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The Unitary Events (UE) method is one of the most popular and ef cient methods
used this last decade to detect patterns of coincident joint spike activity among
simultaneously recorded neurons. The detection of coincidences is usually based
on binned coincidence count (Giin, 1996), which is known to be subject to loss in
synchrony detection (Giin et al., 1999). This defect has been corrected by the mul-
tiple shift coincidence count (Giin et al., 1999). The statistical properties of this
count have not been further investigated until the present work, the formula being
more dif cult to deal with than the original binned count. First of all, we propose
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a new notion of coincidence count, the delayed coincidence count which is equal to
the multiple shift coincidence count when discretized point processes are involved
as models for the spike trains. Moreover, it generalizes this notion to non dis-
cretized point processes, allowing us to propose a new Gaussian approximation of
the count. Since unknown parameters are involved in the approximation, we per-
form a plug-in step, where unknown parameters are replaced by estimated ones,
leading to a modi cation of the approximating distribution. Finally the method
takes the multiplicity of the tests into account via a Benjamini and Hochberg ap-
proach (Benjamini & Hochberg, 1995), to guarantee a prescribed control of the
false discovery rate. We compare our new method, called MTGAUE for multi-
ple tests based on a Gaussian approximation of the Unitary Events, and the UE
method proposed in (Giin et al., 1999) over various simulations, showing that
MTGAUE extends the validity of the previous method. In particular, MTGAUE

is able to detect both profusion and lack of coincidences with respect to the in-
dependence case and is robust to changes in the underlying model. Furthermore
MTGAUE is applied on real data.

1 Introduction

The study of how neural networks transmit activity in the brain and somehow code
information implies to consider various aspects of spike activity. Historically, ring
rates have been rstly considered as the main way for neurons or populations of neurons
to transmit activity, in correlation with some experimental or behavioral events. Such
kinds of correlations have been shown mainly by the use of peristimulus time histogram
(PSTH) (Abeles, 1982; Gerstein & Perkel, 1969; Shinomoto, 2010).

However, beside the role of ring rate, it has been argued, rst in theoretical stud-
ies, that the activity of ensemble of neurons may be coordinated in the spatiotemporal
domain (i.e. coordination of the occurrence of spikes between different neurons) to
form neuronal assemblies (Hebb, 1949; Palm, 1990; Sakurai, 1999; Von der Malsburg,
1981). Indeed, such assemblies could be constituted on the basis of speci ¢ spike tim-
ing, thanks to several mechanisms at the synaptic levéhidg<et al., 1996; Rudolph
& Destexhe, 2003; Softky & Koch, 1993). The required neural circuitry could spon-
taneously emerge with spike-timing-dependent plasticity (Brette, 2012). Such coordi-
nated activity could easily propagate over neural networks (Abeles, 1991; Diesmann
et al., 1999; Goedeke & Diesmann, 2008) and be used as a potential "code” for the
brain (Singer, 1993, 1999). Moreover simulation studies have shown how synchroniza-
tion emerges and propagates in neural networks, with or without oscillations (Diesmann
et al., 1999; Golomb & Hansel, 2000; Tiesinga & Sejnowski, 2004; Goedeke & Dies-
mann, 2008; Rudolph & Destexhe, 2003).



In addition to these theoretical considerations, many experimental evidences have
been accumulated, which show that coordination between neurons is indeed taking
place. In particular, it has been shown that the mechanisms of spike generation can
be very precise (Mainen & Sejnowski, 1995) under physiological conditions (Boucsein
etal., 2011; Konishi et al., 1988; Lestienne, 2001; Prescott et al., 2008). Spike synchro-
nization, with or without oscillations, has been shown to be involved in the so-called
binding problem (Engel & Singer, 2001; Singer & Gray, 1995; Singer, 1999; Super
et al., 2003). Spike synchronization has also been studied in relation with ring rate
(Abeles & Gat, 2001; Eyherabide et al., 2009; Gerstein, 2004; Grammont & Riehle,
1999, 2003; Heinzle et al., 2007;0Kig et al., 1996; Kumar et al., 2010; Lestienne,
1996; Maldonado et al., 2000; Masuda & Aihara, 2007; Riehle et al., 1997; Vaadia
et al., 1995).

Most of these experimental evidences could not have been obtained without the de-
velopment of speci ¢ descriptive analysis methods of spike-timing over the last decades:
cross-correlogram (Perkel et al., 1967), gravitational clustering (Gerstein & Aertsen,
1985) or joint peristimulus time histogram (JPSTH) (Aertsen et al., 1989). However,
these methods do not necessarily answer to a major criticism that considers that spike
synchronization might just be an epiphenomenon of the variations of the ring rate.
That is why, in direct line with these methods,i@rand collaborators developed the
Unitary Events (UE) analysis method (@r, 1996).

The UE method is originally based on a binned coincidence count (see also Section
2.1 for a more precise de nition). This method has been continuously improved until
today (Giin et al., 2002a,b; Gn, 2009; Gin et al., 2010; @tig et al., 2001; Gin
et al., 2003; Pipa & Gin, 2003; Pipa et al., 2003; Louis et al., 2010; Pipa et al., 2013).

It is a popular method which has been used successfully in several experimental studies
(Riehle et al., 1997, 2000; Grammont & Riehle, 1999, 2003; Maldonado et al., 2008;
Kilavik et al., 2009). However, these approaches suffer from several defects due to
the use of binned coincidence count. Indeed, as pointed out imn(€r al., 1999,
2010), there may be, for instance, a large loss in synchrony detection, coincidences
being discarded when they correspond to two spikes lying in two adjacent distinct bins.
Actually, up to 60% of the coincidences can be lost when the bin length is the typical
delayl/jitter between two spikes participating to the same coincidence. Another version
of the UE method has consequently been proposed: the multiple shift coincidence count
(Grun et al., 1999) (see Section 2.1 for precise de nitions, see also (Pazienti, 2008) for
another development). However, and up to our knowledge, this notion has not been
as well explored as the notion of binned coincidence count. Indeed and as already
pointed out in (Giin et al., 2010), the various shifts can make the coincidence count
more complex than a sum of independent variables, depending on the underlying model.

Therefore the main aim of this article is to complete the study of this notion of mul-



tiple shift coincidence count and to propose a new method which extends the validity
of the original multiple shift UE method (@n et al., 1999). To do so, we focus on the
symmetric multiple shift coincidence count, which is much more adapted to the pur-
pose of testing independence between two spike trains on a given window (see Section
2.1 for the distinction between symmetric and asymmetric multiple shift coincidence
count). Then we generalize the notion, that was given for discretized spike trains at a
certain resolution level. The delayed coincidence count de ned in Section 2.3 is exactly
the same coincidence count for discretized spike trains but this new formula can now
be also applied to non discretized point processes as well. This mathematical notion
allows us to compute the expectation and the variance in the simplest case of Poisson
processes, which approximate Bernoulli processes used im(&ral., 1999). There-

fore the Fano's factor can be derived for the symmetric multiple shift / delayed coinci-
dence count, as it has been done for instance in (Pipa et al., 2013) for the more classical
notion of binned coincidence count. This also leads to a Gaussian approximation of the
distribution of the symmetric multiple shift / delayed coincidence count, when Poisson
or Bernoulli processes are involved as models for the spike trains.

