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Abstract Introduction: The relationship between particles’ physicochemical parameters, 

their uptake by cells and their degree of biological toxicity represent a crucial issue, especially for 

the development of new technologies such as fabrication of micro- and nanoparticles in the 

promising field of drug delivery systems. This work was aimed at developing a proof-of-concept 

for a novel model of double fluorescence submicronic particles that could be spotted inside 

phagolysosomes. 

Materials and methods: Fluorescein isothiocyanate (FITC) particles were synthesized and then 

conjugated with a fluorescent pHrodo™ probe whose red fluorescence increases in acidic 

conditions such as within lysosomes. After validation in acellular conditions by spectral analysis 

with confocal microscopy and dynamic light scattering, quantification of phagocytosis was 
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conducted on a macrophage cell line in vitro. The biological impact of pHrodo functionalization 

(cytotoxicity, inflammatory response and oxidative stress) was also investigated. 

Results/Conclusion: Results validate the proof-of-concept of double fluorescent particles (FITC + 

pHrodo), allowing detection of entirely engulfed pHrodo particles (green and red labeling). 

Moreover incorporation of pHrodo had no major effects on cytotoxicity compared to particles 

without pHrodo, making them a powerful tool for micro- and nanotechnologies. 

Keywords Fluorescent submicronic particles, cellular uptake, pHrodo, 

toxicity. 

 
 

Introduction 
Nanotechnology is an emerging multidisciplinary field that involves the synthesis 

of nanoscale materials (i.e., 10−9 m size range). The development of nanoparticles 

currently represents a significant issue for environmental sciences, biosciences 

and nanomedicine (Oberdorster et al. 2005). The specific properties of 

nanoparticles based on their physiochemical features offer potential application 

domains (Broz et al. 2006; Nan et al. 2008). So it is now generally recognized that 

ongoing assessments of the human health and ecological implications of exposure 

to nanoscale materials are necessary prerequisites before the commercial benefits 

of this technology can be fully realized (Warheit 2010). 

Evaluating the potential hazards related to nanomaterials has become an 

emerging area in toxicology and health risk assessment (Clift et al. 2008; Fubini 

1998; Fubini et al. 2004; Sayes et al. 2007; Warheit et al. 2004). Particle surfaces 

and interfaces are important components of nanoscale materials (Warheit 2008). It 

has been demonstrated in the literature that nanoparticles’ toxicological effects are 

complex and involve a variety of factors, with physicochemical characteristics 

being chief among them (Warheit 2010; Warheit et al. 2007). Consequently, the 
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physicochemical characteristics of the fluorescent particles developed in this 

study (i.e., size and chemical coating) were well-controlled; in particular all steps 

of particle synthesis were described and surface functionalization was 

homogeneous, preventing agglomeration phenomena. Controlling the 

physicochemical parameters was one of the main goals in particle specifications 

because it offers the possibility to functionalize them with other surface groups 

and different surface charges. 

Regardless of the route of exposure (skin, digestive tract, respiratory tract or by 

injection), phagocytic cells such as macrophages are one of the main cells to 

respond. Indeed they are sentinel cells of the immune system and their main role 

consists of the internalization and destruction of foreign bodies by phagocytosis. 

Macrophages are model cells widely used in toxicological evaluations (Bruch et 

al. 2004; Clift et al. 2008; Fubini et al. 2004; Hamilton et al. 2008; Sayes et al. 

2007). 

The level of biological effects may be influenced by the amount of internalized 

particles in macrophages (Cho et al. 2009; Nan et al. 2008). Different metrical 

systems could be used to predict cellular response, such as surface, volume or 

number of particles. The mass of the material is the least appropriate metric, yet it 

is the easiest to measure (Fubini et al. 2010). The number of particles might be a 

more appropriate metric for uptake evaluations; however, it remains difficult to 

precisely quantify this amount within intracellular compartments (Bos and de 

Souza 2000; Leclerc et al. 2010). 

During phagocytosis, foreign particles are internalized by vesicles called 

phagosomes, which fuse with lysosomes, another type of intracellular acidic 

vesicle, to form phagolysosomes. The pH is around 6 in a phagosome and 

decreases to 4.5 in a fully matured phagolysosome, which is a hydrolase-rich 



4 

killing device (Griffiths 2004; Vieira et al. 2003). We took advantage of this 

property of acidification and developed double fluorescent particles sensitive to 

environmental pH changes that can be used as a tool for phagocytosis 

quantification. For this purpose and, to our knowledge, for the first time in the 

literature, we coupled FITC fluorescent particles with the pHrodo™ Succinimidyl 

ester probe (Invitrogen) (Harvey et al. 2008; Kobayashi et al. 2010; Miksa et al. 

