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Abstract. In High Angular Resolution Diusion Imaging (HARDI), Orientation
Distribution Function (ODF) and Ensemble Average Propagator (EAP) are two
important Probability Density Functions (PDFs) which re ect the wateudion

and ber orientations. Spherical Polar Fourier Imaging (SPFI) is a recent model-
free multi-shell HARDI method which estimates both EAP and ODF from the

di usion signals with multipld values. As physical PDFs, ODFs and EAPs are
nonnegative de nite respectively in their domaiBsandR3. However, existing
ODHEAP estimation methods like SPFI seldom consider this natural constraint.
Although some works considered the nonnegative constraint on the given discrete
samples of ODFEAP, the estimated ODEAP is not guaranteed to be nonneg-
ative de nite in the whole continuous domain. The Riemannian framework for
ODFs and EAPs has been proposed via the square root parameterization based
on pre-estimated ODFs and EAPs by other methods like SPFI. However, there
is no work on how to estimate the square root of OBE&P called as the wave-
funtion directly from di usion signals. In this paper, based on the Riemannian
framework for ODFAEEAPs and Spherical Polar Fourier (SPF) basis represen-
tation, we propose a uni ed model-free multi-shell HARDI method, named as
Square Root Parameterized Estimation (SRPE), to simultaneously estimate both
the wavefunction of EAPs and the nonnegative de nite ODFs and EAPs from
di usion signals. The experiments on synthetic data and real data showed SRPE
is more robust to noise and has better EAP reconstruction than SPFI, especially
for EAP pro les at large radius.

1 Introduction

Di usion MRI (dMRI) is the unique technique to explore the complex microstructure of
white matter non-invasively, by modelling the dision of water molecules. The water
di usion is fully characterized by the dision Probability Density Function (PDF)
called as the Ensemble Average Propagator (EAP). Under the narrow pulse assumption,
the signal attenuatioB(q) is the Fourier transform of the EAP denoted{R) [2]:

Zz

E(q) = P(R)exp( 2 iq"R)dR (1)
R3

whereq = qu is the wavevector in imaging-space, andR = Rr is the displacement
vector in spatiaR-space, andi andr are unit vectors. Since Dusion Tensor Imag-
ing (DTI) cannot handle the complex ber con guration, a category of reconstruction



methods, named as High Angular Resolution ion Imaging (HARDI), were pro-
posed to avoid the Gaussian EAP assumption in DT[J1IL7]8.1,5,10]. In HARDI, EAP
arp@lltwo kinds of the Op’@ntation Distribution Functions (ODFs) de ned a&) =

% o PRAR, o(r) = | P(Rr)R%dR, are normally used to infer ber directions,
whereZ in  o(r) is the normalization factor to makey(r) as a PDF.

Spherical Polar Fourier Imaging (SPFI) is a recent multi-shell HARDI method,
which represents the signal by Spherical Polar Fourier (SPF) basis [1] and analyti-
cally obtains EAP via the Fourier dual SPF basis [5] and the ODFs via Spherical Har-
monic (SH) basis [3]. Although SPFI works well for the data with low SNR and non-
exponential decay [3,5], the estimated OBAP may have negative values. As physical
PDFs, EAPs and ODFs should be nonnegative de nit@3mndS? respectively. How-
ever, to our knowledge the existing OIHAP estimation methods like the classical
Q-ball Imaging (QBI)[11.7] and the recent SPEIL]1,5] seldom consider this constraint.
Some works considered this constraint only on the given discrete PDF samj§es in
for ODFs [8] and inR® for EAPs [10]. However, the discrete constraint only can ensure
the estimated ODEAP is nonnegative on the given samples, while it may be nega-
tive in other samples. Moreover it is impractical for EAPSs to consider the constraint on
exhaustive samples in unbounded [10]. To our knowledge, there is still no work to
estimate nonnegative de nite ODIESAPs in the whole continuous domains.