However this approximation depends on unknown parameters in practice, namely
the underlying ring rates. Such problems due to unknown parameters can be bypassed
by several methods, mainly based on surrogate data (see (Louis et al., 2010) for dither-
ing or (Grun, 2009) for a more general review). On the binned coincidence count, there
are two main methods that can be easily statistically interpreted: trial-shuf ing (Pipa &
Grun, 2003; Pipa et al., 2003), which is a permutation resampling method and condi-
tional distributions (@tig et al., 2001). However trial-shuf ing has in this case clearly
non trivial and speci ¢ implementation solutions and when working conditionally to the
observed number of spikes @qg et al., 2001), the solution is completely linked to the
form of the binned coincidence count and the use of Bernoulli models. Both solutions
are consequently not used here for the symmetric multiple shift/delayed coincidence
count, which is more intricate than classical binned coincidence count. We prefer to
look more carefully at the replacement of the unknown ring rates by estimated ones, a
step which is known in statistics as a plug-in step. By looking closely at the plug-in pro-
cedure, we show in Section 3.1 that it changes the variance of the asymptotic Gaussian
distribution, and, therefore, we correct the approximation to take this phenomenon into
account. Up to our knowledge, no correction due to the plug-in effect has been taken
into account even for the classical binned coincidence count. The last step (Section
3.2) of our procedure consists in carefully controlling the false discovery rate (FDR),
when several windows of analysis are considered, by using Benjamini and Hochberg
procedure (Benjamini & Hochberg, 1995).

Each time a thorough simulation study shows the actual performance of our proce-
dure. An analysis of real data is also performed in Section 4 on data that have already



been partially published, so that the detection ability of the method can be demonstrated
in concrete situations. Finally, we discuss the overall improvements due to our proce-
dure with respect to the original method of (@ret al., 1999) in Section 5.

In all the sequel, we write in italic technical expressions, the rst time they are en-
countered and we give in the same paragraph their de nition. We also use the following
notation, that is the one generally used in point process theory (Daley & Vere-Jones,
2003). Apoint procesN is a random countable set of points @f here). Each point
corresponds to the detection time of a spike of the considered neuron by the recording
electrode. For any s& of R., N(A) is trF1)e number of points i andN (dt) is the
associated point measure, thaNigdt) = o, SRwhere s is thePDirac measure at
the pointS. This means that for every functidn f (t)N(dt) = o, f(S). The
point process corresponding to the spike train of nejyir@ndenoted\; and whenM
trials are recorded, the point process corresponding to the spike train of neduwidng
trial m is denoted\lj(m). In all the sequel and whatever the chosen model, we assume
that theM trials are independent and identically distributeédd.), which means er-
godicity across the trials, except when precisely stated otherwise. We denBtthéy
probability measure, bf its corresponding expectation and by Var its corresponding
variance. Alsol, denotes the indicator function of the eveéxtwhich takes value 1
whenaA is true and otherwise. Hence a function 1, takes value on A andOon
the complementary eveAt.

Fundamental notions for the present article are given in the following de nition (see

also (Staude et al., 2010) for this kind of distinction). R

De nition 1: Real single unit data are recorded with a certain resolutiomhich
is usually10 3s or10 “*s depending on the experiment. Formally time is cut ihto
intervals of lengtth and of the form{ih  h=2;ih + h=2). Then one associates (o
any point procesd\, its associated sequence at resolution.e. a sequence @
andl, (H,),, whereH; = 1 corresponds to the presence of (at least) one point of
N in[ih  h=2;ih + h=2) (see also Figure A). Reciprocally, to a sequence 0f
andl, (H,),, we associate a point proceNsby taking the set of all points of th
typeS = ih such thaH; = 1. Such point process that is forced to have only pojnts
&of the typeih, for some integer, is calleddiscretized at resolutioh.

4%
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2 Probabillistic study of the coincidence count

2.1 The multiple shift coincidence count

A pair of neurons being recorded, the question is how to properly de ne a coincidence
and more precisely, the coincidence count. Usually those counts are computed over



several windows of time. We focus in this section on only one windfévof length

T, keeping in mind that this small window is strictly included in a much larger record-
ing. Because processes can be discretized, and to avoid tedious indexations, it is easier
to think thatW corresponds to indices= 1;::;n with T = nh (see Figure A).
However, the reader has to keep in mind that there are points outside this window, cor-
responding to indiceisthat can be non positive or larger than

In classical UE methods, both spike trains are usually represented by sequences of
Oandlof lengthr = Td h), for some integed 1 (Grun, 1996; Gin et al.,
2010). The presence dfat positioni indicates that there is at least one spike in the
ith segment of lengtldl h. The segments of lengtth h are usually calledins
and are centred around points of the tyge h. The previous construction means
that the real data have bebmnedat a coarser level (nametly h) than their original
resolutionh. We denote by 1; :::; D! and byD?; :::; D?, the associated sequence to the
rst and second neuron respectively. According to this bin construction, a coincidence
attimeC = id hhappensiD! = D2 = 1. The coincidence count, in this binning
framework, is then the number o§ such thaD! = D2 = 1. The problem, underlined
in (Grun et al., 1999), is that for reasonabl¢typicallyd h = 0:00%s), a signi cant
number of spikes that are at distance less thanh are not counted if they fall in two
adjacent and distinct bins: the binning effect generates a signi cative loss in synchrony
detection.

The multiple shift method, introduced in (@1 et al., 1999), uses a notion of coin-
cidence count that corrects this loss in synchrony detection by shifting one spike train
(N,) with respect to another spike traiN{), which is xed, by step of sizén, both
spike trains being kept at their original resolution lelrelThere are two ways of de n-
ing the multiple shift coincidence count depending on whether data outside the window
of interest,W, may enter or not when the spike tradiy is shifted as one can see on
Figure 1B.

In thesymmetric multiple shift coincidence copbbth spike traindN; andN,, are
observed on a window and data outsid®/ are discarded. Those spike trains are
discretized at resolutioh and are consequently considered as a sequeng@euad 1,
denotedH 1; ::;; HY andH 2; :::; H 2 respectively in the sequel. Theifreear) coincidence
is observed at timé on the windowW, if there exists a shift, integer inf  d;:::; dg,
such thaH?! = Hiz+j = 1. Note that this de nition implies in particular that such a
should also satisfy that

1 i+j n (1)

since the recordings outside the wind®W of interest are discarded. Tlsymmetric
multiple shift coincidence couig then de ned by the total number of (near) coinci-



A: Discretization of a spike train
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Figure 1: Discretization and multiple shift coincidence countAlnllustration of the
discretization of a spike train on the wind& and on the enlarged windowWy. In B,
illustration of both symmetric and asymmetric multiple shift coincidence counts, In
interpretation of those notions in term of delay: an edge corresponds to a ¢olple
wherei (resp. k) is the position of dl in the rst (resp. second) spike train, and for
which the delayji  kj is less thard. The number of coincidences is then the number
of edges. In grey are represented data that are oudgidrit insideWy and that are
therefore taken into account in the asymmetric notion but not in the symmetric one.



dences on the windoW , i.e. formally speaking
X X
X = 1Hil: Hi2+j =1 (2)
i=1 j=jjj dand1l i+j n
Takingk = i + | in the previous sum, we obtain
XX
X = Tik ij alriza Ipz=n: 3)
i=1 k=1
Hence, it can be also understood as the total number of co(ipkessuch thatH! =
HZ =1, such thatthe delajk ij dand such that bothandk belong tof 1; :::; ng.
Bothi andk correspond to a spike in the window of inter®gt this present notion is
therefore symmetric in the rst and second spike trains (see Fig@e 1.

