of the shear strength with the platyness is mainly
a consequence of the increase of the anisotropies of the
interaction orientations and tangential interaction forces. This
observation implies that the large shear strength of those
materials composed of the most platy particles has its
micromechanical origin in the orientation of the particles,
which determines the direction of interaction normals, as
well as in the mobilization of frictional forces, which can
be approximated by the ratio af t/af n.

V. SUMMARY AND DISCUSSION

In summary, by means of discrete element simulations, we
investigated the mechanical behavior and microstructure of
granular materials made up of platy particles. The particles are
three-dimensional square plates, approximated as spheropoly-
hedra. Several monodisperse samples of 8000 particles are
built. The difference between these samples is the particle
platyness, which is varied systematically from 0, correspond-
ing to spherical particles, to 0.8, corresponding to particles
which are 5 times larger than they are thick. These samples are
sheared in the quasistatic limit up to a large shear deformation,
in order to analyze their behavior in the steady state, also called
“critical state” in soil mechanics. We analyzed the mechanical
behavior of the material at the macroscale, in terms of shear
strength and packing fraction, as well as its microstructure, in
terms of particle orientations, connectivity, fabric, and forces
networks.

We found that the mechanical behavior at the macroscale
is strongly dependent on the particle platyness. First, the shear
strength increases with platyness. This positive correlation
between the particles shape and shear strength seems to be
a robust feature in granular media, as it has been shown using
experiments [19–21], simulations of two-dimensional angular
particles [22–27], elongated particles [26–30], and nonconvex
[26,30,31] particles, as well as three-dimensional simulations
[8,32]. Secondly, the relationship between the packing fraction
and platyness is not monotonic. In fact, the packing fraction
first increases with platyness up to a peak value, and then
declines as platyness further increases. In other words, there
is an optimum platyness for which the packing is found at a
maximum packing fraction. This nonmonotonic behavior also
seems to be a robust feature in granular media. Indeed, this
relationship is reminiscent of that observed numerically for
angular particles [26,30,33], elongated particles [26,27,29],
and nonconvex particles [26,30,31] in two dimensions, as well
as for ellipsoidal particles in three dimensions [34].

From the micromechanical point of view, we found that
the principal phenomenon underlying the increase of shear
strength is the alignment of particle faces along a particular
direction. Curiously, this type of ordering emerges even in
the samples composed of particles with very low platyness,
whose shape deviates only slightly from that of a sphere. Then,
as the particle platyness increases, more and more particles
align their faces along the privileged direction. This ordering
phenomenon has previously been observed in experiments [35]
and numerical simulations with two-dimensional elongated
particles [27–29]. However, there is a difference between
our findings, which confirm in a more systematic way those

reported in Refs. [28,35], and those reported in Refs. [27,29],
regarding the privileged direction along which the particles
faces align. In our simulations, as well as in Refs. [28,35],
as platyness increases, this privileged direction gradually
changes from that of the major principal stress to a direction
that is almost perpendicular to the shear direction, i.e., from
θm = 135◦ to 90◦ in Fig. 11. In other words, as platyness
increases, the larger axis of the particles tend to align with
the average velocity field. In contrast, in the simulations
reported in Ref. [29], the privileged direction remains that of
the major principal stress, regardless of the value of the shape
parameter. The difference between the observed behaviors may
be attributed to the different symmetries of the tests, a simple
shear device in our simulations, as well as in Refs. [28,35],
and a biaxial device in those reported in Ref. [29]).

With respect to our observations, it can be hypothesized
that this ordering phenomenon results from the combination
of two mechanisms. On one hand, as shown in Fig. 9,
the particles tend to align along the direction of the major
principal stress (i.e., θm tends to 135◦ in Fig. 11). This is
convenient, since the larger forces tend to be captured by the
face-face contacts, which are very stable. However, this also
implies that the particles will have to rotate as the material
is sheared, which is expensive in terms of energy because
it implies more dilatation of the sample. On the other hand,
as it has been observed in experiments with very elongated
particles such as clay particles [2], the particles tend to align
along a direction that is perpendicular to the shear direction
(i.e., θm tends to 90◦ in Fig. 11). This is convenient, since
it does not require particle rotation. However, this implies
that particles must slide with respect each other, which is
expensive in terms of energy dissipation by friction. Privileged
orientations that are intermediate between that of the major
principal stress and that perpendicular to the shear direction
(i.e., θm lying between 135◦ and 90◦ in Fig. 11) can thus be a
consequence of a trade-off between these two mechanisms,
accommodating both energy dissipation and dilation. The
fact that the privileged orientation increases with the particle
platyness is then explained since, as platyness increases, the
first mechanism is more restrictive than the second.

