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Abstract. In High Angular Resolution Di� usion Imaging (HARDI), Orientation
Distribution Function (ODF) and Ensemble Average Propagator (EAP) are two
important Probability Density Functions (PDFs) which re�ect the water di� usion
and �ber orientations. Spherical Polar Fourier Imaging (SPFI) is a recent model-
free multi-shell HARDI method which estimates both EAP and ODF from the
di� usion signals with multipleb values. As physical PDFs, ODFs and EAPs are
nonnegative de�nite respectively in their domainsS2 andR3. However, existing
ODF/EAP estimation methods like SPFI seldom consider this natural constraint.
Although some works considered the nonnegative constraint on the given discrete
samples of ODF/EAP, the estimated ODF/EAP is not guaranteed to be nonneg-
ative de�nite in the whole continuous domain. The Riemannian framework for
ODFs and EAPs has been proposed via the square root parameterization based
on pre-estimated ODFs and EAPs by other methods like SPFI. However, there
is no work on how to estimate the square root of ODF/EAP called as the wave-
funtion directly from di� usion signals. In this paper, based on the Riemannian
framework for ODFs/EAPs and Spherical Polar Fourier (SPF) basis represen-
tation, we propose a uni�ed model-free multi-shell HARDI method, named as
Square Root Parameterized Estimation (SRPE), to simultaneously estimate both
the wavefunction of EAPs and the nonnegative de�nite ODFs and EAPs from
di� usion signals. The experiments on synthetic data and real data showed SRPE
is more robust to noise and has better EAP reconstruction than SPFI, especially
for EAP pro�les at large radius.

1 Introduction

Di� usion MRI (dMRI) is the unique technique to explore the complex microstructure of
white matter non-invasively, by modelling the di� usion of water molecules. The water
di� usion is fully characterized by the di� usion Probability Density Function (PDF)
called as the Ensemble Average Propagator (EAP). Under the narrow pulse assumption,
the signal attenuationE(q) is the Fourier transform of the EAP denoted byP(R) [2]:

E(q) =
Z

R3
P(R) exp(� 2� iqTR)dR (1)

whereq = qu is the wavevector in imagingq-space, andR = Rr is the displacement
vector in spatialR-space, andu andr are unit vectors. Since Di� usion Tensor Imag-
ing (DTI) cannot handle the complex �ber con�guration, a category of reconstruction



methods, named as High Angular Resolution Di� usion Imaging (HARDI), were pro-
posed to avoid the Gaussian EAP assumption in DTI [11,7,8,1,5,10]. In HARDI, EAP
and two kinds of the Orientation Distribution Functions (ODFs) de�ned as� 0(r ) =
1
Z

R1

0
P(Rr)dR, � 2(r ) =

R1

0
P(Rr)R2dR, are normally used to infer �ber directions,

whereZ in � 0(r ) is the normalization factor to make� 0(r ) as a PDF.
Spherical Polar Fourier Imaging (SPFI) is a recent multi-shell HARDI method,

which represents the signal by Spherical Polar Fourier (SPF) basis [1] and analyti-
cally obtains EAP via the Fourier dual SPF basis [5] and the ODFs via Spherical Har-
monic (SH) basis [3]. Although SPFI works well for the data with low SNR and non-
exponential decay [3,5], the estimated ODF/EAP may have negative values. As physical
PDFs, EAPs and ODFs should be nonnegative de�nite inR3 andS2 respectively. How-
ever, to our knowledge the existing ODF/EAP estimation methods like the classical
Q-ball Imaging (QBI) [11,7] and the recent SPFI [1,5] seldom consider this constraint.
Some works considered this constraint only on the given discrete PDF samples inS2

for ODFs [8] and inR3 for EAPs [10]. However, the discrete constraint only can ensure
the estimated ODF/EAP is nonnegative on the given samples, while it may be nega-
tive in other samples. Moreover it is impractical for EAPs to consider the constraint on
exhaustive samples in unboundedR3 [10]. To our knowledge, there is still no work to
estimate nonnegative de�nite ODFs/EAPs in the whole continuous domains.