The Riemannian framework has been proposed for tensor processing, e.g. the posi-
tive de nite tensor estimation [9]. Recently the Riemannian framework has been gener-
alized to ODF and EAP processirigi[4,6] by representing the square root ofEBPF
called as the wavefunction with some orthonormal bases, and the wavefunction is cal-
culated from the pre-estimated OIHAP by other methods like SPEII[1,5]. However
since SPFI with the least square estimation does not consider the nonnegative con-
straint [1.5], the negative values of pre-estimated (HMNP must be forced to zero for
the wavefunction estimationl[6], which results in some numerical errors.

In this paper, we propose a model-free multi-shell HARDI method, named as Square
Root Parameterized Estimation (SRPE), to estimate simultaneously the wavevector of
EAP denoted as (R), the nonnegative EAP and ODFs from the aion signal sam-
ples. SRPE naturally guarantees the estimated /BBF nonnegative de nite in the
continuous domain, not just in some discrete samples|iin|[8,10]. The wavefunction es-
timated by SRPE can be used in the Riemannian framework without the numerical
error introduced by negative values. Compared to SPFI, the experiments demonstrate
the EAPs obtained in SRPE is more robust to noise especially at large radius.

2 Square Root Parameterized Estimation (SRPE)

2.1 Analytical relation between the wavefunction (R) and the signalE(q)

SPF basis is a complete orthonormal basis which can sparsely represent Gaussian-like
function with the rst several basis functions|[[1,5], Motivated by the square root pa-
rameterization used in the Riemannian framewaoik![4,6], we represent the wavefunc-
tion of EAP P(R) as a linear combination of SPF basis [if (2), whegRj )Y™(r)

is the SPF basis with the Gaussian-Laguerre fundBg(Rj ) in radial part and the



Spherical Harmonic (SH) basi§"(u) in spherical part[L)5], and the coeient vector
¢ = (Coog; : ::;cnir)" has unit norm becausg, P(R)dR = 1 [6].

XX X
(R) = CamGn(Rj )Y"(r);  kek=1; P(R) = ( (R))2 2
n=0 1=0 m= |
! ! " th
Dy R L, R _ 2 n!
Gn(Ri )= n( )exp > L2 — o()= =2 (n+392) 3)

How to set the scale will be discussed i 2]4. Please note that [6] represen(&)
with Fourier dual SPF basis, while we use SPF basis. Actuallgréint basis obtains
the equivalent Riemannian framework as demonstrated in [6], however it is convenient
for the analytical ODF and EAP estimationin[2.3 {fr) is represented by SPF basis.

By substituting the plane wave equation|ip (4) [5] iftb (1), where) is the -th
order spherical Bessel function, the sigE#f)) in@ can be written as a function with
respect tain (), where the Fourier mtegratlon is separated into radial integration

Inre (9) and spherical mtegraﬂo@IIO in (7).

X
e?laR =4 ( 1)7%j (2 aRY ()Y (1) 4)
=0 =
z %w X X é .
E(qjc) = CimGn(RI )Y"(NE e 2 '@ RdR
X X] O*—O m= |
4 ( 1)2cumCraoplnre (0 )Q”o Y (u) = c'K(qj )c (5
nim n%%0©
X
K ) = 4 (12l @Q Y (U) ©)
Z, - z

Ineo (0 ) = . Gn(Ri )Gw(R )] (2 qRRPR Qv = Sz\ﬁm(r)\ﬁrgo(f)Y (Nar ()

The spherical mtegra’uo@IIO is the integration of three SHs, which can be calculated
by Wigner 3-j symbol. Please note that the summation over(5) is up to 2, because

if > 2L,then > 2L |+I%violates the triangle inequality ar(d“’ﬁ) = 0. The radial
integration in Eq.[([7) can be written ip](8),

) 1:25 1 ! ! p-
Ino (A ) = n( ) no( )Epﬁ . X" exp( X)L (AL () +o5(2 gx )dx 8
= . . I Po i
whereJ .o5(x) = 2] () is the Bessel function. Considef®(x) = = L, lix), I =
o _ . P P .
(1) W05 L, thenLISCALR(R) =~ H @, o= T LI ) 9
Thus the radial integration can be solved based on the property of Bessel funttion [5],

05 +15 +05+ Xn°
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where; F1 is the con uent hypergeometric function. The nal quadratic relati€{qjc) =
c"K(qgj )cis quite compact, where the keri(qj ) is aN(L + 1)(L + 2)=2 dimensional
symmetric matrix for each xedj and , andK(gj ) is independent of data(q).