2009; Moore et al. 2008; Strunnikova et al. 2009). The red fluorescence of this 

probe becomes more intense with acidification and accurately indicates 

phagolysosomal localization. 

Thus, our system directly detects particles engulfed in phagolysosomes, unlike 

existing systems described in the literature such as PEBBLE (Buck et al. 2004; 

Clark et al. 1999; Lee et al. 2009) and capsules (fluorescent microcapsules) 

(Reibetanz et al. 2010; Reibetanz et al. 2007; Romero et al. 2010). These micro- 

or nanostructures coupled with molecules such as SNARF dye (Munoz Javier et 

al. 2008; Semmling et al. 2008) function as pH sensors. Indeed, intracellular pH 

plays a key role in the regulation of different cellular processes (e.g. apoptosis, 

phagocytosis, cell growth, metabolism). It must be maintained at an optimal 

value, and knowledge of its alteration in complex biological samples is crucial. 

Moreover, there is a clear need for pH-monitoring strategies that are noninvasive, 

sensitive, quantitative, stable and reproducible and that could be applied in real-

time conditions (Peng et al. 2007). Systems such as PEBBLE and capsules were 

developed for this purpose, but they were not suitable for our purpose. The major 

problem with the capsules is their micrometric size (Sjöback et al. 1995); these 

systems were mainly developed for drug delivery system applications. PEBBLE 

systems were also not appropriate for our study because we did not want to 

monitor precise pH changes during the phagocytic process, but rather localize 
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particles in any type of acidic compartment. Moreover, particles’ sizes and surface 

charges need to be variable, but it is difficult to control these factors for PEBBLEs 

during the synthesis process, which is a crucial step for specific study of cellular 

uptake. 

Finally, we investigated the innocuousness of the particles’ functionalization 

with the pHrodo probe and made comparisons between particles of equivalent 

sizes with and without pHrodo. The biological effects were evaluated based on 

inflammatory response assessed by tumor necrosis factor (TNF)-α production, 

integrity of the cell membrane measured by lactate dehydrogenase (LDH) release 

and oxidative stress following production of reactive oxygen species (ROS) 

(Bruch et al. 2004; Catelas et al. 1999; Donaldson et al. 2002; Sayes et al. 2007). 

This study was conducted in two main parts. First, 250 and 500 nm fluorescent 

particles were synthesized, with or without incorporation of the pH sensitive 

probe pHrodo. These particles, which exhibited specific carboxylate 

functionalization, were characterized, and their fluorescence emission spectra 

were validated in acellular conditions. The second part of the study was a proof-

of-concept for these double fluorescent particles being able to detect particle 

phagocytosis after contact with macrophages. 

 

Experimental 

Fluorescent particle development 

Tetraethyl orthosilicate (Si(OC2H5)4, TEOS, ≥ 99%), (3-

aminopropyl)triethoxysilane (H2N(CH2)3-Si(OC2H5)3, APTES, 99%), isopropanol 

((CH3)2CHOH, ≥ 99.5%), triethylamine ((C2H5)3N, ≥ 99.5%, dimethyl sulfoxide 

anhydrous ((CH3)2SO, DMSO, ≥ 99.9%) fluorescein isothiocyanate isomere I 
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(C21H11NO5S, FITC, ≥ 90%) and sodium hydroxide (NaOH) were purchased from 

Aldrich Chemical (Sigma-Aldrich Chimie, Lyon, France). Diethylenetriamine 

pentaacetic dianhydride (C14H19N3O8, DTPA-ba, > 98.0%) was purchased from 

TCI Europe (Zwijndrecht, Belgium). pHrodo succinimidyl ester (pHrodo, SE) was 

purchased from Invitrogen (Cergy Pontoise, France). Ethanol, diethylene glycol 

(DEG, 99%) and other organic solvents (reagent grade) were purchased from SDS 

(France) and used as received. 

Two types of fluorescent particles with variable and well-defined sizes (250 

and 500 nm) were developed and produced (Nano-H, France). The particles were 

composed of pure silica core doped with FITC (green fluorescence) grafted by 

covalent bonds, as described by Van Blaaderen and Vrij (1992) and Wang et al. 

(2003). A controlled polysiloxane shell (SiOx) was added by hydrolysis 

condensation of APTES and TEOS, using isopropanol as a solvent in the presence 

of a catalytic amount of triethylamine (Fizet et al. 2009). During this step, 

functionalization using the pHrodo probe was performed by adding in desired 

percentages of the reaction product for the coupling between the dye using 

APTES in DMSO. The amorphous and porous properties of the polysiloxane shell 

allowed the probe to have contact with the pH variations. Finally the particles 

were stabilized by introducing carboxylic surface groups (COOH) onto their 

surface using diethylenetriamie pentaacetic dianhydride DTPA-ba as the reagent. 

