Genetic variability in biomass allocation to roots in wheat is mainly related to crop tillering dynamics and nitrogen status

Vincent Allard, Pierre Martre, Jacques Le Gouis

To cite this version:

HAL Id: hal-00759094
https://hal.archives-ouvertes.fr/hal-00759094
Submitted on 30 Nov 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Genetic variability in biomass allocation to roots in wheat is mainly related to crop tillering dynamics and nitrogen status.

Vincent Allard¹,², Pierre Martre¹,², Jacques Le Gouis¹,²

¹INRA, UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, F-63 039 Clermont-Ferrand, Cedex 2, France
²Université Blaise Pascal, UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, F-63 177 Aubière, France

Author for correspondence:
Vincent Allard
Tel: +33 4 73 62 44 22
Fax: +33 4 73 62 44 57
Email: vincent.allard@clermont.inra.fr
Abstract

Improving arable crops Nitrogen Use Efficiency (NUE) is a major target of plant breeding. In wheat, a large part of the Nitrogen (N) harvested in the grain originates from N remobilization from vegetative organs during the post-anthesis period. While N remobilization from above-ground organs such as leaves and stems has been extensively studied, studies about N remobilization from roots are scarce. The existence of genetic variability for biomass allocation to the root pool as well as for root N concentration and remobilization may strongly affect the N economy of the crop. By studying the root system of 16 elite wheat genotypes under two contrasted N treatments, we showed that the biomass allocation to roots was strongly related to crop tillering dynamics and N nutritional status. Therefore, the apparent genetic variability for biomass allocation to roots is not intrinsic, but rather a consequence of genetic variability for crop growth and N utilization taken as a whole. In addition, we showed here that the N amount potentially remobilized from roots to the grain is extremely small. Existing genetic variability for root N content and remobilization efficiency cannot explain observed differences in genotypes grain N concentration or N yield. These results indicate that there is little prospect for breeding strategies specifically aiming at optimizing wheat root biomass allocation and N remobilization for improving NUE and GPC for elite genotypes at least in highly productive conditions. These results nevertheless do not imply that the root compartment should be totally discarded in all breeding programs since architectural traits such as root length or distribution may impact strongly crop performance.
1. Introduction

Until very recently, productivity has been the major target of agronomical sciences. The growing demand for low input agriculture, driven both by economical and environmental considerations emphasizes now the improvement of resource use efficiency. Nitrogen (N) fertilizers play a major role in crop productivity, but are also one of the main sources of agricultural pollution either through nitrous oxide (N$_2$O) volatilization or nitrate (NO$_3^-$) leaching (IPCC, 2001; DECC, 2010). N fertilization represents also a major cost for farmers. Increasing N use efficiency (NUE) received therefore much attention in the recent years whether through improved agronomical practices (Cui et al, 2011) or plant breeding (eg Hirel et al. 2007; Foulkes et al., 2009; Gaju et al., 2011). This quest for highly efficient wheat cultivars and agronomical practices is made more complex by the fact that not only grain yield but also grain protein concentration (GPC), the major determinant of wheat end-use quality (eg Shewry 2007; Oury et al., 2010) should be improved. The involvement of N in both biomass accumulation and grain protein concentration determination creates a need for studying the complex interactions between carbon and N metabolisms that determine crop productivity and quality (Triboi and Triboi-Blondel, 2002).

In wheat, the major part of N uptake occurs before anthesis. After anthesis, N remobilization from the vegetative organs toward the growing grains is a strong determinant of both GPC and grain yield through the senescence process that alters the crop photosynthetic capacity (Borell et al., 2001; Triboi et al 2006; Bogard et al. 2011). Understanding finely N remobilization process is therefore a key question for the optimization of the N economy of wheat crops. N distribution and remobilization patterns in aboveground organs have received much attention in past years (e.g. Gregersen et al., 2008; Taylor et al., 2010). In particular, it was shown that the remobilization pattern of these vegetative organs follow a robust first-
order kinetic that is independent of organ age, genotype and N nutrition (Bertheloot et al., 2008). Genetic variability for N remobilization efficiency has also been characterized (Barbotin et al. 2005, Uauy et al., 2006; Kichey et al. 2007) showing relatively large genetic variation for this trait and strong interaction with the environment and N fertilizer regimes.