2.2 Estimation of the wavefunction directly from the signal

With the analytical relation in{5), we propose to estimate the avent ¢ from the
signal sample‘sEigj\:‘s1 by minimizing the cost functioM(c) in (10), where the regular-
ization matrix is the diagonal matrix with the elementg, = n2(n+1)%+ 12(1+1)?
which is motivated by QBI 7] and has been successfully used in SPHI][1,5,3].
1R 2 1
c=argminM(c); M(c)== c'K(gj)e E +=c" ¢ (10)
kek=1 2., 2
The minimization must be performed in a high dimensional sphere because of the
constraintkck = 1. The Riemannian gradientM(c) on the sphere is

o e eng
@ ‘@ ° @

Then we propose a gradient descent methdd ih (12), wiféreeans in k-th stepdtis
the step size from the standard line search metBogh.(v) is the exponential map[[6].
See Algorith for the details, where we initially s&t = (1;0;:::;0)" to represent
a typical isotropic Gaussian EAP, adth = 0:1 experimentally, considerinigk = 1.
Note thatc® in each step satis ekck = 1 thanks to the Riemannian framewalrk [6].

|
r M(c®) B v
kr M(cOK M(c®)k where Exp (V) = ccoskvk + M(smk\/k (12)

r M(c) = 2 c'K(gj ) E K(gj)e+ ¢ (11)

c) = Expw dt

2.3 Estimation of the nonnegative de nite EAP and ODFs

After the coe cientc is estimated from gignal samplé&ig the EAPP(R) = ( (R))?
is naturally nonnegative de nite iR3, and e P(R)AR = 1 becauséck = 1 is forced in
each estimation step. For given radiRgs the EAP PR le can be represented by product

of SH basis or SH basis, considerMg(r)Y2'(r) =" Y (nQm™ .
XL X X s EY
P(Ror) = ( (R))* = CimCraamdGn(Ro)Gro(Ro) Qi (r (13)
=0 = nim n%%mP

Two kinds of ODFs o(r) and »(r) are also nonnegative de nite Bf because they
are radial integrations of nonnegatiPéR). The ODFs can be analytically represented
by product of SH basis or SH basis with the estimated adentc. For »(r), we have

1 X X z 1
Anzo((mf#m= i Gn(RIGH(RRAR ComCraandY(NYE' () (14)
nim %m0
X X LR X XX . !
= CnIanIOmOY|m(r)Y|D ()= CnIanIOrrPQmJ Y (r) (15)
nim 19m0 =0 = nim 1970

R
I:l{—|ere we use Iche orthogonalil}{1 Gn(RIG(RR2dR = [1]. It is clear in [I5) that

20)dr = o cﬁ,m = 1, because of the orthogonality of SHs. So the estimated

2(r) from SRPE is indeed the nonnegative de nite marginal EAP. Fgir), we have
4 Z
171 1X X !
oN=> ((R)YdR=3 Go(RIGH(RIAR CanCraerY(NYR (1) (16)
0 nim %P 0



Algorithm 1.1: Uni ed Estimation of Wavefunction, EAP and ODFs
Input: DWI sampledE;g
Output: Coe cientcof (Rjc) and the coe cients of EAP pro le, ODFs under SH basis.
begin
initialization : ¢ = (1;0;:::;0)", k= 0 ; // typical isotropic Gaussian EAP
repeat
calculatev = r M(c®) in (IJ) ;
if kvk <" then break;
choose step sizdt 2 (0; dtp] via line search;
D = Expa dtgz)
k k+1;
until M) M)