The synthesis was done as follows. DTPA-ba (1 equivalent/APTES) was stirred in 

DMSO (15 mg/mL) at room temperature for 15 minutes. A colloidal solution of 

particles in DMSO (25 mg/mL) was then added to the reaction and stirred for 18 

hours at room temperature. A purification step was done by an initial 

centrifugation at 7000 rpm for 10 minutes followed by resuspension of the 

precipitate in ethanol and a subsequent centrifugation (3 times, 7000 rpm for 10 
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minutes). The particles were then resuspended in Milli-Q water at the desired 

concentration (particle number/mL) at pH 9. 

Thus, two types of particles were synthesized: 

• FITC particles exhibiting only a green fluorescence, 

• FITC/pHrodo particles exhibiting double fluorescence (green/red), 

including red fluorescence of pHrodo probe, which increases as pH 

decreases, allowing the detection of engulfed intra-lysosomal particles. 

The fluorescence of the particles was optimized by testing different 

percentages of dyes (Supplementary Table), ranging from 1.23% to 5% (% 

m/mSiO2) for FITC grafting into the silica core and 0.1% to 2% for pHrodo 

grafting into SiOx (% n/nSiOx). Excitation and emission data of the dyes were 

488 nm and 495–550 nm for FITC and 532 nm and 560–650 nm for pHrodo, 

respectively. 

 

Particle characterization 

Size distribution and zeta potential were measured using dynamic light 

scattering (DLS) with a Zetasizer Nano S from Malvern instrument (Orsay, 

France). Three measurements of the colloidal solution were taken directly after 

surface modification in water. Analyses were also carried out in complete culture 

media. 

Transmission electron microscopy (TEM) observations were performed. 

Samples were prepared by diluting a solution of particles and depositing a drop of 

the solution on a copper grid coated with a thin film of amorphous carbon and 

allowing the liquid to air dry at room temperature. Images were acquired with a 

transmission electron microscope (Jeol 2010, Tokyo, Japan) operating at 200 kV. 
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The fluorescence specificity of the particles was determined by confocal 

spectral analysis in acellular conditions. Analyses were performed using a 

confocal microscope TCS-SP2 from Leica Microsystems (Leica®, Heidelberg, 

Germany) coupled to an inverted microscope with oil immersion objective (HCX 

APO L U-V-I 63x1.2NA), and fitted with Acousto-Optical Beam Splitter (AOBS) 

covering a 350–850 nm wavelength range. The system was equipped with a set of 

argon (458, 476, 488 and 514 nm), helium–neon (543 nm), helium–neon (633 nm) 

lasers for classical CLSM, and a Coherent© Ti:Sapphire MIRA 900 oscillator 

pumped with a 5 W Verdi Nd:YAG (532 nm) laser. The femtolaser system 

typically delivered 800 mW, 200 fs pulses with a 76 MHz repetition rate. 

Suspensions of particles were placed in appropriate cup-shaped (four wells Lab-

Tek™ Chamber Slides, Nunc®) and emission fluorescence spectral curves were 

collected with 10 nm resolution over the wavelength range of 400 to 800 nm using 

two-photon excitation and AOBS. For FITC/pHrodo particles, acquisitions were 

done in buffer solutions of different pH values (pH 4 and pH 10). 

 

Macrophage cell culture 

The RAW 264.7 cell line was provided by ATCC Cell Biology Collection 

(Promochem LGC, Molsheim, France) and was derived from murine peritoneal 

macrophages transformed by the Abelson murine leukemia virus. Cells were 

cultured in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen), 

complemented with 10% of fetal calf serum (FCS, Invitrogen), 1% penicillin-

streptomycin (penicillin 10,000 U/mL, streptomycin 10 mg/mL; Sigma-Aldrich, 

Saint-Quentin Fallavier, France) and incubated at 37°C under a 5% CO2 

humidified atmosphere. 
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The particles’ fluorescence was assessed after a 24 hour incubation with 

macrophages using an arbitrary ratio of 1000 particles for one cell (1000/cell) 

based on the macrophage size compared to the particle sizes. Particles were 

strongly vortexed for 30 seconds before use. 

 

Treated cells electron microscopy 

Cells were grown in six-well plates (1 million cells in 4 mL of complete culture 

medium) containing coverslips. Particles were incubated for 24 hours. 

For scanning electron microscopy (SEM) observations, samples were fixed for 

15 minutes with 2.5% glutaraldehyde (Sigma) and dehydrated in acetone baths of 

increasing concentrations (30%, 50%, 70%, 80%, 90%, 95% and 99%, 10 

min/bath) (Di Palma et al., 2004). Coverslips were sputtered coated with gold and 

examined with a FEG-SEM (Field Emission Gun, 6500F Jeol, Japan). 