Oppositely little is known about the N allocation and remobilization pattern in the wheat root system. In controlled conditions, wheat roots have the ability to remobilize N to the grain (Andersson et al., 2005) and are the last organs to senesce (Peoples and Dalling, 1988). In these conditions, N partitioning to the roots and redistribution of N from the roots to the grain may play an important role for the nitrogen budget of the whole plant (Andersson et al., 2005) since a large part (10 to 20%) of the total plant N at maturity appears to remain in the roots (Andersson and Johansson, 2006). This may have several consequences since most studies occult the root compartment. First, accounting for the root compartment may affect to some extent whole plant NUE if it is associated to different shoot/root allocations (Andersson et al., 2005). Substantial genetic variation has already been observed for this trait in wheat (Siddique et al., 1990; Hoad 2001). Second, if variations in shoot/root allocation were associated to large differences in root N content and remobilization patterns, it may impact other agronomical traits such as grain protein concentration. The aim of this study was to analyze the N allocation to roots in wheat and the net N remobilization from roots during the post-anthesis period under field conditions. A particular emphasis was put on the evaluation of the genetic variability associated with these processes. Root biomass, relative allocation and mass loss were studied on 16 bread wheat cultivars grown in the field at two N levels. Root N content and remobilization were quantified in order to evaluate the potential role of N remobilization from roots in the N economy of the crop.
2. Materials and Methods

2.1. Plant material and growing conditions

Sixteen genotypes of winter bread wheat (Table 2) were studied in a field experiment carried out at Clermont-Ferrand, France (45°47' N, 3°10' E, 329 m elevation) during the 2007-2008 growing season. This panel of genotypes represents a large part of the genetic variability for nitrogen use efficiency and its components (Le Gouis et al., 2000; Gaju et al., 2011) and for the deviation from the negative correlation between grain yield and protein concentration (Oury et al., 2003) reported in UK and France elite germplasms. Soil characteristics are presented in Table 2. Crops were sown at a density of 250 seeds m$^{-2}$ on 06 November 2007. A high (HN) and a low (LN) N treatments were applied. For the HN treatments, the rates of N fertilisation were determined using the balance sheet method (Rémy & Hébert, 1977) to optimize grain yield. N was applied in four splits as ammonium nitrate granules (33.5% N) with 4, 8, 8, and 4 g N m$^{-2}$ being applied when Rialto, which has a rate of development in the middle of the range of the sixteen cultivars used in this study (Table 2), reached growth stages (GS; Zadoks et al., 1974) GS21 (beginning tillering), GS31 (ear at 1cm), GS39 (male meiosis), and GS61 (anthesis) respectively. In the LN treatment, 4 g N m$^{-2}$ were applied in one split when Rialto reached GS31. The experimental field was not irrigated. All other crop inputs including weed, disease and pest control, and potassium, phosphate and sulfur fertilizers, were applied at levels to prevent nutrients or weeds, diseases and pests from limiting yield. The experimental design was a split-plot in which N treatment was randomized on main plots, cultivars were randomized on the sub-plots and each treatment was replicated three times. Sub-plot size was 7 × 1.5 m with an inter-row spacing of 0.17 m.
2.2. Plant sampling

Plants were sampled at anthesis (GS61) and full grain maturity (GS92). When each genotype reached the appropriate stage, 0.5 m² per sub-plot was cut at ground level. The total fresh mass of the samples was determined and a 25% sub-sample was randomly selected. The main and secondary shoots were separated and counted. Shoots were classified as main when the top of their ear was in the top 0.15 m layer of the canopy. Thirty main shoots were randomly selected and dissected into individual leaf laminae, stems (including leaf sheaths) and ears. The fresh mass of the secondary shoots of the sub-samples was determined, and sub-samples of secondary shoot (20%) were randomly selected. Their fresh mass was determined before separating them into leaf laminae, stems (including leaf sheath) and ears. For both main and secondary shoots, green and dead photosynthetic (identified by their brownish colour) tissues were analysed separately.

2.3. Root sampling

Root sampling was performed with a square-shaped soil corer (height = 40 cm, section = 18 x 18 cm). The corer was positioned on the soil, centered on a plant row and drove into the soil to a depth of 30 cm with a sledge hammer. The soil core was then retrieved, soaked into 10 L of water to facilitate soil disaggregation and washed abundantly with water above a 1 mm mesh-size sieve until roots were totally free of soil.

2.4. Plant tissues dry mass and nitrogen concentration,

Lamina, stem, chaff, grains and roots dry mass (DM) of the main shoots were determined after oven drying at 80°C for 48h. Samples were then ground and their total N concentration (N mass per unit dry mass) was determined with the Dumas combustion method (AOAC
method n° 7.024) using a FlashEA 1112 N/Protein analyser (Thermo Electron Corp., Waltham, MA, USA).

2.5. Calculations

Several composite traits were calculated. Biomass allocation was investigated by calculating the root/shoot ratio (R/S) as follows:

\[R/S = \frac{SDM}{RDM} \] \hspace{1cm} (1)

where SDM is the total aboveground dry mass including leaves, stems, chaff and grain and RDM the total root dry mass. The N root/shoot ratio (RN/SN) was calculated similarly as:

\[\frac{RN}{SN} = \frac{RN}{SN} \] \hspace{1cm} (2)

where SN and RN are the N amount in the aboveground and belowground organs respectively. Crop N harvest index was calculated based on shoot N only (NHI) or total plant N (NHI\text{tot}):

\[NHI = \frac{GN}{SN} \times 100 \] \hspace{1cm} (3)

\[NHI\text{tot} = \frac{GN}{(SN + RN)} \times 100 \] \hspace{1cm} (4)

Where GN is the amount of N in the grains.