M(C T 2y
P(Ror) = EQ.(13), () = Eq.(T8), ofr) = Eq.(7)

end

z, pP-Z, M P—pen® 1

Gu(RGH(RIAR= () w( )= exp(X)  hppX ®dx= () ()5 hp (i+3)

0 2 o i=0 2 i 2
where () is the Gamma function. Theng(r) is represented as

P-x X X X !
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2.4 Implementation

The implementation of SRPE has two steps. The rst step is to estimatecieet
vectorc of (R) from signal samplefEjg The second step is to obtain EAP and ODFs
analytically from formulae[(Z3) (15] (17), which is independent of the rst step. The
whole estimation error is only in the rst step, because the second step is analytical.
In SPFI, the arti cial shell atj = 0 needs to be considered for the pii{0) = 1 [5],
which largely improves thegresults of SPFI. However, in SREE) = 1 is naturally
satis ed becauséck = 1 = _, P(R)dR = E(0) is forced in estimation, which can be
seen as an advantage over SPFI, thanks to the Riemannian framework [6]. Similarly
with SPFI, the scale needs to be chosen in the rst step. SPFI proposed to set
using a typical Apparent Diusion Coe cient (ADC) valueDy = 0:7 10 3mn?=s[5].
Motivated by SPFI, we propose to seby two ways. The rst way is to set = 4 Dg
such that the rst SPF bas@o(R)Yg(r) _exp( SiDO) can represent typical isotropic
signalE(q) = exp( 4 2 ¢?Dy) with the typical isotropic Gaussian EAR(R]j2 Dy).
is the di usion time to calculatg from b value, i.eb =4 2 ¢°. Inthisway is shared
by all voxels, thus the kernef& (q;j )d\fl need to be calculated only once on samples
fgig However the typical ADC valuBy may be not appropriate for the voxels with the
ADC far from Dg. Thus the second way is to adaptively estimate the isotropic tensor
with ADC Dis, from signalfE; d“;l in each voxel, which can be done by a standard least
square estimation in DTI. Then we set 4 D;so. The isotropic EAMN(Rj2 Disg) may



better approximate the signal samples than the B{{Rj2 D) provided byDy. In this

way is adaptively set for each voxel, thus the kerfit(q;j )d\fl needs to be calculated
for each voxel, which can be accelerated by reusing the pre-calctilategl )d\fl with

the close scale. Note that the adapiivg, can be also used in SPFI. The used special
functions are implemented in GSL, which is very @ent. The computation burden is

in the calculation of the kern& and the summation ifi (11) for many times. With our
C++ codes in ordinary PC, for 10000 voxels, it takes about 7 minutes with xed scale
and 20 minutes with adaptive scale.

3 Experiments

In practice we found that the ODFs estimated by many HARDI methods normally have
only a small number of negative values close to zero when the SNR is very low, however
even with high SNR, the negative values are serious for the estimated EAPs especially
for large radiudR. Thus we focus on EAP estimation in experiments.

Synthetic DataThe synthetic data were generated from mixture of tensor model [7]
where two tensors cross with a given angle in [4® ]. Three shellsi§=500,1500,3000
ssmn?) were used, 60 samples per shell. EAP pro les with radtyiss 15 mwere es-
timated by SPFI and SRPE. The Normalized Mean Square Error (NMSE) between the
g4round truth EAP pro leP(Ror) and the estimated EAP pro I®(Ror) is de ned as

2 JP(Ror) P(Ror)j?dr

. In the noise-free experiment, the signal was generated from two

T IPRor
tensor con gurations with eigenvaluél, = (1:7;0:3;0:3) 10 3mnf=sand T, =
(0:9;0:3;0:3) 10 3mnf=s. We setN = 2,L = 4, | = , = 0 and considered both

typical scale and adaptive scale for SPFl and SRPE [ Fig. 1(A2,A3) recorded the NMSE

when two maxima were detected. SRPE generally obtains lower NMSE and has better

angular resolution than SPFI. The adaptive scale obtains lower NMSE in two methods

whenT; is used, which is because the ADC in ten$ois much close to the typic#o,

while the ADC inT, is not. Fig[1(A1) shows the ground truth EAP and the estimated