The Riemannian framework has been proposed for tensor processing, e.g. the posi-
tive de�nite tensor estimation [9]. Recently the Riemannian framework has been gener-
alized to ODF and EAP processing [4,6] by representing the square root of ODF/EAP
called as the wavefunction with some orthonormal bases, and the wavefunction is cal-
culated from the pre-estimated ODF/EAP by other methods like SPFI [1,5]. However
since SPFI with the least square estimation does not consider the nonnegative con-
straint [1,5], the negative values of pre-estimated ODF/EAP must be forced to zero for
the wavefunction estimation [6], which results in some numerical errors.

In this paper, we propose a model-free multi-shell HARDI method, named as Square
Root Parameterized Estimation (SRPE), to estimate simultaneously the wavevector of
EAP denoted as (R), the nonnegative EAP and ODFs from the di� usion signal sam-
ples. SRPE naturally guarantees the estimated ODF/EAP nonnegative de�nite in the
continuous domain, not just in some discrete samples in [8,10]. The wavefunction es-
timated by SRPE can be used in the Riemannian framework without the numerical
error introduced by negative values. Compared to SPFI, the experiments demonstrate
the EAPs obtained in SRPE is more robust to noise especially at large radius.

2 Square Root Parameterized Estimation (SRPE)

2.1 Analytical relation between the wavefunction (R) and the signalE(q)

SPF basis is a complete orthonormal basis which can sparsely represent Gaussian-like
function with the �rst several basis functions [1,5], Motivated by the square root pa-
rameterization used in the Riemannian framework [4,6], we represent the wavefunc-
tion of EAP P(R) as a linear combination of SPF basis in (2), whereGn(Rj� )Ym

l (r )
is the SPF basis with the Gaussian-Laguerre functionGn(Rj� ) in radial part and the
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Spherical Harmonic (SH) basisYm
l (u) in spherical part [1,5], and the coe� cient vector

c = (c000; : : : ;cNLL)T has unit norm because
R

R3 P(R)dR = 1 [6].

 (R) =
NX

n=0

LX

l=0

lX

m=� l

cnlmGn(Rj� )Ym
l (r ); kck = 1; P(R) = ( (R))2 (2)

Gn(Rj� ) = � n(� ) exp
 
�

R2

2�

!
L1=2

n

 
R2

�

!
; � n(� ) =

"
2

� 3=2

n!
� (n + 3=2)

#1=2

(3)

How to set the scale� will be discussed in 2.4. Please note that [6] represented (R)
with Fourier dual SPF basis, while we use SPF basis. Actually di� erent basis obtains
the equivalent Riemannian framework as demonstrated in [6], however it is convenient
for the analytical ODF and EAP estimation in 2.3 if (r ) is represented by SPF basis.

By substituting the plane wave equation in (4) [5] into (1), wherej � (x) is the� -th
order spherical Bessel function, the signalE(q) in (1) can be written as a function with
respect toc in (5), where the Fourier integration inR3 is separated into radial integration
Inn0� (q) and spherical integrationQmm0�

ll0� in (7).

e� 2� iq�R = 4�
1X

� =0

�X

� =� �

(� 1)�= 2 j � (2� qR)Y�
� (u)Y�

� (r ) (4)

E(qjc) =
Z

R3

0
BBBBB@

NX

n=0

LX

l=0

lX

m=� l

cnlmGn(Rj� )Ym
l (r )

1
CCCCCA

2

e� 2� iqT RdR

=
X

nlm

X

n0l0m0

X

��

4� (� 1)
�
2 cnlmcn0l0m0Inn0� (qj� )Qmm0�

ll0� Y�
� (u) = cTK(qj� )c (5)

Kn0l0m0

nlm (qj� ) =
2LX

� =0

�X

� =� �

4� (� 1)
�
2 Inn0� (q)Qmm0�

ll0� Y�
� (u) (6)