For TEM observations, samples were fixed in 1% glutaraldehyde/0.5% 

paraformaldehyde in 0.1 M mono Na/diK buffer (pH 7.4), postfixed in 1% 

osmium tetroxide in 0.1 M cacodylate buffer for 1 hour, dehydrated in a graded 

series of ethanol and embedded in Epon resin. Ultrathin (70 nm) sections were cut 

and stained with uranyl acetate and lead citrate. Images were acquired with a 

transmission electron microscope (MET Hitachi H800-3, Tokyo, Japan) equipped 

with a CCD camera (XR40; AMT). 

 

Confocal imaging and phagocytosis semi-quantification 

Cells were grown in six-well plates (1 million cells in 4 mL) containing 

coverslips. Particles were incubated for 24 hours. Wells were fixed with 4% 

paraformaldehyde for 10 minutes and washed with phosphate-buffered saline 
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(PBS, VWR, Fontenay sous bois, France) in order to remove nonadherent or 

noninternalized free particles that remained in the supernatant. However, this 

wash did not remove particles adhered to the cell membrane. Finally cell nuclei 

were stained with 10 µM of Hoechst 33342 solution (Sigma) for 15 minutes and 

rinsed with PBS. Images were obtained from the fluorescence (excitation, 

emission) emitted by FITC (488 nm, 495–550 nm), pHrodo (532 nm, 560–650 

nm) and Hoechst (350 nm, 408–443 nm). Results are expressed as means of the 

fluorescence of acquired image stacks. Three independent analyses were 

performed in duplicate. 

Stacks obtained by confocal imaging (green and red fluorescence) were treated 

separately with a computer interface (Matlab®). Stacks were transposed to grey 

levels followed by an automatic thresholding allowing obtention of arbitrary 

values for the number of green and red pixels. A ratio was then established 

between red and green pixels, leading to a percentage of internalized particles. 

 

Toxicity assessment 

For each experiment, cells were prepared in 96-well plates (100,000 cells/well for 

TNF-α and LDH assays, and 300,000 cells/well for ROS and H2O2 measurements) 

in 25 µL of complete DMEM as previously described (Leclerc et al. 2010). 

Particles (1000/cell in a volume of 75 µL of DMEM) were then added to the 

culture and incubated for 24 hours at 37°C in a 5% CO2 atmosphere. In each case, 

control cells were incubated in the same conditions but without particles. 

TNF-α production was assessed by a commercial ELISA Kit (Quantikine® 

Mouse TNF-α Immunoassay, R&D Systems, Lille, France) according to the 

manufacturer’s instructions. The optical density of each well was determined 

using a microplate reader (Multiskan RC, Thermolabsystems, Helsinki, Finland) 
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set to 450 nm. A standard curve was established and results were expressed in 

picograms of TNF-α per milliliter of supernatant. 

The activity of the LDH released from cells with damaged membranes was 

assessed using the CytoTox-ONE™ Homogeneous Membrane Integrity Assay 

(Promega, Charbonnières les bains, France) according to the manufacturer’s 

instructions. Detection was performed with a fluorometer (Fluoroskan Ascent, 

Thermolabsystems), using excitation/emission wavelengths at 530/590 nm. The 

activity of the released LDH was reported in comparison to that of total cellular 

LDH (measured after the lysis of control cells) and was expressed as a percentage 

of the control. 

Concerning oxidative stress, ROS activity was assessed with the OxiSelect™ 

ROS Assay Kit (Euromedex, Mundolsheim, France). The assay is based on the 

conversion of a nonfluorescent substrate, 2′,7′-dichlorodihydrofluorescin diacetate 

(DCFH-DA), which can easily diffuse through cell membranes, into a fluorogenic 

molecule, 2′,7′-dichlorodihydrofluorescein (DCF), which is highly fluorescent and 

whose amount is proportional to total ROS. DCF production was detected with a 

Fluoroskan Ascent fluorometer (Thermolabsystems) using excitation and 

emission wavelengths of 480 nm and 530 nm, respectively, and expressed as 

nanomoles per hour. 

Finally, the release of hydrogen peroxide (H2O2) was measured as described by 

De la Harpe and Nathan (1985). After incubation, cells were stimulated to release 

H2O2 produced by addition of 100 ng/mL phorbol-12-myristate-13-acetate 

(Sigma). Briefly, Krebs-Ringer phosphate glucose buffer containing a mixture of 

scopoletin (30 µM), NaN3 (1 mM) and horseradish peroxidase (1 U 

pupurogallin/mL HPO) was added to the cells. The horseradish peroxidase 

catalyzed the oxidation of the fluorescent scopoletin, which was measured over a 
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period of 90 minutes (Fluoroskan Ascent, Thermolabsystems) by using 

excitation/emission wavelengths at 355/460 nm. Results are expressed as means 

of arbitrary units of fluorescence. 