If condition (1) is not ful lled and ifj is free, then when the shift is performed, data
outside ofW "enter” and interact with data insid& (see Figure B). This leads to the
asymmetric multiple shift coincidence couiarmally de ned as follows

X X
Xa = 1Hi1: Hi2+j:1: (4)
=1 j=jjj d

Takingk = i + j in the previous sum, we obtain this time

X X X X d
Xa= Li ij alnz=1lnz=r = Li ij alnz=alpz=n: (5)

i=1 k2z i=1 k=1 d
Hence, it can be also understood as the total number of co(ipkessuch thaH! =
HZ =1, suchthatthe delagk ij d,suchthat (inf1;:::; ng) corresponds to a spike
of Ny in W and such thak (inf1 d;:::;n+ dg) corresponds to a spike of; in the
enlarged windowVy = fy = x+ u;x 2 W;u 2 [ dh;dh]g. Note that withh = 10 3s,
it is quite usual to have = 100 and up tod = 20. Hence, in the asymmetric notion,
one sequence can be 40% larger than the other one.

In the original Matlab code of (@ et al., 1999), coincidences, i.e. couplek)
such thajk ij d, were identi ed at rst and indexed by their position on the rst
spike train,N;. Therefore when focusing on a given winddW, all the coincidences
(i; k) for whichi corresponds to a spike of the rst spike trédhh in W were counted,
whatever the value ok. This is exactly the asymmetric multiple shift coincidence
count.

However, on the one hand, all coincidence counts are classically used to detect
dependence. They are compared to the distribution expected under the independence
hypothesis. Since the UE method aims at locally detecting the dependence, the inde-
pendence hypothesis is a local one, which depends on the undevi{ire;md which



is classically understood &$,: "N; and N, are independent on the window of in-
terestW”. But using an asymmetric test statistic (as the asymmetric multiple shift
coincidence count) for testing a symmetric notion (namely the independence) can lead
to different detections with the same data set, depending on which spike train is re-
ferred adN; (see also Figure 11 for a concrete example on real data for the original UE
method). Therefore the symmetric notion leading to symmetric answers to the question
of whether the two spike trains are independent or not, seems the more natural.

On the other hand, one faces the problem of understanding the distribution under
the independence hypothesis. Usually, models of independence consequently need to
be imposed and in many articles on the UE method (in particular iar(@tal., 1999)),
the spike trains are modelled by independent Bernoulli processes. More precisely, the
Hij are assumed to be independent and identically distributed Bernoulli variables with
parametep; = ;h, where ; is the ring rate of the neuron. Based on the fact that
Uk = Ly 12 is also a Bernoulli variable of paramefemp,, and that for each
there are2d + 1 correspondindJi in the sum of (5), it is easy to prove that

mg= 1 2h®n(2d+1); (6)

is the expectation of the asymmetric multiple shift coincidence colnfsee (5)). This
is the main quantity used in (Gn et al., 1999) to understand the distribution under
the independence assumption (see (15) ini(Gat al., 1999)). The problem is more
complex for the symmetric multiple shift coincidence count. The main problem with
such a derivation for the symmetric notion is that wheés close tol or n one cannot
always nd(2d + 1) indicesk such thaik ij dandk 2 f 1;:::;ng. There could be
much less. This edge effect is negligible for snthiut becomes more critical wheh
is large. Because we consider that the symmetric notion is the most relevant one, one
of our rst aim is to take this edge effect into account and we want to propose a correct
formula forX too.

Note also that when deriving (6) for the asymmetric notqy we have been forced
to implicitly assume more thahly: "N; andN, are independent on the window of
interestW”, because the indelx may correspond to points in the enlarged winddty
that are not in the window of interedt. In fact, we have assumed mag: "NionW is
independent o, on Wy". This is actually this last asymmetric hypotheki§ which
is natural when considering the asymmetric multiple shift coincidence count, and not
the symmetric hypothesldy. However, if one rephrases the independence hypothesis
asH ¢, two different sets of windows need to be considered: one set of classical windows
for N; and one set of enlarged windows fég. This is not reasonable either, since again
conclusions of the UE detection method can be different when exchanging the role of
N; andN; (see also Figure 11).

Finally, in (Grin et al., 1999), the distribution of multiple shift coincidence count
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is approximated by a Poisson distribution, as it is classically done for binned coinci-
dence count, set-up where the Poisson distribution is viewed as the approximation of
a Binomial distribution. However, if it is true that the present coincidence count is a
sum of Bernoulli variables, these variables are not independent because the Vtiable
may participate in more than one coincidence, as already noted im (&ral., 2010).
Therefore the present multiple shift coincidence count is not a Binomial variable when
Bernoulli processes are considered. This fact makes the behavior of this precise multi-
ple shift coincidence count different from other classical notions of coincidence count
based on binning. Therefore the present work proposes a limit distribution for the coin-
cidence count that takes this dependency into account, so that the approximation is valid
for a larger set of parameters than the Poisson approximation dondiin ¢Gal., 1999).

If it is quite dif cult to directly do so for Bernoulli processes, this probabilistic result
can be easily derived if we approximate Bernoulli processes by Poisson processes.

2.2 Bernoulli and Poisson processes

Recall thatBernoulli processeare generated as follows. For a winddWw of length

T, at the resolutiorh, n = T=hindependent Bernoulli variableB,, with parameter
p= h aresimulated, whereis the ring rate of the considered neuron. The associated
point process (see De nition 1) is denotdig in the sequel.

Itis well known that wherh tends to 0, then the Bernoulli process tends to a Poisson
process. This can for instance be seen because the number of phii), is a
binomial variable that tends in distribution towards a Poisson variable with parameter
T whenh tends to0. In particular the approximation is valid as soonmas 100
andp 0:1, (Hogg & Tanis, 2009, p. 159). Since, by construction, for any disjoint
setsAq; i Ak, Ng (A1); i Ng (Ak) are independent variables, we recover the classical
de nition of a homogeneous Poisson procedgsntensity (see (Daley & Vere-Jones,
2003) for a precise de nition). Note that Poisson processes are not discretized at any
resolution level, whereas Bernoulli processes are (see De nition 1).

More precisely, in our set-up, windows of lenditls are classically considered,
with ring rates less tharL00Hz and with resolutiomn = 10 3s orh = 10 *s. We are
consequently typically in a case where the Poisson approximation is valid. In (Reynaud-
Bouret et al., 2013), several classical tests, originally due to (Ogata, 1988), have been
used to test whether a point process is a homogeneous Poisson process or not and we
refer the reader to this article for detailed explanations on the procedures. In Figure 2,
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we run those tests on a simulated Bernoulli process. The p-\?ah:esiarge, meaning
that the various tests accept the Poisson assumption (see also (Ventura, 2010) for precise
de nitions of tests and p-values). Moreover the repartitions of the p-values are close to
the diagonal meaning that the distributions of the various statistics (positions, numbers
of spikes or delays between spikes) are the ones given by a classical Poisson process,
and they become closer to the diagonal whatecreases.