In order to evaluate the efficiency of N assimilation in the crop, nitrogen utilisation efficiency was calculated based on shoot N only (NUtE) or total plant N (NUtE\text{tot}):

\[NUtE = \frac{GDM}{SN} \] \hspace{1cm} (5)

\[NUtE\text{tot} = \frac{GDM}{(SN + RN)} \] \hspace{1cm} (6)

Where GDM is the grain dry mass.

The amount of N lost by roots (NLR) during the post-anthesis period was calculated as the differences of N amounts in roots between anthesis (RN\text{anth}) and maturity (RN\text{mat}):

\[NLR = RN\text{anth} - RN\text{mat} \] \hspace{1cm} (7)
The amount of N potentially remobilized from senescent roots (NRR\textsubscript{0.3}) was estimated based on the assumption that N concentration in dead root tissue was fixed at 0.3% since this value was close from the lowest root N% observed in this study:

\[
\text{NRR}_{0.3} = \frac{(\text{RDM}_{\text{anth}} - \text{RDM}_{\text{mat}}) \times (\text{RN}\%_{\text{anth}} - 0.3)}{100}
\] \hspace{1cm} (8)

Where RN\%\textsubscript{anth} is the N concentration in root material at anthesis.

Finally the proportion of grain N remobilized from roots (PGNR) was calculated as

\[
\text{PGNR} = \frac{\text{GN}_{\text{mat}}}{\text{NRR}_{0.3}}
\] \hspace{1cm} (9)

The N nutrition Index (NNI) was estimated at anthesis as proposed by Justes et al. (1994).

\[
N_t = 5.35 \times \text{SDM}^{0.442}
\] \hspace{1cm} (10)

Where \(N_t\) is the critical N concentration (%DM) and SDM expressed in t.ha\(^{-1}\). NNI is then calculated as the ratio between actual shoot N concentration and \(N_t\).

\[
\text{NNI} = \frac{\text{SN}\%}{N_t}
\] \hspace{1cm} (11)

3. Results

3.1. Climate

The first part of the crop cycle occurred under relatively dry conditions (Fig. 1). During the September-February period rainfall was about 30% below the 20-year average for the same period. Oppositely the following part of the cycle occurred under extremely wet conditions. From March to July rainfall reached 390 mm representing a 40% excess compared to the 20-year average. Consequently the whole post-anthesis period was characterized by an absence of water limitation.

3.2. Crop structure at anthesis

The genotypes used in the present experiment exhibited a large variation in term of developmental rate. Anthesis date varied from May 19th (Récital) to June 4th (Beaver and
Tiller number at anthesis was affected by N treatment ($P=0.048$) but no genotype effect was found (Table 2). On average, tiller number at anthesis was 442 and 654 tiller m$^{-2}$ under LN and HN, respectively. At anthesis, SDM was strongly affected by N treatment with an 18% increase under HN compared to LN averaged across all genotypes. Statistically significant differences between genotypes were also measured. In particular, Récital and Renan, the two earliest genotypes, had high anthesis SDM under both N treatments. Comparatively RDM was not affected by N treatment with 190 g DM m$^{-2}$ on average over all combinations (Table 2). Genotypic effect was particularly strong with three genotypes having low RDM under both N treatments (Arche, CF99102 and CF 9107). No correlation was found between SDM and RDM at anthesis (data not shown) with r^2 of 0.001 and 0.02 under LN and HN, respectively. RDM was strongly and positively associated with tiller number (Fig. 2) with about 50% of the RDM variation explained by tiller number under both N treatments. The slope of the regression for LN and HN treatments were not statistically different (common slope: 0.22 gDM tiller$^{-1}$) but the intercept was significantly lower under HN than LN. Comparatively, tiller number did not explain SDM at anthesis (Fig.2; $r^2 = 0.004$ and 0.02 under LN and HN, respectively). The allocation between shoot and root of both DM (Fig. 3) and N were correlated with crop N status but only under LN. Under LN, R/S ratio varied between 0.18 and 0.30 while NNI varied between 0.38 and 0.55 (Fig. 3), the latter values typically found under strong N restrictions. The predictive power of NNI was even stronger for the N allocation with RN/SN values ranging between 0.07 and 0.13 (data not shown). Both relations were poorly explicative under HN (Fig. 3). This was particularly caused by four outliers (genotypes Beaver, Rialto, Savannah and Soissons) with high allocation of DM and N to roots. These outliers were not explained by relatively higher variation coefficients than other genotypes (data not shown). If these outliers are removed,
average R/S for the 12 remaining genotypes for HN was 0.19 and RN/SN was 0.08. Both values were similar to the lower range of the values observed for LN (Fig. 3).

RDM variation during the post-anthesis period was negatively correlated with RDM at anthesis under both N treatments (Fig. 4, $r^2 = 0.38$ and 0.67 under LN and HN respectively) and ranged from -5% to -54%. The proportional loss of belowground biomass increased with the initial belowground biomass present at anthesis.