 

Statistical analysis 

Analysis and graphics were performed using Prism 5.0 software (GraphPad®, San 

Diego, CA, USA). Significance was established with ANOVA test (p < 0.05). 

 

Results and discussion 

Particle development and characterization 

This study was aimed at developing a new concept of double fluorescent particles 

for biological investigations that would be particularly useful for the study of 

phagocytosis. pHrodo probes, whose fluorescence intensity increases as pH 

decreases, were functionalized in particle porous shells. A schematic 

representation of the two types of fluorescent particles developed is presented in 

Fig. 1. FITC particles exhibited green fluorescence only, while FITC/pHrodo 

particles emitted either a green or a yellow fluorescence. The latter color was 

observed in acidic conditions and indicated the colocalization of both green and 

red fluorescences (the red fluorescence of pHrodo appearing as pH declines). 

DLS and TEM characterization were then performed in order to validate the 

synthesis of standardized particles, and to control size, shape and agglomeration 

in the tested media. Results are reported in Table 1, and an example of TEM 

acquisition is given in Fig. 2a. Globally, the particle sizes measured by DLS and 

TEM were in good agreement with the expected sizes (250 and 500 nm, 

respectively). Size distributions in deionized water and in culture media were 
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quite similar, with a slight increase in culture media possibly due to adsorption of 

proteins or other biomolecules at the surface of the particles. Moreover these 

particles appeared to be discrete on images. There was no evidence of 

agglomeration, even in presence of FCS, possibly because particles were 

produced directly in suspension, thus avoiding problems due to the dry–wet 

transition of particle powders, and because of the high stability of the particles 

allowed by the homogeneity of the COOH groups at their surface. These data 

were strongly supported by the zeta potential values, which were always negative 

despite significantly increasing in complete culture media. However, for the 

various types of particles, zeta potential values were quite similar in water and in 

complete culture media, suggesting that surface chemistry of the particles was 

well-controlled. 

Concerning the optimization of dye amount, fluorescence intensity and dye 

stability (photobleaching) were checked under the confocal beam. For FITC 

particles, due to the fluorescence extinction, the best yield was obtained for 2% 

FITC. For the FITC/pHrodo particles, the best ratio was 1.23% FITC to 2% 

pHrodo. The adjustment of the percentages of dyes was an essential step in 

finding the optimal ratios, which were then used for the whole study 

(Supplementary Table). 

The fluorescence emission spectra were then analyzed in acellular conditions in 

order to validate this innovative concept of double fluorescent particles. 

Fluorescence emission spectra ranging from 400 to 800 nm were measured by 

confocal microscopy. We confirmed that emission spectra fit adequately with the 

dyes used in the two types of particles. Fig. 3a shows the spectrum for 500 nm 

particles with 2% FITC. Since FITC was deeply anchored, the fluorophore was 

not subjected to pH variations. The graphic presents a well-defined peak 
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characteristic of the FITC emission. To verify the pHrodo probe’s functioning, the 

emission spectra of FITC/pHrodo particles were determined either in a basic 

solution (pH 10) or in an acid solution (pH 4) and are reported in Fig. 3b and 3c. 

At pH 10 (Fig. 3b), only one peak was observed, confirming the specificity of 

FITC fluorescence. Moreover, the shape of this spectrum was similar to that of 

simple FITC particles (Fig. 3a). However, a significant difference in FITC 

fluorescence intensity was observed due to the difference in FITC percentage (2% 

vs. 1.23%) between FITC particles and FITC/pHrodo particles. At pH 4 (Fig. 3c), 

two peaks specific to FITC and pHrodo probe, respectively, could be clearly 

distinguished, confirming the concept of the double fluorescence of these particles 

in acidic conditions. 

As expected, the spectrum of FITC particles was specific to FITC fluorescence, 

while the spectrum of FITC/pHrodo particles was specific to FITC with the 

pHrodo probe-specific fluorescence becoming apparent in acidic conditions. It has 

already been described in the literature, especially by Peng et al. (2007), that FITC 

could be pH sensitive and therefore, FITC is sometimes directly used to monitor 

pH changes (Reibetanz et al. 2007; Skirtach et al. 2006). It is known that weak pH 

values (<4) lead to a FITC fluorescence decrease. In this study, as previously 

mentioned, FITC was deeply anchored in the core-shell of the particles with no 

access to the external environment. The chemical manufacturing of the particles 

was successfully adapted to biological applications, especially to confocal 

microscopy. Indeed, we did not want to precisely monitor pH modifications, 

rather our aim was to track particles engulfed in acidic compartments. In this 

context, the appearance of the pHrodo red fluorescence was the determining 

parameter. 
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Cellular assays 

Once the particles’ features were characterized, cellular assays were performed. 