Inn0� (qj� ) =
Z 1

0
Gn(Rj� )Gn0(Rj� ) j � (2� qR)R2dR; Qmm0�

ll0� =
Z

S2
Ym

l (r )Ym0

l0 (r )Y�
� (r )dr (7)

The spherical integrationQmm0�
ll0� is the integration of three SHs, which can be calculated

by Wigner 3-j symbol. Please note that the summation over� in (5) is up to 2L, because
if � > 2L, then� > 2L � l + l0 violates the triangle inequality andQmm0�

ll0� = 0. The radial
integration in Eq. (7) can be written in (8),

Inn0� (qj� ) = � n(� )� n0(� )
� 1:25

2
p

q

Z 1

0
x1:5 exp(� x2)L0:5

n (x2)L0:5
n0 (x2)J� +0:5(2� qx

p
� )dx (8)

whereJ� +0:5(x) =
q

2x
� j � (x) is the Bessel function. ConsiderL0:5

n (x) =
P n

i=0 l inxi , l in =

(� 1)i
�
n+0:5
n� i

�
1
i! , thenL0:5

n (x2)L0:5
n0 (x2) =

P n+n0

i=0 hi
nn0x2i , hi

nn0 =
P min(n;i)

j=0 l j
nl i� j

n0 � (i � j � n0)
Thus the radial integration can be solved based on the property of Bessel function [5],

Inn0� (qj� ) = � n(� )� n0(� )
� 0:5� +1:5� � +0:5q�

4� (� + 1:5)

n+n0X

i=0

hi
nn0� (

1
2

� + i +
3
2

)1F1(
2i + � + 3

2
; � +

3
2

; � � 2q2� ) (9)

where1F1 is the con�uent hypergeometric function. The �nal quadratic relationE(qjc) =
cTK(qj� )c is quite compact, where the kernelK(qj� ) is aN(L+ 1)(L+ 2)=2 dimensional
symmetric matrix for each �xedq and� , andK(qj� ) is independent of dataE(q).
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2.2 Estimation of the wavefunction directly from the signal

With the analytical relation in (5), we propose to estimate the coe� cient c from the
signal samplesfEig

Ns
i=1 by minimizing the cost functionM(c) in (10), where the regular-

ization matrix� is the diagonal matrix with the elements� nlm = � nn2(n+1)2+� l l2(l+1)2

which is motivated by QBI [7] and has been successfully used in SPFI [1,5,3].

c = arg min
kck=1

M(c); M(c) =
1
2

NsX

i=1

�
cTK(qi j� )c � Ei

�2
+

1
2

cT � c (10)

The minimization must be performed in a high dimensional sphere because of the
constraintkck = 1. The Riemannian gradientr M(c) on the sphere is

r M(c) =
@M(c)

@c
�

 
cT @M(c)

@c

!
c;

@M(c)
@c

=
NsX

i=1

2
�
cTK(qi j� )c � Ei

�
K(qi j� )c + � c (11)

Then we propose a gradient descent method in (12), wherec(k) meansc in k-th step,dt is
the step size from the standard line search method,Expc(v) is the exponential map [6].
See Algorithm 1.1 for the details, where we initially setc(0) = (1;0; : : : ;0)T to represent
a typical isotropic Gaussian EAP, anddt0 = 0:1 experimentally, consideringkck = 1.
Note thatc(k) in each step satis�eskc(k)k = 1 thanks to the Riemannian framework [6].

c(k+1) = Expc(k)

 
� dt

r M(c(k))
kr M(c(k))k

!
; where Expc(v) = ccoskvk+

v
kvk

sinkvk (12)

2.3 Estimation of the nonnegative de�nite EAP and ODFs

After the coe� cientc is estimated from signal samplesfEig, the EAPP(R) = ( (R))2

is naturally nonnegative de�nite inR3, and
R

R3 P(R)dR = 1 becausekck = 1 is forced in
each estimation step. For given radiusR0, the EAP pro�le can be represented by product
of SH basis or SH basis, consideringYm

l (r )Ym0

l0 (r ) =
P

�� Y�
� (r )Qmm0�

ll0� .