3.3. Nitrogen remobilization from the belowground compartment and effects on nitrogen allocation calculations

NHI at anthesis was both under strong N treatment and genotype effects (Table 3). On average over genotypes NHI equaled 79 and 72% under LN and HN, respectively. Accounting for belowground N in the calculation led to an about 3 percent point decrease in the calculated NHI$_{tot}$. Nevertheless this did not impact significantly genotypes ranking for this trait. Spearman’s rank test gave correlation Rs values of 0.83 and 0.97 for LN and HN, respectively, indicating strong rank correlations between the two calculations. Results were equivalent for NUtE calculations with a small impact of accounting for belowground N pool. NUtE$_{tot}$ was on average 1.7 percent point lower than NUtE. Again this has no impact on genotypes ranking (Rs values of 0.96 and 0.98) under LN and HN, respectively. Calculation of N potentially lost by roots during the post anthesis period (NLR) indicated that only a small N amount was lost as senesced material or remobilized during this period. The largest part of this N amount was caused by a decreased in RDM and not by a decrease in remaining biomass decrease in N concentration. Indeed, RN% variation during post anthesis under LN was nil (0.41% at both anthesis and maturity) and only marginal under HN (0.83 and 0.79 at anthesis and maturity, respectively). Calculating potentially remobilized N from senesced roots is hazardous since the N concentration of senesced root material was not measured and
may vary with time, type of roots, treatment and genotype. Nevertheless, N remobilization from roots \((\text{NRR}_{0.3})\) was estimated based on a putative N concentration in the senesced root material of 0.3%, a value close from the lowest root N concentration observed in the present experiment but much lower than reported values for dead fine roots (Gordon and Jackson, 2000). Even based on the assumption of a 0.3% N in dead roots, extremely small amount of potentially remobilized N from roots were calculated. \(\text{NRR}_{0.3}\) values were on average 0.1 and 0.4 gN m\(^{-2}\) for LN and HN, respectively, corresponding to 0.8 and 2.3% of the total grain N at maturity. Genetic variation observed for both the quantity and the proportion of N remobilized from roots were not correlated with any of the traits of interest such as grain N quantity or concentration (data not shown). In addition remobilization efficiency of the belowground plant material was not related whatsoever with remobilization efficiency of aboveground vegetative organs.

4. Discussion

The aim of this study was to analyze the potential impact of the belowground compartment on the N economy of wheat. Based on previous results in controlled conditions showing that the N economy of the whole plant was affected to a great extent by the N amount in the roots (Andersson et al., 2005), our main objective was to test, under field conditions it the genetic variability associated with N remobilized from roots was detectable. Indeed, large genetic variation associated with this process might strongly impact the assessment of the genetic diversity of agronomical traits of interest such as NUE, post-anthesis N uptake and grain N. It is clear that data obtained in a single environment cannot reveal the full extent of genetic variation among a set of genotypes. However, this information can help determine if putatively observed genetic variability relies on intrinsic genetic differences of the root
compartment or if these differences follow a generic response function to traits obtained at the whole plant level.

4.1. Root sampling methodology

In the present experiment root biomass was only sampled in the 0-30 cm horizon. Clearly the full root biomass was not harvested by this method since the maximum rooting depth was evaluated to 90 cm at the experimental site. This would clearly be a strong limitation if the objective was to compare genotypes in term of functional processes such as water and N extraction capacity. Here, the key aspect was to retrieve a large proportion of the total root biomass to assess differences of biomass and nitrogen allocation pattern between genotypes. Kätterer et al. (1993) studied the root biomass of a winter wheat genotype under four management treatments including dry and irrigated crops. On average, after anthesis about 85% of the root biomass was found in the top 30 cm horizon. This proportion tended to increase in the well irrigated treatment. Siddique et al. (1990) also observed very high proportion of the total root biomass in the first 30 cm. A root dry matter profile was available for three genotypes and showed that more than 90% of the total root biomass was in this horizon. Similar figures can be found in Wechsung et al. (1999). Xue et al. (2003) reported lower proportion of root biomass (about 60%) in the first 30 cm, but in a soil with a maximum rooting depth of 2 m thus more than twice as deep as our soil. We therefore believe that the sampling method used in the present experiment allowed harvesting a very significant proportion of the total root biomass and that it is very unlikely that significant bias would hamper genotype comparisons. Kätterer et al. (1993) reported roots biomass values at anthesis of 92 g m\(^{-2}\) while values presented by Siddique et al. (1990) at the same developmental stage are three times higher (310 g DM m\(^{-2}\)). With average values of about 200 g DM m\(^{-2}\) the values
of the present study tend to confirm that the sampled biomass is representative of the whole soil profile.