We also studied the connectivity of the interaction networks
in terms of the coordination number and the proportion of
rattlers, i.e., particles that do not participate in the force-
carrying backbone. We found that, as the particle platyness
increases, the coordination also increases and the proportion
of rattlers decreases. This shows that the materials composed
of the platiest particles have more connected interaction
networks, even if these materials are also the loosest ones.

As is customary in this kind of investigation, we also
studied the evolution of the fabric of the interaction network
as well as the distribution of interaction forces. It was
shown that all descriptors of the microstructure are strongly
determined by the ordering phenomenon described above.
Punctually, the anisotropies of interaction orientations, normal
and tangential branch lengths, and normal and tangential
interaction forces increase with platyness. Additionally, the
principal directions of these distributions evolve in a way that
is almost identical to that of the principal direction of the
distribution of particle orientations. This shows that platyness,
especially through this ordering phenomenon, enhances the
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ability of the system to generate anisotropic structures. A
direct consequence of this anisotropic structure is the large
shear strengths measured in the materials composed of very
platy particles. In fact, it was shown that the shear strength
of the material is well approximated by the half sum of
these anisotropies and that those structural characteristics that
mostly contribute to build up a large shear strength are the
fabric of the interactions network and the mobilization of
friction forces in these interactions. The relationship between
a complex particle shape and friction mobilization has also
been observed in simulations with two-dimensional angular
[23–25,27], elongated [29], and nonconvex [31] particles, as
well as in three-dimensional simulations [32].

As mentioned in Sec. I, this is the first paper of an ongoing
investigation devoted to the mechanical behavior of clayey
soils studied by DEM simulations. Specifically, the aim of this
work was to explore the effect of the particle shape on the
mechanical behavior and microstructure of those materials.
Our perspectives are to follow on this lead while gradually
enriching our model in order to make it more realistic and
more comparable to clayey soils. In particular, our results with
realistic interactions between clayey particles including a pore
fluid will be addressed in a future publication.

APPENDIX: ROTATION MOTION INTEGRATION

Consider a particle that moves during a time step �t . In
order to integrate the particle’s rotations in this time step by
means of a Leapfrog algorithm, the angular velocities � during
the time interval [t,t + �t/2] must be computed. Fincham [36]

showed that this can be done using Euler equations:

�t+�t/2 = �t−�t/2 + �t�̇t , (A1)

where˙denotes time derivative. The angular accelerations are
calculated as

�̇
α

t = 1

J α

[
τ α

t + (J β − J γ )�β
t �

γ
t

]
,

�̇
β

t = 1

J β

[
τ

β
t + (J γ − J α)�γ

t �α
t

]
, (A2)

�̇
γ

t = 1

J γ

[
τ

γ
t + (J α − J β)�α

t �
β
t

]
,

where the J are particle moments of inertia and τ are the
torques along particle’s principal axes α, β, and γ . Based on
Omelyan’s work [37], we developed an algorithm well suited
for calculating the particle rotations using quaternions. In this
algorithm, the evolution of the quaternion q in time is expressed
as a combination of successive rotations:

qt+�t = �q ⊗ qt , (A3)

where

�q0 = 1 − �

1 + �
, �qj = �t

2(1 + �)
�

j

t+�t/2, (A4)

where j represents the quaternion components 1, 2, and 3, and

� = �t2

16
[�t+�t/2 · �t+�t/2]. (A5)

Note that this operation involves quaternion multiplications
that intrinsically satisfy the normalization condition.
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