Hence, Bernoulli processes can be well approximated by Poisson processes on the
typical set of parameters used in neuroscience and they are even almost statistically
indistinguishable from Poisson processes, at the resolbtoi0 “s.

2.3 The delayed coincidence count

Let us focus now on the symmetric notion, at least in a rst approach. If we want to use
Poisson processes instead of Bernoulli processes to perform the computations, we need
to rewrite the symmetric multiple shift coincidence count in terms of point processes
that are not necessarily discretized at the resolution leysee De nition 1). To turn

(3) into a more generic formula valid for any point process, let us remark the following
phenomenon. Fix k and x somex = ih as point ofN;. If N, is not discretized

and if we consider its associated sequeft¢é; ::;; H?2) at resolutiorh (see De nition

1), then a poiny of N, that corresponds tokasuch thajk ij d, could be as far as

d h+ h=2and still counted as a near coincidence. In particular, wher0, y is in

the segment of centerwith lengthh if and only ifjy xj h=2. Therefore, let

=d h+h=2 )

The delayed coincidence coyngeneralizing the notion of symmetric multiple shift
coincidence count for general point process, can be written as follows.

$
De nition 2: The delayed coincidence count with delayon the windowW is
given by 7
X = 1jx yj Nl(dX)NZ(dy): (8)
W2
& %

WhenN; andN, are discretized with resolutidm both Equations (3) and (8) coin-
cide and both coincidence counts are exactly the same.

2A p-value is the random value offor which a test of level passes from "accept” to "reject”. Note
that usually when = 0, the test always accepts, whereas it always rejects when : therefore there
is a limit value which depends on the observations for which one passes from one decision to another
one. If the test is of type | error exactlyfor all , then one can prove that the corresponding p-value is
uniformly distributed orf0; 1] underH,. Therefore their value as position of their normalized rank over
an i.i.d. sample should be close to the diagonal of the square.
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Figure 2: Poisson approximation of the Bernoulli process. 2000 p-values for the fol-
lowing tests are displayed as function of their rank divided by 2000, the diagonal is also
represented. Two Bernoulli processes are simulated with30Hz andh = 10 3s or

10 “4s. InA, for each simulation, Kolmogorov-Smirnov uniformity test is performed on

a Bernoulli process simulated on a windeWw= [h=2; T + h=2] of lengthT = 2s. The

test statistic iSUp,y jF(X) (x h=2)=Tj whereF (x) is the empirical cumulative
distribution function of the points of the considered process. If the test statistic is larger
than thel guantile of the tabulated Kolmogorov-Smirnov distribution, then the uni-
formity hypothesis is rejected. B, Kolmogorov-Smirnov uniformity test is performed

on the aggregated process over 40 simulated trials (i.e. the considered point process is
the union of 40 i.i.d. Bernoulli processes simulatedvdrwith T = 0:1s). InC, the
chi-square Poisson test over 40 trials is performed on the total number of points per
trials for Bernoulli point processes simulated\hwith T = 0:1s. InD, exponentiality

Test 1 (Reynaud-Bouret et al., 2013) of the delays (I1SI) between points of a Bernoulli
process oW with T = 10s is performed. See Test 1 of (Reynaud-Bouret et al., 2013)
for more insight, here used with subsample size given by "(total number of d&fdys)
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If the symmetric case is the most relevant one in our framework and if the delayed
coincidence count should always be understood as a symmetric quan(ity;iN,),
note that however the same translation can be done for the asymmetric notion, and one

can also introduce
Z Z

Xa= 1ix yi Na(dy) Ni(dx); with W =fy=x+u;x2W,u2[ ; ]g
wow ©)
which is clearly not symmetric.

Now let us translate the multiple shift UE method introduced biyrGand her col-
laborators to the general point process framework. Equation (6) can be easily rewritten
as

mg=2T 1 2 (10)

whereT is the length of the windowv .

In (Grun et al., 1999), the distribution &f, is approximated by a Poisson distribu-
tion with parametemg. We will see later in Section 3 that assumidgto be Poisson
distributed with parameteng, may also lead in certain cases to a reasonably correct be-
havior of the UE procedure. Therefore in the sequel, we will always study both cases,
the UE symmetric procedure (JEwhereX is assumed to be Poisson distributed with
parametemg, and the UE asymmetric procedure ({)EwhereX, is assumed to be
Poisson distributed with parametayg,.

Our new method focuses on the (symmetric) delayed coincidence Xouedr this
count, assuming that botd,; andN, are now Poisson processes, one can prove the
following result.

Theorem 1. Letus x in (8) such that
0<2<T; (11)

whereT is the length of the window. If N; and N, are independent homogeneous
Poisson processes with respective intensitiegand , on W, then the expectation of
the delayed coincidence couxitand its variance are given by

mo:= E(X)= ,, 2T 2 (12)
and
Zi=Var(X)= 1, 2T 2+ 2,+ ;3 4°T % (13
Moreover ifM i.i.d. trials are available, then

v Dok (0:0) (14)
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wherem is the average observed coincidence count with deja.

Z

1 X . (m) (m)
o XM owith XM= 1 NP(AONST(dy): (15)
W2
m

=1

m=

The symbdblL meansconvergence in distribution whévl tends to in nity. This
means for instance that the quantiles oM= 2(m my) tend to those oN (0; 1),
whenM becomes larger. The proof is given in the supplementary le.

This result states rst thaE(X ) can be computed when both observed point pro-
cesses are independent homogeneous Poisson processes and that the edge effects appear
in mg via a quadratic term in which is the difference with respect to,. Therefore it
needs to be taken into account if one wants to compute delayed coincidence count with
large . Note that if (11) is not satis ed, then all the couplesy) in W are affected by
this edge effect and in this case, the above formula for the expectation and variance are
not valid anymore.

Note also that the Fano factbr.e.

Var(X)
E(X)

F = =1+2( 1+ 2) (1+0(1)); (16)
is strictly larger than 1. The gap between the variablend a Poisson variable increases
with the ring rate and with . Several papers have also considered the Fano factor
for binned coincidence count showing that the distribution may be different from a
Poisson distribution, but up to our knowledge nothing has been done for the multiple
shift coincidence count. In particular, in the recent (Pipa et al., 2013), Fano factors for
renewal processes are computed only in the case of a coincidence count, which is binned
but not clipped. Multiple shift coincidence count and binned clipped coincidence count
are exactly the same when the size of the bimfer the binned coincidence count and
whend = 0 in (2) or (4) for the multiple shift symmetric or asymmetric coincidence
count. The fact that coincidence counts are clipped or not has almost no effect for
very small resolutiorh. Since delayed coincidence count is a generalization of the
symmetric multiple shift coincidence count, it is logical that we recover results of the
same avour as the ones of (Pipa et al., 2013), in the Poisson case, with=2 (i.e. (7)
with d = 0). Note however that both results are not equivalent since they are not based
on the same notion of coincidence count. Using Poisson processes instead of Bernoulli
processes allows us to produce such results for the generalization of the symmetric
multiple shift coincidence count to the more general not necessarily discretized point
process case.