P(R0r ) = ( (R))2 =
2LX

� =0

�X

� =� �

0
BBBBB@
X

nlm

X

n0l0m0

cnlmcn0l0m0Gn(R0)Gn0(R0)Q
mm0�
nn0�

1
CCCCCAY�

� (r ) (13)

Two kinds of ODFs� 0(r ) and� 2(r ) are also nonnegative de�nite inS2 because they
are radial integrations of nonnegativeP(R). The ODFs can be analytically represented
by product of SH basis or SH basis with the estimated coe� cientc. For� 2(r ), we have

� 2(r ) =
Z 1

0
( (R))2 R2dR =

X

nlm

X

n0l0m0

� Z 1

0
Gn(R)Gn0(R)R2dR

�
cnlmcn0l0m0Ym

l (r )Ym0

l0 (r ) (14)

=
X

nlm

X

l0m0

cnlmcnl0m0Ym
l (r )Ym0

l0 (r ) =
2LX

� =0

�X

� =� �

 X

nlm

X

l0m0

cnlmcnl0m0Qmm0�
ll0�

!
Y�

� (r ) (15)

Here we use the orthogonality
R1

0
Gn(R)Gn0(R)R2dR = � nn0 [1]. It is clear in (15) thatR

S2 � 2(r )dr =
P

nlm c2
nlm = 1, because of the orthogonality of SHs. So the estimated

� 2(r ) from SRPE is indeed the nonnegative de�nite marginal EAP. For� 0(r ), we have

� 0(r ) =
1
Z

Z 1

0
( (R))2 dR =

1
Z

X

nlm

X

n0l0m0

� Z 1

0
Gn(R)Gn0(R)dR

�
cnlmcn0l0m0Ym

l (r )Ym0

l0 (r ) (16)
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Algorithm 1.1: Uni�ed Estimation of Wavefunction, EAP and ODFs
Input : DWI samplesfEig.
Output : Coe� cientc of  (Rjc) and the coe� cients of EAP pro�le, ODFs under SH basis.
begin

initialization : c(0) = (1;0; :::;0)T , k = 0 ; // typical isotropic Gaussian EAP
repeat

calculatev = r M(c(k)) in (11) ;
if kvk < " 1 then break;
choose step sizedt 2 (0;dt0] via line search;
c(k+1) = Expc(k) (� dt v

kvk);
k  k + 1;

until M(c(k� 1))� M(c(k))
M(c(k� 1))

< " 2;
P(R0r ) = Eq.(13),� 2(r ) = Eq.(15),� 0(r ) = Eq.(17)

end

Z 1

0
Gn(R)Gn0(R)dR = � n(� )� n0(� )

p
�

2

Z 1

0
exp(� x)

n+n0X

i=0

hi
nn0xi� 0:5dx = � n(� )� n0(� )

p
�

2

n+n0X

i=0

hi
nn0� (i+

1
2

)

where� (�) is the Gamma function. Then� 0(r ) is represented as

� 0(r ) =
p

�
2Z

2LX

� =0

�X

� =� �

 X

nlm

X

n0l0m0

� n(� )� n0(� )cnlmcn0l0m0Qmm0�
ll0�

n+n0X

i=0

hi
nn0� (i +

1
2

)
!
Y�

� (r ) (17)

2.4 Implementation

The implementation of SRPE has two steps. The �rst step is to estimate coe� cient
vectorc of  (R) from signal samplesfEig. The second step is to obtain EAP and ODFs
analytically from formulae (13) (15) (17), which is independent of the �rst step. The
whole estimation error is only in the �rst step, because the second step is analytical.