4.2. Root biomass allocation and dynamics

The present data clearly shows the effect of the genetic differences in tiller numbers on both root biomass and allocation. Comparatively, both aboveground biomass and yield were independent of tiller number in the present study. Tiller number optimization has been identified as a potential candidate trait for yield increase (Reynolds et al., 2009). Under extremely limiting conditions such as strong terminal drought, low tiller number may be a promising trait for water economy and final grain yield (Dugan et al., 2005; Munns and Richards, 2007). The introduction of a reduced tillering (tin) gene in wheat lines has nevertheless been shown to have extremely contrasted effects on yield depending on the environment and genetic background but with a tendency towards grain yield reduction (Mitchell et al., 2012). In the present growing conditions, with elite material, it seems that the observed genetic variations in tiller number is only a phenotypic expression of the strong phenotypic plasticity of wheat, a crop that is able to express yield in a range of ways through strong compensations between yield components (Lawless et al., 2005; Sinclair and Jamieson, 2008). In particular the tiller size/density compensation process, well characterized in perennial grasses (Matthews, 1996) seems to have operated in our conditions. Nodal root emission is strongly synchronized with leaf and tiller production (Klepper et al 1984). This coordination does not necessarily induce a metric relationship between tiller number and root biomass. Individual root can vary in diameter, length or density and have a specific branching pattern that potentially breaks this relationship. In addition, low tillering can be seen as a possibility for plants to allocate more resources towards root development (Duggan et al.,
Nevertheless, the data presented here show that the tillering dynamic of the crop has a strong influence on root biomass at anthesis.

A second strong determinant of biomass allocation to roots at anthesis is the crop nitrogen status. The effect of the plant nitrogen status on the R/S ratio of plant has received much attention in particular for modeling purpose (Hilbert, 1990; Gleeson, 1993; Thornley, 1995; 1998; Agren and Franklin, 2003) and clearly demonstrated that the R/S decreases with increasing N supply. These models use plant N concentration (Franklin and Agren, 2003) or C, N availability (Thornley, 1995) to predict biomass allocation and are based on the hypothesis that biomass allocation is strongly controlled at the plant level and optimized in relation to the availability of C and N. In our study, NNI was the best predictive variable for R/S. The nitrogen nutrition index as described in Gastal and Lemaire (2002) allows to quantify the N status of the crop dynamically; i.e. accounting for the decreasing crop N demand as crop gets larger (Gastal and Lemaire, 2002). Therefore, optimal crop relative growth rate is attained for a crop N concentration, called critical N concentration that decreases following a power function of crop biomass. NNI derives from a comparison between actual crop N concentration and critical N concentration at the observed biomass and allows the N status of the crop to be quantified over development and also to compare N status of crops of different biomass.

Modeling analysis clearly showed that functional equilibrium approaches predicting R/S in term of C and C co-limitation was not valid for extreme conditions of high and low N availability (Agren and Flanklin, 2003). This can be related to the apparent saturation of the R/S response to NNI for high NNI values. Indeed in the present study R/S reached a minimal
R/ value of about 0.2 in the HN treatment. A possible explanation for this saturation relies on the positive correlation between tiller density and R/S observed here caused by the strong coordination between tiller and root dynamic (Hoad et al., 2001) which may lead to a minimal R/S under given environmental conditions.

Based on the strong association observed between root biomass and crop tillering dynamic on the one hand and allocation and crop N status on the second hand, we believe that the observed genetic variability for biomass allocation to roots (Table 2), is a consequence of genetic variability for crop growth and N utilization taken as a whole rather than an intrinsic variability for biomass allocation to roots.

In term of potential nutrient remobilization to the grain during the post anthesis period, it is also important to assess the biomass variation of the root pool during this period. In wheat decrease in root mass after anthesis is generally observed due to a root death rate exceeding root production rate (Kätterer et al., 1993; Steingrobe et al., 2001). This is a common feature observed in annual plants for which the developing grain is a strong competitive sink for the carbon resource (Eissenstadt and Yanai, 1997) leading to a strong root length decline after flowering in wheat (Box and Johnson, 1987 in Eissenstadt and Yanai, 1997). In the present study we observed a strong negative correlation between root mass loss during the post-anthesis period and root biomass at anthesis. In other words, plants with high root biomass at anthesis tend to loose a greater proportion of this biomass. A possible explanation relies on the much shorter life span of fine roots compared to larger roots (Eissenstadt et al., 2000). Indeed a large part of the root biomass variability may be associated with branching variability leading to a greater proportion of fine roots in plants with high root biomass. No root separation by class size could be performed in the present study therefore the causal explanation of this process remains putative. Nevertheless, the key aspect is that the apparent
genotypic variation associated with root biomass loss follows general responses and probably
do not mean a genetic variability for root longevity stricto sensu.