Note that for the asymmetric notion, one can also show HEft,) = mg, when
Xa is de ned by (9). We will see later on simulations that, (discretized or not) is

3In the following equationp(1) denotes a quantity that tends to O whetends ta0.
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not Poisson either. Other similar computations would lead to another Gaussian approx-
imation of X ;. However we do not want to perform them and consequently correct the
asymmetric UE procedure in this way. Indeed, as stated before, the asymmetric notion
can lead to very awkward results that depend on which spike train is referidg, as
when testing the independence hypothesis\bnvhich is a symmetric statement (see
Figure 11 for a practical example). Even if we correct the approximation, those awk-
ward conclusions will remain and are intrinsic to the notion of asymmetric coincidence
count itself.

In addition, let us conclude this section with some simulations to underline the fact
that the present approximation of (14) is not only valid for Poisson processes in theory
but also for Bernoulli processes in practice and also to show that the distributi®ns of
or X 5 are not Poisson in any case.

In Figure 3, the coincidence counts are symmetric. The three distributions, i.e. the
one of the delayed coincidence counts for Poisson processes witd h, the one
with = d h+ h=2and the one of the symmetric multiple shift coincidence counts for
Bernoulli processes with resolutidnare almost indistinguishable. They are all three
very well approximated by the Gaussian approximahiofM mo; M ?) of (14) and the
distinction between=d hor =d h+ h=2cannotbe made whdn= 10 “*s. On
the contrary, all the Poisson distributions either with milm 4 (biased with neglected
edge effects) oM m (unbiased with edge effects taken into account), withd h
or =d h+ h=2are not tting the coincidence count distribution: the variance is
larger than what it is predicted by the Poisson approximation.

In Figure 4, the coincidence counts are asymmetric. It is once again clear that the
asymmetric multiple shift coincidence count on Bernoulli processes is almost indistin-
guishable from its generalization on Poisson processes. Itis also clear that they are not
Poisson distributed, in particular for large even if mg correctly matches the mean,
the difference being less obvious for smallOnce again there is no real difference in
considering =d hor =d h+ h=2whenhissmall =10 4s).

As a summary of this section, note consequently that
Symmetric coincidence count are much more adapted to the purpose of testing an

independence hypothesis betwdénandN, on a xed windowW, which is a
symmetric statement.

It is equivalent to simulate Poisson or Bernoulli processes for coincidence counts
(symmetric or not).

Symmetric multiple shift coincidence counts are distributed as delayed coinci-
dence counts, the latter being just the generalization of the former to the general
point process theory. A similar version exists for the asymmetric case.
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Figure 3: Repartition of the symmetric total coincidence count (i.e. the sum of the co-
incidence counts oveM trials). In all the experiments, = 30Hz, M = 40 trials and

a windowW of lengthT = 0:1s are used. Bernoulli processes have been simulated
with resolutionh. Are plotted histograms over 5000 runs of symmetric multiple shift
coincidence count for Bernoulli processes (see (2)) and of delayed coincidence count
with = x or = x+ h=2for Poisson processes (see De nition 2). Are also plotted
densities of the corresponding Gaussian approximation as well as probability distribu-
tion functions of the corresponding Poisson approximation with n\am, or Mmy,

for the different choices of.

In either case, the distribution is not Poisson.

In both cases (Poisson or Bernoulli processes), the Gaussian approximation of
(14) is valid for the symmetric notion, on the classical set of parameters.

Edge effects need to be taken into account for largeshen dealing with the
symmetric notion of coincidence count.

Considering = d hor = d h+ h=2with h = 10 *s is completely
equivalent.

Therefore, in the sequel, we use delayed coincidence count witthe typed h.
Bernoulli processes are replaced by Poisson processes when necessary. When real data
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Figure 4: Repartition of the asymmetric total coincidence count. In all the experiments,
= 30Hz, M = 40 trials and a windowV of lengthT = 0:1s are used. Bernoulli
processes have been simulated with resolutionAre plotted histograms over 5000
runs of asymmetric multiple shift coincidence count (see (4)) for Bernoulli processes
and of X, (see (9)) with
plotted probability distribution functions of the corresponding Poisson approximation
with meanMmy, for the different choices of.

= Xor =

X + h=2 for Poisson processes. Are also

are considered, we use the resolutioa 10 “s, which is the machine resolution of the

recorded spike trains.

3 Statistical study of the independence tests

The previous section gives a probability result, namely the Gaussian approximation.
Now let us see how this approximation can be turned into a fully operational statistical
method. There are two main points that need to be taken into account. First, we do
not know the value ofmg in practice and we therefore need to plug an estimate in:
how does this plug-in affect the distribution? Secondly, we usually consider several
windows, therefore several tests are performed at once: how can one guarantee a small
false discovery rate for all the tests at once?
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3.1 Plug-in and modi cation of the Gaussian approximation

Equation (14) depends angy and that are unknown. Hence to perform the approx-
imation in practice, we need to replace them by corresponding estimates, based on the
observations. This step is known in statistics as a plug-in step and it is known to some-
times dramatically modify the distribution. One of the most famous example is the
Gaussian distribution which has to be replaced by a Student distribution when the vari-
ance is unknown and estimated by an empirical mean over less than 30 realifations
(Hogg & Tanis, 2009, Table VI, p 658).

Theoretical study

In the present set-up, as far as asymptotic in the number of Mails concerned, the
plug-in of an estimate of does not change the Gaussian distribution, whereas the plug-
in of an estimate ofny changes the variance of the limit, as we can see in the following
result.

Theorem 2. With the same notation as in Theorem 1,\ebe the unbiased estimate of
i, the ring rate of neurony , de ned by

N 1 W m
Ealves N ™ (W): (17)

m=1
Let alsorhg be an estimate ahgy de ned by
Mo = " 2T ]: (18)

Then under the assumptions of Theorem 1,

P__
M(m oy N (0;v2); (19)
where 5
vii= 3, 2T 2+ o1+ 2]§3T143 (20)
Moreoverv? can be estimated by
h i
02 = A1A2 2T 2 +A1A2 A1+A2 %3 Tt (21)
and 0 *
MTPO—TO! KN (0:1): (22)

The proof is given in the supplementary le.

4Morlg precisely, ifXq;:::; X, are i.i.d. Gaussian variables with mean and variance 2 then
n=2 1, (Xi m) N (0;1) whereas n="2 L (X; m) T(n 1) where”?isthe
unbiased estimate of.
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Figure 5: Repartition of the different renormalizations of the various coincidence

counts. Each time 5000 simulations of two independent Poisson processes with
1 = 2 =30Hz, M = 40 trials, a windowW of lengthT = 0:1s and = 0:02s

are performed. I, histograms of M(m mg)=, of M(m tg)=v and of

M(m  mg)=0¢ with m the average delayed coincidence countB|rhistogram of

M(m )= and of. M(m ry)=" with m the average delayed coincidence

count. InC, histogram of M (m mg)=Io mgandof M(m rhg)= rhgwith mthe

average delayed coincidence countDirsame thing as i€ but withm, the average of

Xa (see (9)), the asymmetric coincidence count.