In SPFI, the arti�cial shell atq = 0 needs to be considered for the priorE(0) = 1 [5],
which largely improves the results of SPFI. However, in SRPEE(0) = 1 is naturally
satis�ed becausekck = 1 =

R
R3 P(R)dR = E(0) is forced in estimation, which can be

seen as an advantage over SPFI, thanks to the Riemannian framework [6]. Similarly
with SPFI, the scale� needs to be chosen in the �rst step. SPFI proposed to set�
using a typical Apparent Di� usion Coe� cient (ADC) valueD0 = 0:7� 10� 3mm2=s[5].
Motivated by SPFI, we propose to set� by two ways. The �rst way is to set� = 4� D0

such that the �rst SPF basisG0(R)Y0
0(r ) _ exp(� R2

8� D0
) can represent typical isotropic

signalE(q) = exp(� 4� 2� q2D0) with the typical isotropic Gaussian EAPN(Rj2� D0). �
is the di� usion time to calculateq from b value, i.e.b = 4� 2� q2. In this way� is shared
by all voxels, thus the kernelsfK(qi j� )gNs

i=1 need to be calculated only once on samples
fqig. However the typical ADC valueD0 may be not appropriate for the voxels with the
ADC far from D0. Thus the second way is to adaptively estimate the isotropic tensor
with ADC Diso from signalfEig

Ns
i=1 in each voxel, which can be done by a standard least

square estimation in DTI. Then we set� = 4� Diso. The isotropic EAPN(Rj2� Diso) may
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better approximate the signal samples than the EAPN(Rj2� D0) provided byD0. In this
way� is adaptively set for each voxel, thus the kernelfK(qi j� )gNs

i=1 needs to be calculated
for each voxel, which can be accelerated by reusing the pre-calculatedfK(qi j� )gNs

i=1 with
the close scale. Note that the adaptiveDiso can be also used in SPFI. The used special
functions are implemented in GSL, which is very e� cient. The computation burden is
in the calculation of the kernelK and the summation in (11) for many times. With our
C++ codes in ordinary PC, for 10000 voxels, it takes about 7 minutes with �xed scale
and 20 minutes with adaptive scale.

3 Experiments

In practice we found that the ODFs estimated by many HARDI methods normally have
only a small number of negative values close to zero when the SNR is very low, however
even with high SNR, the negative values are serious for the estimated EAPs especially
for large radiusR. Thus we focus on EAP estimation in experiments.

Synthetic Data.The synthetic data were generated from mixture of tensor model [7]
where two tensors cross with a given angle in [45� ; 90� ]. Three shells (b=500,1500,3000
s=mm2) were used, 60 samples per shell. EAP pro�les with radiusR0 = 15� m were es-
timated by SPFI and SRPE. The Normalized Mean Square Error (NMSE) between the
ground truth EAP pro�leP(R0r ) and the estimated EAP pro�leeP(R0r ) is de�ned asq R

S2 jeP(R0r )� P(R0r )j2dr
q R

S2 jP(R0r )2dr
. In the noise-free experiment, the signal was generated from two

tensor con�gurations with eigenvaluesT1 = (1:7;0:3;0:3) � 10� 3mm2=s and T2 =
(0:9;0:3;0:3) � 10� 3mm2=s. We setN = 2, L = 4, � l = � n = 0 and considered both
typical scale and adaptive scale for SPFI and SRPE . Fig. 1(A2,A3) recorded the NMSE
when two maxima were detected. SRPE generally obtains lower NMSE and has better
angular resolution than SPFI. The adaptive scale obtains lower NMSE in two methods
whenT2 is used, which is because the ADC in tensorT1 is much close to the typicalD0,
while the ADC inT2 is not. Fig. 1(A1) shows the ground truth EAP and the estimated
EAPs by two methods whenT1 and crossing angle of 55� are used. SRPE has better
angular resolution and avoids the negative values around the original point in the EAP
by SPFI. Note that the EAP pro�le estimated by SPFI in (A1) has more than 20% neg-
ative values showed in the blue square, although only 1% points are negative and have
absolute values larger than one tenth of the maximal value of the EAP pro�le. In the
experiment with Rician noise,T1 and adaptive scale were used. We set� l = � n = 10� 8