The RAW 264.7 macrophage cell line was used as a representative model of the 

pulmonary cellular environment that particles are likely to interact with in vivo. 

Interactions between macrophages and particles were observed using SEM. As 

illustrated in Fig. 2b, this technique allowed us to highlight the behavior of 

macrophages in contact with particles and to confirm their interactions, 

particularly at the level of the macrophage podosomes (white arrows). 

After 24 hour contact with macrophages, 500 nm FITC particles were clearly 

visible on TEM images (Fig. 2c and 2d), which confirmed the uptake of particles 

by a phagocytic process. Once captured by macrophage podosomes, particles 

were surrounded by internalization vesicle membranes. Particles showed a 

cytoplasmic localization in vesicles with a double membrane in agreement with 

phagolysosome morphology. Similar results were found for the 250 nm FITC 

particles (Supplementary Fig. 1). 

 

Confocal imaging and phagocytosis semi-quantification by image 
analysis 

The particles’ fluorescence was assessed after 24 hour incubation with 

macrophages using an arbitrary ratio of 1000 particles per one cell based on the 

macrophage size compared to the particles’ size, in agreement with a previous 

study (Leclerc et al. 2010). Confocal microscopy was used to distinguish and 

quantify fluorescent particles that were entirely engulfed in acidic vesicles (yellow 

fluorescence) as opposed to those not internalized (green fluorescence). The 

double fluorescent 500 nm FITC/pHrodo particles were detectable by the red and 

green fluorescence spectra, as demonstrated by Fig. 3b and 3c. The merge shown 
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in Fig. 4 allowed us to discriminate external particles (FITC green fluorescence) 

from particles internalized in acidic vesicles (yellow due to the green FITC and 

red pHrodo probe fluorescence colocalization). Therefore, these pH-sensitive 

particles in confocal microscopy allowed discrimination of the particles’ 

compartmentalization (inside/outside), and they represent a powerful tool to 

assess the phagocytic process of particles in macrophages. All the appropriate 

measures were taken to avoid cross-talk between the channels. Similar results 

were observed for 250 nm particles with and without pHrodo (Supplementary Fig. 

2). 

For phagocytosis quantification, stacks of images obtained by confocal 

microscopy (green and red fluorescences of the particles) were treated separately 

with a computer interface and were transposed to grey levels followed by an 

automatic thresholding algorithm allowing expression of the number of green and 

red pixels in arbitrary units. A ratio was then established between red and green 

pixels leading to a percentage of internalized particles. We found that after 24 

hour incubation, 89 ± 2% of the 250 nm particles and 86 ± 5% of the 500 nm 

particles were internalized. This suggests that approximately 10% to 15% of the 

particles remained attached to cell membranes. Image analysis allowed us to 

establish a proportion of internalized particles. These data are semi-quantitative, 

but in good agreement with image observations and proved useful for determining 

the ratio between internalized and external particles. 

We found no significant differences of cellular uptake between the two particle 

sizes investigated (250 and 500 nm). This lack of difference could be due to the 

24 hour time saturation of internalization. To that purpose, different exposure 

durations such as 6 hours and 12 hours should be tested to investigate kinetics of 

internalization. The same amount of internalization seems to occur independently 
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for the two studied sizes. A larger range of particle sizes should be evaluated to 

confirm these observations and more particularly use particles <100 nm to 

compare submicronic particle to nanoparticle uptake. Moreover, various 

parameters can be modified, e.g., particles/cell ratios or surface group 

functionalizations. This innovative approach will be of great use for the further 

investigation of particle cellular uptake quantification. 

Recent studies have identified that the size, shape and surface properties are 

important factors in cellular uptake of nanoparticles (Chithrani, 2011). The 

surface ligand and charge of particles play an important role in their uptake 

process as well. The surface of the particles can be coated with different proteins 

for effective targeting to specific organelles. These data are very important for 

cancer cell targeting (Subramani et al. 2009, Abedini et al. 2011) or in the gene 

delivery field. For example, studies report the generation of “DNA nanoparticles” 

using polycations, which enhance the transfection efficiency (Hosseinkhani et al. 

2006, 2008). Indeed, the uptake efficiency seems significantly affected by the 

surface charge of the particles: positively charged particles are more likely to be 

internalized than neutral or negatively charged particles (Cho et al. 2009), 

probably due to the cell membranes themselves being negatively charged. 

However, interactions with some cell surface molecules may be responsible for 

the facilitated uptake of negatively charged particles. It is also important to 

mention that surface charge and size of particles can play a major role in protein 

conjugation onto particle surfaces and this in turn influences the way the particles 

interact with cells and tissues. 