4.3. Root nitrogen content and remobilization

In the present study no attempt was made to differentiate live from dead roots in the sampled
material. Therefore the analyzed material is a mixture of roots differing in age and state.
Nevertheless based on this coarse dataset it seems clear that net N remobilization from roots
during the post-flowering period in wheat grown in the field is a marginal process. First, N
concentration in the sampled root materials did not vary between anthesis and maturity (Table
3). Comparatively, other vegetative organs are a net source of N for the developing grain and
remobilize about 70% of the N present at anthesis (e.g. Gaju et al., 2011). The remobilization
pattern of these vegetative organs follows a robust first-order kinetics independent of organ
age, genotype and N nutrition (Bertheloot et al., 2008). Second, the estimated potential N
remobilization from dead roots represents less than 3% of the total grain N at maturity. Our
estimate of remobilized N is in addition probably overestimated since past studies focusing
specifically on nutrient remobilization from dying fine roots tended to show that N
concentration did not vary between live and dead roots material implying little if no N re-
translocation from senescing roots (Gordon and Jackson, 2008). Based on an experiment in
hydroponic conditions, Andersson and Johansson (2006) observed that N amount in the root
at maturity was 10-20% of total plant N thus potentially affecting NUE calculations. Here we
clearly show that under field conditions N amount in the roots is about 4% of total plant N
and affects only marginally calculated variables such as NHI or NutE with in particular no
effect on genotype ranking for these variables. In addition no correlation between root N
concentration or estimated amount of N remobilized from roots and agronomic variables of
interest were found. Quantitatively speaking, the amount of N potentially remobilized from
roots, in spite of its probable over estimation in the present study cannot affect significantly
the amount of N in the grain. Clearly, the observed genetic variation for grain N content is not
likely to be determined by variations in the root N pool.

5. Conclusions

This experiment provided strong indications that the apparent genetic variability existing for
wheat root biomass and allocation is driven by crop growth pattern rather than root growth
variability per se. Similarly, root loss during the post-anthesis period appeared to be largely
driven by root biomass at anthesis. More generally root biomass dynamics seems to be
determined to great extent by the crop status at anthesis. There seems to be little prospect for a
further exploration of root biomass genetic variability that is independent of crop response.
Given the relatively small proportion of N in the roots and the apparent low N remobilization
from this pool to the grain, taking into account roots in the determination of N related traits
such as NUE appears of little interest. In particular, genotype ranking for this trait is not
affected by the accounting or not of this generally ignored N compartment. Of course, root
architectural traits such as total root length and root vertical distribution may be of major
importance for crop N, water acquisition and adaptation. Observed genetic variability for
such traits may be strong determinants of wheat genotypes performance in particular in
limited environment (Manshadi et al., 2010), but this was beyond the scope of the present
study.
Acknowledgements

Bernard Bonnemoy built the soil corer and did all soil sampling and root washing. Joelle Messaoud did all plant sampling, biometric measurements and elemental analysis. The authors also want to thank Nicole Allard for her technical participation to this experiment.

References

Shewry, P.R., 2007. Improving the protein content and composition of cereal grain. J. Cereal Sci. 46, 239-250.

Figures captions

Figure 1: Monthly mean temperatures during the growing season (closed circles) and averaged over the 1990-2008 period (open circles), monthly cumulative rainfall during the growing season (grey bars) and averaged over the 1990-2008 period (open dashed bars) at Clermont-Ferrand. The letters indicate sowing (S), nitrogen applications for the HN and LN treatments, and the periods covering the flowering (F) and the maturity (M) samplings.

Figure 2: Relations between tiller density and (A) root dry mass or (B) shoot dry mass at anthesis under LN (open circles) and HN full black circles) treatments. Numbers between 1 and 16 refer to genotype code (see table 2).

Figure 3: Relation between (A) crop nitrogen nutrition index (NNI), (B) tiller density at anthesis and Root to shoot ratio at anthesis (R/S) under LN (open circles) and HN full black circles) treatments. Numbers between 1 and 16 refer to genotype code (see table 2).

Figure 4: Relation between belowground dry mass at anthesis and below ground dry mass variation between anthesis and maturity under LN (open circles) and HN full black circles) treatments. Numbers between 1 and 16 refers to genotype code (see table 2).
Figure 1
Figure 2
Figure 3
Figure 4

Belowground DM variation between anthesis and maturity (%)

Belowground DM at anthesis (g DM m⁻²)