EAPs by two methods wheh; and crossing angle of 5%re used. SRPE has better

angular resolution and avoids the negative values around the original point in the EAP

by SPFI. Note that the EAP pro le estimated by SPFI in (A1) has more than 20% neg-

ative values showed in the blue square, although only 1% points are negative and have

absolute values larger than one tenth of the maximal value of the EAP pro le. In the

experiment with Rician noisd;; and adaptive scale were used. We set , = 108

for SPFI suggested in[[5]. Since the cogientc in SRPE has dierent rangekck = 1)

from coe cients in SPFI, in order to perform a fair comparison, we still et , =0

for SRPE without any regularization. The estimation was performed for 1000 trials with

S NR= 10; 30, where the success ratio was recored when two maxima were detected,

the Mean Di erence of Angle (MDA) was calculated in the successful trials, and the

mean of NMSE was calculated over all trials. See Flg. 1(B1,B2,B3). It is clear that

SRPE generally has higher success ratio, lower MDA and lower NMSE than SPFI.
Real Monkey DataWe perform SRPE and SPFI in a real monkey data with three

b values b = 500 150Q 30006s=mn¥), 30 gradients per shelN = 2,L =4 ,= | =

10 @ were set for SPFI. In order to perform a fair comparison, weNset 2, L = 4,



Fig. 1. Al: ground truth EAP and estimated EAPs from two methods, where the EAP by SPFI
has negative values in the blue square. The long thin sticks and short thick sticks are the ground
truth directions and the detected maxima respectively. A2, A3: NMSE in noise free experiment
for two tensor con gurationd;, T,. B1, B2, B3: success ratio, MDA and the mean of NMSE in

the experiments witls NR= 10; 30.
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n= 1 = 0for SRPE. See Fif] 2 for the estimated EAPs and ODFs in an enlarged area.
The fth column demonstrates that the ODFs(r) by two methods are similar. It is
probably because the estimated ODFs by SPFI in this area only have aver&§éty 0
negative values. The EAP pro les at radius 2 and 15 m were estimated by two
methods with both adaptive and typical scales. For both scale settings, the SPFI obtains
very noisy EAP pro les at 25m, while SRPE obtains cleaner results. That's probably
because the EAP pro les at 2B by SPFI in this area have averagely more than 20%
negative values, while the EAPs by SRPE are always nonnegative. Note that the EAP
pro les by SRPE with adaptive scale is sharper than the EAPs obtained by typical scale,
and both SPFI and SRPE obtain isotropic EAP pro le in grey matter areas, which is an
important advantage over other methods like QBI.

4 Conclusion

In this paper, we propose a uni ed model-free multi-shell HARDI method, named as
SRPE, to estimate simultaneously the wavefunction of EAP, the nonnegative de nite
EAP and two kinds of ODFs from the dision signals. To the best of our knowledge,

this is the rst work on nonnegative de nite EAP and ODFs estimation in the continu-
ous domains, although some other methods have considered the nonnegative constraint
on some given discrete samples. SRPE generalizes the positive de nite tensor estima-
tion based on the Riemannian framework for tensors to the nonnegative de nite EAP
and ODFs estimation by considering the Riemannian framework for EAPs. The exper-
iments on synthetic data and real data demonstrated that the negative values happen in
reconstruction methods like SPFI even without noise. This phenomenon is more series
for EAP pro les with larger radius. SRPE can improve the estimation results by avoid-



Fig. 2. The rstfour columns are the EAP pro les at 185 mestimated by SRPE and SPFI with
adaptive and typical scales. The last column shows the OFF) estimated by SRPE and SPFI
with adaptive scale. The EAP pro les and ODFs are colored by generalized FA (GEA) [11].

ing the negative values, and it generally has better EAP estimation than SPFI especially
for the EAP pro le with large radius. The ODFs by SRPE and SPFI seem to be similar,
probably because the estimated ODFs by most HARDI methods are so smooth that they
seldom have negative values or have the negative values with small absolute values.
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