These findings provide useful information to tailor nanoscale devices at the 

single-cell level for effective applications in diagnostics, therapeutics and 

imaging. It is very important to consider size, shape and surface properties when 
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designing vectors for their applications in biomedical fields. These observations 

will be taken into account for the development of the FITC-pHrodo particles of 

different sizes and functionalized with different surface charges. 

 

Toxicity assessment 

Finally, a toxicological evaluation was performed on macrophages after 24 hour 

contact with particles to assess the use of these particles in biological conditions, 

and more particularly to determine if the incorporation of pHrodo in the porous 

shell of the particle could modify the toxicological data of the native core-shell 

particles (without the pH probe). 

The toxicological parameters investigated in this study are described in Fig. 5. 

In each case, size equivalent particles (500 nm or 250 nm) were compared for 

conditions with or without pHrodo probe. 

Fig. 5a clearly shows a nonsignificant variation in TNF-α production triggered 

by the incubation with the particles with either FITC or FITC/pHrodo independent 

of the size tested. We cannot conclude whether TNF-α production is dependent on 

sizes of the particles because analyses were performed with an equivalent number 

of particles in each condition; i.e., with different particle volumes and surfaces. 

The different amount of released LDH between FITC and FITC/pHrodo 

particles (Fig. 5b) was not significant with 250 nm particles but was significantly 

enhanced with 500 nm particles. 

Concerning the oxidative stress (Fig. 5c and 5d), results indicated no 

significant variations for the 500 nm and 250 nm particles, irrespective of the 

presence of pHrodo in the porous shell. After 24 hour exposure, total ROS 

generation was enhanced comparatively to control cells in all tested conditions, 
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probably due to H2O2, which was likely the source of other organo-peroxides or 

led to formation of hydroxides. 

Regarding these toxicological data, the 250 nm particles showed no significant 

differences between the FITC and FITC/pHrodo conditions. In this case, 

incorporation of pHrodo in the porous shell of the particle seems to have had no 

significant biological impact. With regard to the 500 nm particles, only the LDH 

parameter (membrane alteration) was significantly different between the two 

types of particles. However, only a slight increase was observed for the double 

fluorescent particles, and the LDH level was significantly lower than the positive 

control (i.e., lysed cells). These results may be explained by the ratio that was 

used and the inherent porosity of the FITC/pHrodo particles. Indeed, in this study 

the dose of particles was fixed at 1000 particles for one cell irrespective of the 

size of the particle (250 or 500 nm), leading to a different surface area for the two 

kinds of particles. The 500 nm particles have a fourfold greater surface area and 

an eightfold greater volume than the 250 nm particles. Moreover, pHrodo is 

integrated in a porous polysiloxane shell. These two parameters, surface volume 

and porosity, could explain an increase in membrane alterations (LDH parameter). 

This assumption is further supported by our semi-quantitative data showing no 

differences in terms of internalization for the two investigated sizes (89 ± 2% for 

250 nm particles vs. 86 ± 5% for 500 nm particles). The double fluorescent 

particles appeared to be nontoxic for 250 nm size in our experimental conditions 

(i.e., 1000/1 cell ratio) and permitted efficient quantification of the uptake. 
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Conclusion 
This study was aimed at developing double fluorescent particles for biological 

investigations, particularly for the study of phagocytosis. We presented a proof-

of-concept that was first validated in acellular and then in cellular conditions. 

These particles, whose physicochemical characteristics were well defined and 

controlled (fluorescence, size, surface coating, state of agglomeration), were 

nontoxic as determined by various biological parameters, particularly for the 250 

nm sized ones. This model of particles could be a powerful tool in biology, one 

which may be helpful for a better understanding of uptake mechanisms, a key 

issue of nanotoxicology. 

The importance of the physicochemical properties of the particles on biological 

toxicity is generally described in the literature (Bruch et al. 2004; Clift et al. 2008; 

Donaldson and Stone 2003; Fubini et al, 2004; Hamilton et al. 2008; Sayes et al 

2007; Warheit 2010; Warheit et al. 2007). Further investigations will be 

conducted with these FITC/pHrodo particles to better understand the impact of 

their physicochemical properties on the degree of internalization and the cell 

reactions. This model of particles allows us to modify one by one all the 

physicochemical parameters: size, functionalized groups (e.g., carboxylate, amine 

and polyethylene glycol) indirectly indexed to zeta potential modifications 

reflecting particles surface charges. A key issue will be the synthesis of smaller 