R² = 0.38

R² = 0.67
Table 1: Soil characteristics at the Clermont-Ferrand site

<table>
<thead>
<tr>
<th>Previous crop</th>
<th>barley</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil textural class (USDA system)</td>
<td>clay loam</td>
</tr>
<tr>
<td>Soil particle size distribution (% of soil dry mass)</td>
<td>< 2</td>
</tr>
<tr>
<td>Stone (> 2.0 mm)</td>
<td>19.8</td>
</tr>
<tr>
<td>Sand (0.05-2.0 mm)</td>
<td>36.7</td>
</tr>
<tr>
<td>Silt (0.002-0.05 m)</td>
<td>43.5</td>
</tr>
<tr>
<td>Clay (< 0.002 mm)</td>
<td>0.9</td>
</tr>
<tr>
<td>Maximum rooting depth (m)</td>
<td>122</td>
</tr>
<tr>
<td>Plant available soil water content (mm)</td>
<td>1.15</td>
</tr>
<tr>
<td>Apparent bulk density (t m$^{-3}$)</td>
<td>3.1</td>
</tr>
<tr>
<td>pH in water</td>
<td>8.1</td>
</tr>
<tr>
<td>Inorganic soil N (0-90 cm layer)</td>
<td>6.2</td>
</tr>
<tr>
<td>at the end of winter (g N m$^{-2}$)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Anthesis date, root dry mass (RDM), shoot dry mass (SDM) and grain dry mass (GDM) at anthesis and grain maturity. Data are means of three replicates. Means for the LN and HN treatments are calculated. P values were obtained with a split plot ANOVA.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Anthesis Date</th>
<th>RDM g DM m⁻²</th>
<th>SDM g DM m⁻²</th>
<th>Maturity RDM g DM m⁻²</th>
<th>SDM g DM m⁻²</th>
<th>GDM g DM m⁻²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alchemy 1</td>
<td>03/06/08</td>
<td>183</td>
<td>750</td>
<td>122</td>
<td>1118</td>
<td>499</td>
</tr>
<tr>
<td>Beaver 2</td>
<td>04/06/08</td>
<td>207</td>
<td>799</td>
<td>128</td>
<td>1278</td>
<td>590</td>
</tr>
<tr>
<td>Consort 3</td>
<td>04/06/08</td>
<td>203</td>
<td>756</td>
<td>104</td>
<td>1037</td>
<td>493</td>
</tr>
<tr>
<td>Paragon 4</td>
<td>02/06/08</td>
<td>184</td>
<td>845</td>
<td>131</td>
<td>1152</td>
<td>482</td>
</tr>
<tr>
<td>Rialto 5</td>
<td>30/05/08</td>
<td>176</td>
<td>697</td>
<td>121</td>
<td>1054</td>
<td>480</td>
</tr>
<tr>
<td>Robigus 6</td>
<td>02/06/08</td>
<td>212</td>
<td>735</td>
<td>155</td>
<td>1327</td>
<td>618</td>
</tr>
<tr>
<td>Savannah 7</td>
<td>03/06/08</td>
<td>185</td>
<td>816</td>
<td>126</td>
<td>1234</td>
<td>592</td>
</tr>
<tr>
<td>Soissons 8</td>
<td>20/05/08</td>
<td>176</td>
<td>890</td>
<td>150</td>
<td>1066</td>
<td>479</td>
</tr>
<tr>
<td>Arche 9</td>
<td>26/05/08</td>
<td>158</td>
<td>906</td>
<td>104</td>
<td>1411</td>
<td>680</td>
</tr>
<tr>
<td>CF91102 10</td>
<td>22/05/08</td>
<td>146</td>
<td>795</td>
<td>111</td>
<td>1099</td>
<td>516</td>
</tr>
<tr>
<td>Perfector 12</td>
<td>28/05/08</td>
<td>229</td>
<td>773</td>
<td>124</td>
<td>1248</td>
<td>595</td>
</tr>
<tr>
<td>Quebon 13</td>
<td>29/05/08</td>
<td>184</td>
<td>788</td>
<td>109</td>
<td>1344</td>
<td>583</td>
</tr>
<tr>
<td>Réctal 14</td>
<td>19/05/08</td>
<td>191</td>
<td>962</td>
<td>163</td>
<td>1074</td>
<td>464</td>
</tr>
<tr>
<td>Renan 15</td>
<td>21/05/08</td>
<td>181</td>
<td>1039</td>
<td>136</td>
<td>1260</td>
<td>505</td>
</tr>
<tr>
<td>Toisonord 16</td>
<td>27/05/08</td>
<td>186</td>
<td>789</td>
<td>123</td>
<td>1331</td>
<td>649</td>
</tr>
<tr>
<td>Mean LN</td>
<td>184</td>
<td>817</td>
<td>127</td>
<td>1213</td>
<td>553</td>
<td></td>
</tr>
<tr>
<td>Alchemy 1</td>
<td>03/06/08</td>
<td>192</td>
<td>924</td>
<td>132</td>
<td>1422</td>
<td>633</td>
</tr>
<tr>
<td>Beaver 2</td>
<td>04/06/08</td>
<td>243</td>
<td>1026</td>
<td>127</td>
<td>1719</td>
<td>803</td>
</tr>
<tr>
<td>Consort 3</td>
<td>04/06/08</td>
<td>186</td>
<td>1040</td>
<td>143</td>
<td>1750</td>
<td>846</td>
</tr>
<tr>
<td>Paragon 4</td>
<td>02/06/08</td>
<td>181</td>
<td>957</td>
<td>158</td>
<td>1736</td>
<td>702</td>
</tr>
<tr>
<td>Rialto 5</td>
<td>30/05/08</td>
<td>214</td>
<td>868</td>
<td>153</td>
<td>1543</td>
<td>730</td>
</tr>
<tr>
<td>Robigus 6</td>
<td>02/06/08</td>
<td>196</td>
<td>925</td>
<td>138</td>
<td>1883</td>
<td>898</td>
</tr>
<tr>
<td>Savannah 7</td>
<td>03/06/08</td>
<td>245</td>
<td>956</td>
<td>133</td>
<td>1705</td>
<td>797</td>
</tr>
<tr>
<td>Soissons 8</td>
<td>20/05/08</td>
<td>261</td>
<td>961</td>
<td>122</td>
<td>1491</td>
<td>746</td>
</tr>
<tr>
<td>Arche 9</td>
<td>26/05/08</td>
<td>167</td>
<td>875</td>
<td>126</td>
<td>1704</td>
<td>787</td>
</tr>
<tr>
<td>CF91107 10</td>
<td>22/05/08</td>
<td>162</td>
<td>984</td>
<td>110</td>
<td>1435</td>
<td>734</td>
</tr>
<tr>
<td>Perfector 12</td>
<td>28/05/08</td>
<td>204</td>
<td>971</td>
<td>136</td>
<td>1827</td>
<td>847</td>
</tr>
<tr>
<td>Quebon 13</td>
<td>29/05/08</td>
<td>165</td>
<td>958</td>
<td>157</td>
<td>1638</td>
<td>739</td>
</tr>
<tr>
<td>Réctal 14</td>
<td>19/05/08</td>
<td>190</td>
<td>1003</td>
<td>142</td>
<td>1270</td>
<td>614</td>
</tr>
<tr>
<td>Renan 15</td>
<td>21/05/08</td>
<td>196</td>
<td>1069</td>
<td>130</td>
<td>1581</td>
<td>708</td>
</tr>
<tr>
<td>Toisonord 16</td>
<td>27/05/08</td>
<td>189</td>
<td>975</td>
<td>134</td>
<td>1679</td>
<td>812</td>
</tr>
<tr>
<td>Mean HN</td>
<td>197</td>
<td>963</td>
<td>135</td>
<td>1628</td>
<td>762</td>
<td></td>
</tr>
</tbody>
</table>

