Some results on subanalytic variational inclusions

Abstract : In this chapter, the aim is the solving of variational inclusions fo the form 0_in f(x)+F(x), where f is a subanalytic and locally Lipschitz function, F is a set-valued map with closed graph. The methods are developped using the metric regularity of (f+F) or the Aubin property of (f+F)^{-1}, and often lead to a superlinear convergence.
Type de document :
Chapitre d'ouvrage
I. Zelinka, V. Snasel, A. Abraham. Handbook of optimization, from classical to modern approach, Springer, pp.51-72, 2013, Intelligent Systems Reference Library, 978-3-642-30503-0. 〈10.1007/978-3-642-30504-7-38〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00757674
Contributeur : Catherine Cabuzel-Zebre <>
Soumis le : mardi 27 novembre 2012 - 14:04:27
Dernière modification le : lundi 21 mars 2016 - 11:28:50

Identifiants

Collections

Citation

Catherine Cabuzel, Alain Piétrus. Some results on subanalytic variational inclusions. I. Zelinka, V. Snasel, A. Abraham. Handbook of optimization, from classical to modern approach, Springer, pp.51-72, 2013, Intelligent Systems Reference Library, 978-3-642-30503-0. 〈10.1007/978-3-642-30504-7-38〉. 〈hal-00757674〉

Partager

Métriques

Consultations de la notice

80