P

Figure 5 illustrates the impact of the plug-in in the renormalized coincidence count
distribution. When using plug-in, we need to renormalize the count since at each run a
new value for the estimate is drawn. Therefore our reference in Figure 5 is the standard
Gaussian variable. First we see that the Gaussian approximation of (14) is still valid,
but more importantly that the plug-in steps of (19) and (22) are valid on Figére 5.
Instead of the new variane& and its estimat?, we have also pluggeti, in with the
original variance, 2, or a basic estimate of?, namely

/\2_/\/\ 2 hAzA AA2I 2 103
=1, 2T + l2+124T§ (23)
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The result in Figure B clearly shows that the variancé or the plug-in*? are wrong.

Hence the plug-in correction de nitely needs to be taken into account. FigGrarkd

Figure 5D show what happens for the Poisson approximation ofifGat al., 1999).

More precisely, Poisson variables with parametare well approximated by ( ; ),

as soon as is large enough. So the variables are accordingly renormalized so that
they can be plotted in the same space as the standard Gaussian variables. The Poisson
approximation with paramet&im g or its estimatiorM rhg with

hyg=2"1", T; (24)
are clearly not satisfactory for the symmetric count (see Figueg because of a bias
towards the left due to the neglected edge effects. For the asymmetric count (see Fig-
ure 5D), if the variance is too large when usingy,, the approximation is much more
accurate when replacingg by .
The Gaussian approximation of the UE method - denoted GAUE in the following -

given by Theorem 2, leads to three different single tests depending on what needs to be
detected.

De nition 3: The GAUE tests

$

the symmetric test Zx,e ( ) of Ho: "Nj andN, are independent” versuis

Hi: "N; andN, are dependent”, which rejecits, whenm andrhg are tog
different: ro
02

= (25)

im o] 7 =»
theunilateral test by upper value ;5 () which rejectsH, whenm is too
large: r
02

m Mo + 21 M

(26)
theunilateral test by lower value g, ( ) Which rejectdH, whenm is too
small: r
02

m My 2z M

(27)
wherez, is thet-quantile ofN (0; 1), i.e. the real numbeg; such that

PIN@©;1) z)=t

&and wheram is the average delayed coincidence count (see De nition 2). o
0

By Theorem 2, those three tests are asymptotically of type | erraf the pro-
cessedN; are homogeneous Poisson processes. It means that under this assumption,
the probability that the test rejects the independence hypothesis, whereas the processes
are independent, tends towhen the number of trial®! tends to in nity.
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The original UE multiple shift method of (@n et al., 1999) can be formalized in

the same way.
' $

De nition 4: The UE tests

asymmetric test ¢ () which rejectsHo whenMm  g=, or Mm

G =2

the unilateral test by upper value )z ( ) which rejectsHo whenM m
G

theunilateral test by lower value ¢ ( ) which rejectdHo whenMm g

where g is the t-quantile of a Poisson variable whose parameter is givep by
Mg =2M T ™",
Each of the previous tests exists in two versions{OEUE, respectively) depend-
ing on whethem is the average delayed coincidence count (Ssymmetric notion, see
&(8)) or the averag¥ , (asymmetric notion, see (9) ).

%

Up to our knowledge, no other operational method based on multiple shift coin-
cidence count has been developed. In particular, the distribution free methods such
as trial-shuf ing methods developped by Pipa and collaborators, which avoid plug-in
problems, are based on binned coincidence count (Pipali&,&003; Pipa et al., 2003)
and not on multiple shift coincidence count. Plug-in effects can also be avoided in an-
other way, on binned coincidence count, by considering conditional distributiotig(G
et al., 2001).

Simulation study on one window

The simulation study is consequently restricted to the two previous sort of tests (GAUE
and UE) to focus on this particular notion of delayed/multiple shift coincidence count,
which is drastically different from binned coincidence count.

Simulated processes Several processes have been simulated. The Poisson processes
have already been described in Section 2.2. They constitute a particular case of more
general counting processes, called Hewvkes processesvhich can be simulated by
thinning algorithms (Daley & Vere-Jones, 2003; Ogata, 1981; Reimer et al., 2012). Af-
ter a brief apparition in (Chornoboy et al., 1988), they have recently been used again
to model spike trains in (Krumin et al., 2010; Pernice et al., 2011, 2012). A bivariate
Hawkes proces@N; N,) is described by its respectivanditional intensitiesvith re-

spect to the past, 1(:); 2(:)). Informally, the quantity ; (t)dt gives the probability

that a new point olN; appears ift; t + dt] given the past. We refer the reader to (Brown
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et al., 2002) for a more precise de nition. General bivariate Hawkes processes are given

for all timet and all indexe$ 6 j inf 1;2g by
Z Z

=+ hy g ONY+ hy g Ny (28)

u<t u<t +

The ;'s are real parameters called tepontaneous parameter§he functionsh;, j,
representing self-interaction, ahd j, representing the interaction of neurioon neu-

ronj, are functions with support iR, and are called theteraction functions This
equation means in particular that before the rst occurrence of a spiké&;tkdehave

like homogeneous Poisson processes with intensityrhe rst occurrence of a spike

(and the next ones) affects all the processes by increasing or decreasing the conditional
intensities via the interaction functions.

For instance, ifh;, ; takes large positive values in the neighborhood of a delay
x = 5ms and is null elsewhere, thé&ms after a spike ilN;, the probability to have a
new spike inN; will signi cantly increase: the proced¥; excites the proceds;. On
the contrary, ifh;, ; is negative arouna, then5Sms after a spike ilN;, the probabil-
ity to have a new spike iN; will signi cantly decrease: the process; inhibits the
procesN;. So Hawkes processes enable us to model lack of coincidences as well as
profusion of coincidences depending on the sign of the interaction functions. The pro-
cesse$N; N») in this Hawkes model are independent if and onligif , = hy 1 = 0.

Note also that the self-interaction functions j, when very negative at short range,
model refractory periods, making the Hawkes model more realistic than Poisson pro-
cesses with respect to real data sets, even in the independence case. In particular when
hjyj = j 1 all the other interaction functions being null, the couple of sim-
ulated processes are independent Poisson processes with deadBR2), modeling

strict refractory periods of length (Reimer et al., 2012). Finally Hawkes processes are

not discretized at any resolution level as well as Poisson processes.

Another popular example is thiajection model which is discretized at the reso-
lution h and which is used in (@GN et al.,, 1999). Two independent Bernoulli pro-
cessedNg, andNg, are generated with respective ring ratesand ,. Then a third
Bernoulli proces¥\. is generated with ring rate.. A fourth point processl 2is gen-
erated fromN, by moving independently each point Nf by a random uniform shift
inf x;::;xg h, for a prescribed nonnegative integer Then the two spike trains
are given byN; = Ng, [ N andN, = Ng, [ N2 (see (Giin et al., 1999) for more
details). This injection model can only model profusion of coincidences and not lack of
coincidences. We refer the interested reader to the supplementary le for a more precise
correspondence of the parameters between Hawkes and injection models.

Injection and Hawkes models astationary which means that their distribution
does not change by shift in time (see (Daley & Vere-Jones, 2003, p. 178) for a more
precise de nition). This is also the case of homogeneous Poisson processes. One can
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also simulate inhomogeneous Poisson processes, which correspond to a conditional
intensity t ! (t) which is deterministic but not constant. These inhomogeneous
Poisson processes are therefore non stationary in time (see (Daley & Vere-Jones, 2003)
for more detalils).