Source of variance: Treatment 0.248 0.005*** 0.123 0.019* 0.014* Genotype 0.001** 0.019* 0.397 0.010* <0.001*** TxG 0.251 0.425 0.464 0.865 0.886
Table 3: root N amount (RN), root N concentration (RN%) at anthesis and grain maturity. Calculated variables are nitrogen harvest index based on shoot N only (NHI) or total plant N (NHI\text{tot}), N utilization efficiency based on shoot N only (NU\text{E}) or total plant N (NU\text{E}\text{tot}), N lost from root between anthesis and maturity (NLR), N potentially remobilized by roots assuming 0.3% N in the dead roots (NRR\text{0.3}) and the proportion of grain N originating from roots (PGNR). Data are means of three replicates. Means for the LN and HN treatments are calculated. P values were obtained with a split plot ANOVA.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Genotype code</th>
<th>Anthesis</th>
<th>Maturity</th>
<th>Calculations</th>
<th>PGNR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RN</td>
<td>RN% %DM</td>
<td>NHI</td>
<td>NHI\text{tot}</td>
</tr>
<tr>
<td>LN</td>
<td>1</td>
<td>0.7</td>
<td>0.39</td>
<td>0.5</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.9</td>
<td>0.43</td>
<td>0.6</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.7</td>
<td>0.35</td>
<td>0.4</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.7</td>
<td>0.40</td>
<td>0.5</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.8</td>
<td>0.45</td>
<td>0.5</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.8</td>
<td>0.38</td>
<td>0.6</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.8</td>
<td>0.43</td>
<td>0.6</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.8</td>
<td>0.48</td>
<td>0.7</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.6</td>
<td>0.38</td>
<td>0.4</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.7</td>
<td>0.45</td>
<td>0.5</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.6</td>
<td>0.46</td>
<td>0.5</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.9</td>
<td>0.37</td>
<td>0.6</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.8</td>
<td>0.41</td>
<td>0.4</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.8</td>
<td>0.42</td>
<td>0.8</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.8</td>
<td>0.47</td>
<td>0.5</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.8</td>
<td>0.43</td>
<td>0.4</td>
<td>0.34</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>0.76</td>
<td>0.42</td>
<td>0.53</td>
<td>0.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of variance</th>
<th>TXG</th>
<th>N</th>
<th>G</th>
<th><0.001***</th>
<th><0.001***</th>
<th>0.006**</th>
<th>0.004*</th>
<th>0.006**</th>
<th>0.005**</th>
<th>0.002*</th>
<th>0.002*</th>
<th>0.031*</th>
<th>0.025*</th>
<th>0.041*</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0.002**</td>
<td><0.001***</td>
<td>0.006**</td>
<td>0.004*</td>
<td><0.001***</td>
<td><0.001***</td>
<td><0.001***</td>
<td><0.001***</td>
<td><0.001***</td>
<td>0.022*</td>
<td>0.049*</td>
<td>0.036*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0.110</td>
<td>0.052</td>
<td>0.082</td>
<td>0.794</td>
<td>0.637</td>
<td>0.075</td>
<td>0.041*</td>
<td>0.332</td>
<td>0.350</td>
<td>0.245</td>
<td>0.097</td>
<td>0.110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>