particles at the nanoscale. 
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Fig. 1 Schematic representation of the particles developed. Two types were designed: FITC 
particles (FITC core, polysiloxane shell and COOH surface groups) and FITC/pHrodo particles 
(FITC core, porous polysiloxane shell functionalized with pHrodoTM probe and COOH surface 
groups). FITC particles have a single green fluorescence. In acidic conditions FITC/pHrodo 
particles have a double fluorescence (green for FITC core and red for pHrodo probe). Excitation 
and emission wavelengths were 488 nm and 495–550 nm for FITC and 532 and 560–650 nm for 
pHrodo, respectively 
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Fig. 2 Electron microscopy observations of 500 nm FITC particles. a TEM of particles alone, b 
SEM after a 24 hour contact with macrophages RAW 264.7 and c, d TEM after 24 hour contact 
with macrophages RAW 264.7 (HV = 75 kV) 
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Fig. 3 Fluorescence spectra acquired by confocal microscopy in acellular conditions for 500 nm 
2% FITC particles (a) and for 1.23% FITC/2% pHrodo particles at pH 10 (b) and pH 4 (c). 
Intensity of pHrodo fluorescence increases as pH decreases. A mild FITC fluorescence intensity 
decrease is observed between the two types of particles. Each curve corresponds to different 
regions of interest positioned on image stacks acquired during the confocal spectra scan 
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Fig. 4 Example of confocal microscopy acquisition of 500 nm FITC/pHrodo particles after 24 
hour contact with RAW 264.7 macrophages. Cell nuclei were stained with Hoechst (blue). The 
enlargement allows the distinction between external particles (green) and phagocytosed particles 
(yellow due to the merge of green and red fluorescence). Excitation and emission wavelengths, 
respectively, for FITC (488 nm, 495–550 nm), pHrodo (532 nm, 560–650 nm) and Hoechst (350 
nm, 408–443 nm) 
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Fig. 5 Toxicological analysis of single or double fluorescent particles (FITC or FITC/pHrodo 
particles) for 500 or 250 nm respectively incubated with RAW 264.7 cells for 24 hours (1000 
particles/cell). a TNF-α production, b percentage of released LDH, c total ROS generated and d 
H2O2 produced (n = 3, *p < 0.05) 

 
 
 

Table 1 Particle size evaluated by TEM and size distribution - zeta potential measured by DLS for 
particles in water or in complete culture media 
 

Particles types and expected sizes TEM DLS - Water DLS - Culture media Water Culture media
FITC particles - 500 nm 411±23 434±11 492±6  -65.6±0.3  -22.6±2.2

FITC/pHrodo particles - 500 nm 492±19 512±6 514±8  -57.6±0.5  -16.2±0.7
FITC particles - 250 nm 240±17 269±10 279±4  -54.5±0.9  -24.5±1.5

pHrodo/FITC particles - 250 nm 224±15 307±9 232±2  -53.4±1.7  -19±0.7

Zeta PotentialSize characterization (nm)
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Supplementary Fig. 1 Electron microscopy observations of 250 nm FITC particles. a TEM of 
particles alone, b SEM after a 24 hour contact with macrophages RAW 264.7 and c, d TEM after 
24 hour contact with macrophages RAW 264.7 (HV = 80 kV) 
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Supplementary Fig. 2 Example of confocal microscopy acquisition of 250 nm FITC/pHrodo 
particles after 24 hour contact with RAW 264.7 macrophages. Cell nuclei were stained with 
Hoechst (blue). Distinction is observed between external particles (green) and phagocytosed 
particles (yellow due to the merge of green and red fluorescences). Excitation and emission 
wavelengths, respectively, FITC (488 nm, 495–550 nm), pHrodo (532 nm, 560–650 nm) and 
Hoechst (350 nm, 408–443 nm) 
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Supplementary Table. Fluorescence optimization of dye amount. The FITC or pHrodo 
photobleachning was assessed under the confocal beam. Bleaching: low (+), high (++), strong 
(+++) or no bleaching low (-), high(--) or strong(---) were estimated for the two sizes of particles. 
The best yield was obtained for 1.23% FITC and 2% pHrodo 
 

Particles 
suspensions 

Expected 
sizes 
(nm) 

% 
FITC  

% 
pHrodo 

FITC 
bleaching 

pHrodo 
bleaching 

FITC 500 1.23% 0%  -- * 

FITC 500 3% 0%  --- * 

FITC 500 5% 0%  --- * 

FITC 250 2% 0%  --- * 

FITC 250 3% 0%  --- * 

FITC/pHrodo 500 2% <0.5%  ---  +++ 

FITC/pHrodo 500 1.23% 0.5%  --  + 

FITC/pHrodo 500 1.23% 2%  --  - 

FITC/pHrodo 250 2% 0.1%  ---  +++ 

FITC/pHrodo 250 2% 0.2%  ---  +++ 

FITC/pHrodo 250 2% 0.3%  ---  ++ 

FITC/pHrodo 250 2% 0.5%  ---  + 

FITC/pHrodo 250 1.23% 0.5%  --  + 

FITC/pHrodo 250 1.23% 2%  --  - 

 
 
 
 
 
 