Figure 6 gives the percentage of rejections over various numerical experiments, that
have been led on those simulated processes.

Type | error  SinceHg refers to 'N; andN, are independent oWw” (or "N; on W

is independent oN, on W ” for UE,), we have simulated various situations of inde-
pendence. Our theoretical work proves that the level is asymptotically guaranteed if the
processes are homogeneous Poisson processes. Our aim is now twofolds: First check
whether the level is controlled for a nite, relatively small, number of trials (Experi-
ments A and B). Next check if it still holds, when the processes are not homogeneous
Poisson processes (Experiments C, D and E). Moreover we want to compare our results
to the ones of UEand UE,. The upper left part of Figure 6 shows that the three forms

of GAUE (symmetric, upper and lower value) guarantee a level of rougflyand this

even for a very small number of trials( = 20) with a very small ring rate ( = 3Hz)

or with large ( = 0:02s). In this sense, it clearly extends the validity of the original

UE method (UK in the lower part of Figure 6), which is known to be inadequate for
ring rates less tharyHz (Roy et al., 2000), as one can see with Experiments A. Note
also that the level for GAUE as well as for YJEeems robust to changes in the model:
non stationarity for inhomogeneous Poisson processes (Experiments C), refractory pe-
riods when using Hawkes processes (Experiments D and E). Note nally that the UE
method does not guarantee the correct level except for the test by upper value, which is
much smaller thab%.

Power Several dependence situations have been tested in the right part of Figure 6:
GAUE tests by upper value can adequately detect profusion of coincidences induced
by injection models (see Experiments F and G) or Hawkes models (see Experiments
H and I). GAUE tests by lower value can on the contrary detect lack of coincidences,
simulated by inhibitory Hawkes processes (see Experiments J and K). Note moreover
that symmetric GAUE tests can detect both situations. The same conclusions are true
for both UE methods, the power being of the same order as the GAUE tests except for
the injection case with low. (Experiments F with = 0:02andM = 100) where

GAUE is clearly better.

As a partial conclusion, the Gaussian approximation of Theorem 1 needs to be mod-
i ed to take into account the plug-in effect. Once this modi cation is done (see The-
orem 2) the Gaussian approximation leads to tests that are shown to be of asymptotic
level . Our simulation study has shown (see Figure 6) that MTGAUE type | error is
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Figure 6: Percentage of rejections of the independence hypothesis over 5000 numerical
experiments on a window = [0; T] of lengthO:1s, tests being built with = 0:05.

For UE, (asymmetric count), data fo¥, have been simulated on the corresponding
enlarged windowV =[ ;T + ]. Forthe experiments undely, the horizontal line
corresponds to the expected |eQ&£l5. Experiments A and B correspond to independent
homogeneous Poisson processes with respectively , = 3Hzand ; = , =
30Hz. Experiments C correspond to independent inhomogeneous Poisson processes
with -DHQDM_J\ “_.Q“v = NAG =15 lico + AwOO t+ “_.mv low +45 1ot .
Experiments D and E correspond to Hawkes processes with , = 30Hz and with
—.QMUQOﬁZQ_V\jE 1= _JM_ 2 = 10 H_.Ho“o“omu m.SQSH_ 1= _:_M_ 2 = 30 H_.Ho“o_owf the
other interaction functions being null. Experiments F and G correspond to injection
models with resolutiom = 10 4s, ; = , = 30Hz, x = 200 and respectively. = 5
and . = 10. Experiments H, I, J and K correspond to Hawkes processes with

» = 30Hz and only one non zero interaction function given by respectikigly, =

10 1002, h2r 1 =30 o0z D2 1= 10 1oz andhy 1= 30 1002
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of order5% even for small ring rates and that those tests seem robust to variations
in the model (non stationarity, refractory periods). Moreover symmetric GAUE tests
are able to detect both profusion and lack of coincidences. Except for very small ring
rates where its level is not controlled, the original UE method \#hares the same
properties, whereas the level of Uis not controlled in any cases except for the test by
upper values.

3.2 Multiple tests and false discovery rate

Classical UE analysis (@n, 1996; Gan et al., 1999) is performed on several windows,

so that dependence regions can be detected through time. We want to produce the same
kind of analysis with GAUE. However, since a test is by essence a random answer, it is
not true that the control of one test at levehutomatically induces a controlled number

of false rejections.

Indeed, let us consider a collectidv of possibly overlapping windowgV, with
cardinalityK and, to illustrate the problem, let us assume that we observe two indepen-
dent homogeneous Poisson processes. Now let us perform any of the previous GAUE
tests at level on each of the previous windows. Then by linearity of the expectation,
one has that

E(number of rejections= K P(one testrejec}sd v K- (29)

Moreover, ifL is the maximal number of disjoint windows W, then the probability
that theK tests accept the independence hypothesis is upper bounded by

P(theL tests accept= P(one testaccepts! v (L )-! Ln 0,  (30)

by independence of the test statistics between disjoint windows. This means that for
largeM , this procedure is doomed to reject in aver&ge tests and the procedure will
reject at least one test, whéngrows. Consequently, one cannot apply multiple tests
procedure without correcting them for multiplicity. Ventura also underlined the problem
of the multiplicity of the tests, and proposed a procedure which is not as general as the
one described here (Ventura, 2010).

Multiple testing correction: a Benjamini and Hochberg approach

Let us denote , the test considered on the wind&.

One way to control multiple testing procedure based on ties, is to control the
so calledfamilywise error ratg FWER) (Hochberg & Tamhame, 1987), which consists
in controlling

FWER = P(9W 2 W;  wrongly reject$: (32)
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This can be easily done by Bonferroni bounds:

X
P(OW 2 W ;  wrongly reject} P( w wronglyrejecty! yin K
W 2w

(32)
So Bonferroni's method (Holm, 1979) consists in applying thg tests at level=K
instead of to guarantee a FWER less thanHowever, the smaller the type | error, the
more dif cult it is to make a rejection. Usually, the rejected tests are calitdctions
(or discoveries So whenK is large, Bonferroni's procedure potentially leads to no
discovery/detection at all, even in cases where dependent structures exist.

Another notion, popularized by (Benjamini & Hochberg, 1995) has consequently been
introduced in the multiple testing areas leading to a large amount of publications in
statistics, genomics, medicine etc in the past ten years (Benjamini, 2010). This is the
false discovery rat¢FDR). Actually, a false discovery (also named false detection) is
not that bad if the ratio of the number of false discoveries divided by the total number
of discoveries is small.

More formally, let us use the notation given in Table 1.

Number ofW such that w accepts w rejects Total

Independence oW Tng =" number of Fg4 ="number of K o ="number of windows
correct non discoveries”|  false discoveries” where independence is satis ed]

Dependence oW Fng ="number of T4 ="number of K 1 ="number of windows
false discoveries” correct discoveries” where dependence exists”

Total K R R = "discoveries” K

Table 1: Repartition of the answers for the multiple testing procedure.