for SPFI suggested in [5]. Since the coe� cientc in SRPE has di� erent range (kck = 1)
from coe� cients in SPFI, in order to perform a fair comparison, we still set� l = � n = 0
for SRPE without any regularization. The estimation was performed for 1000 trials with
S NR= 10;30, where the success ratio was recored when two maxima were detected,
the Mean Di� erence of Angle (MDA) was calculated in the successful trials, and the
mean of NMSE was calculated over all trials. See Fig. 1(B1,B2,B3). It is clear that
SRPE generally has higher success ratio, lower MDA and lower NMSE than SPFI.

Real Monkey Data.We perform SRPE and SPFI in a real monkey data with three
b values (b = 500;1500;3000s=mm2), 30 gradients per shell.N = 2, L = 4 � n = � l =
10� 8 were set for SPFI. In order to perform a fair comparison, we setN = 2, L = 4,
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Fig. 1. A1: ground truth EAP and estimated EAPs from two methods, where the EAP by SPFI
has negative values in the blue square. The long thin sticks and short thick sticks are the ground
truth directions and the detected maxima respectively. A2, A3: NMSE in noise free experiment
for two tensor con�gurationsT1, T2. B1, B2, B3: success ratio, MDA and the mean of NMSE in
the experiments withS NR= 10;30.

� n = � l = 0 for SRPE. See Fig. 2 for the estimated EAPs and ODFs in an enlarged area.
The �fth column demonstrates that the ODFs� 2(r ) by two methods are similar. It is
probably because the estimated ODFs by SPFI in this area only have averagely 0:03%
negative values. The EAP pro�les at radius 25� m and 15� m were estimated by two
methods with both adaptive and typical scales. For both scale settings, the SPFI obtains
very noisy EAP pro�les at 25� m, while SRPE obtains cleaner results. That's probably
because the EAP pro�les at 25� m by SPFI in this area have averagely more than 20%
negative values, while the EAPs by SRPE are always nonnegative. Note that the EAP
pro�les by SRPE with adaptive scale is sharper than the EAPs obtained by typical scale,
and both SPFI and SRPE obtain isotropic EAP pro�le in grey matter areas, which is an
important advantage over other methods like QBI.

4 Conclusion

In this paper, we propose a uni�ed model-free multi-shell HARDI method, named as
SRPE, to estimate simultaneously the wavefunction of EAP, the nonnegative de�nite
EAP and two kinds of ODFs from the di� usion signals. To the best of our knowledge,
this is the �rst work on nonnegative de�nite EAP and ODFs estimation in the continu-
ous domains, although some other methods have considered the nonnegative constraint
on some given discrete samples. SRPE generalizes the positive de�nite tensor estima-
tion based on the Riemannian framework for tensors to the nonnegative de�nite EAP
and ODFs estimation by considering the Riemannian framework for EAPs. The exper-
iments on synthetic data and real data demonstrated that the negative values happen in
reconstruction methods like SPFI even without noise. This phenomenon is more series
for EAP pro�les with larger radius. SRPE can improve the estimation results by avoid-

7



Fig. 2.The �rst four columns are the EAP pro�les at 15;25� mestimated by SRPE and SPFI with
adaptive and typical scales. The last column shows the ODF� 2(r ) estimated by SRPE and SPFI
with adaptive scale. The EAP pro�les and ODFs are colored by generalized FA (GFA) [11].

ing the negative values, and it generally has better EAP estimation than SPFI especially
for the EAP pro�le with large radius. The ODFs by SRPE and SPFI seem to be similar,
probably because the estimated ODFs by most HARDI methods are so smooth that they
seldom have negative values or have the negative values with small absolute values.
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