Then thefalse discovery ratés de ned by

F
FDR= E E"lmo : (33)

Note that when both spike trains are independent for all windsws; 0, which leads

to Tq = 0 andF4 = R. Hence, the FDR in the full independent case is also a control of
P(OW 2 W ;  wrongly rejecty, i.e. the FWER. In all other casdsDR  FWER.

This means that when there are sowiefor which the independence assumption does
not hold, controlling the FDR is less stringent, whereas the relative con dence that we
can have in the discoveries is still good: if we make 100 discoveries with a FBRbof

this means that on average o®lpf those discoveries will be potentially wrong.
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The question now is: how to guarantee a small FDR? To do so, Benjamini and Hochberg
(Benjamini & Hochberg, 1995) proposed the following procedure: for each tgst
the corresponding p-valu®, is computed. They are next ordered such that:

@ @) (K) .
POy POy POk (34)

Letg 2 [0; 1] be a xed upper bound that we desire on the FDR and de ne:

k = maxf’ such thaP\f\;)(\) ‘g=Kg: (35)

Then the discoveries of this BH-method are given by the windi$); :::; W (k) cor-
responding to th& smallest p-values.
The theoretical result of (Benjamini & Hochberg, 1995) can be translated in our frame-
work as follows: if the p-values are uniformly and independently distributed under the
null hypothesis, then the procedure guarantees a FDR less.than

Now let us nish to describe our method nameld GAUE for multiple tests based
on a Gaussian approximation of the Unitary Events, which is based on symmetric tests

to be able to detect both profusion and lack of coincidences.
' $

De nition 5: MTGAUE
- For eachW in the collectionW of possible overlapping windows, compute the
p-value of the symmetric GAUE test (see De nition 3).
- For a xed parameteq, which controls the FDR, order the p-values according to
(34) and ndk satisfying (35).

- Return as set of detections, tkewindows corresponding to thie smallest p-
values.

The corresponding program Riis available at

& math.unice.fr/ malot/liste-MTGAUE.html %

Note that in our case, the assumptions required in the approach of Benjamini-
Hochberg are not satis ed. Indeed, the tes¥,,- are only asymptotically of type
| error , which is equivalent to the fact that asymptotically and not for »dd the
p-values are uniformly distributed. Therefore, there is a gap between theory and what
we have in practice. However, as we illustrate hereafter in simulations, this difference
does not seem to signi cantly impact the FDR.
Moreover, to have independent p-values we should have considered disjoint windows
W. However, it is possible that we miss some detections because the dependence region
is small and straddles two disjoint windows. Therefore, it is preferable to consider slid-
ing windows that overlap. In theory, few results exist in this context - see for instance
(Benjamini & Yekutieli, 2001). In practice, we will see in the next section that this lack
of independence does not impact the FDR as well.
Finally note that when the FDR parametggrows, there are more and more detections.
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Hence if a window is detected foy= , it is detected for alf . Therefore there
is a monotony of the set of detected windows as a functiay iof terms of inclusion.

Simulation study

On Figure 7, we see an example of detection by both methods: MTGAUE and UE with
symmetric tests. Note that UE is here performed without corrections due to the multi-
plicity of the tests as in (@m et al., 1999) and therefore its parameter,ig/hich should
re ect the level of each individual test. MTGAUE clearly detects relevant regions and
very few false positives and this even for large delaysith a clear continuity in :
once a region has been detected for a smatlremains generally detected for a larger

, until the number of imposed coincidences is diluted becausemuch too large.
Therefore there is usually an interval of possiblround the actual maximal true inter-
action (herdd:02s, whatever the model, injection or Hawkes) where the same window
is detected. Note also that profusion of coincidences in Hawkes model (Experiments
G) or in the injection model (Experiments |) are usually detected and that the detected
regions correspond to positive values for the difference my. Reciprocally nega-
tive interactions in Hawkes model (Experiments K), i.e. lack of coincidences, are also
detected and correspond to negative values of g, since they appear on Figure 7
but not in the positive detections part. Both UE methods have a much larger number of
false discoveries except when considering the positive detections of UE

Figure 8 gives the FDR and the false non-discovery rate. Clearly MTGAUE ensures

a FDR less than 5% as expected by the choice of the parametd):05 and this, in
all simulations. Moreover the proportion of false non discoveries is relatively small
(less than 30%) and clearly decreases whkeand increase. Note also than even if
the trials are not i.i.d. (Case L), the method still guarantees a controlled FDR and a
reasonable amount of false negative. Both UE methods have a large FDR except the
UEs method with tests by upper values and the, Wiethod by lower values.

4 Real data study

MTGAUE being validated on simulated data, the method is now applied on real data,
that have already been partially published. This study is an illustration which shows
that MTGAUE is able to detect phenomenons in line with the time of the experiment.
Furthermore some novel aspects are revealed thanks to this method, completing the
existing results on those data.
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Figure 7: Detections with symmetric tests of MTGAUE wiflr 0:05and of both UE

and UE, methods with = 0:05, on one run wittM = 20. The positive detections of
MTGAUE or UE; correspond to the detections for whioh> g for MTGAUE, or
detections for whichm > rhg for UE (see De nition 4). 1900 single tests have been
performed on 1900 overlapping (sliding) windows of length 0.1s shifted by 0.001s.
The corresponding detections are marked by a point at the center of the windows. Each
line corresponds to a different delay: 40 different delayfsom 0.001s to 0.04s are
considered. Each time, two homogeneous independent Poisson processes are simulated
on [0;0:5] [ [0:7;1:5] [ [1:6;2]s with ring rates ; = , = 30Hz. On[0:5;0:7]s

and[1:5; 1:6]s two dependent processes are simulated. Those dependent processes are
simulated according to Experiments G, | or K (see Figure 6). The black vertical lines
delimit the regions where the tests should detect a dependence, that is each time the
window W intersects a dependence region.
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Figure 8: Average over 5000 runs of the rafig=R (see Table 1) giving the false dis-
covery rate and of the ratib,g=(K R) giving the false non-discovery rate. Each
time, in the three rst columns (G, I, K), two homogeneous independent Poisson pro-
cesses are simulated iy 0:5][ [0:7; 1:5][ [1:6;2]s with ring rates ; = , = 30Hz.
On[0:5; 0:7]s and[1:5; 1:6]s two dependent processes are simulated. Those dependent
processes are simulated according to Experiments G, | or K (see Figure 6). In the fourth
column (L), 50% of the trials are simulated as for column |, 25% trials are similar to
column | except that the dependence regions are slightly modi ed (0, 0:75}s
and[1:45; 1:6]s), 25% of the trials are pure independent Poisson processes with inten-
sity ; = , = 30Hz. A windowW is declared a false discovery (respectively false
non discovery) if it is detected whereas it does not interi@6t5][ [0:7; 1.5][ [1:6; 2]s
(respectively it is not detected whereas it does inter€e6t5][ [0:7; 1:5][ [1:6; 2]s).

The horizontal line refers to the expected rate of 5% for the false discovery rate (FDR).
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4.1 Description of the data

Behavioral procedure The data used in this theoretical article to test the detection
ability of the MTGAUE method were already partially published in previous experi-
mental studies (Riehle et al., 2000; Grammont & Riehle, 2003; Riehle et al., 2006).
These data were collected on a 5-year-old male Rhesus monkey who was trained to per-
form a delayed multidirectional pointing task. The animal sat in a primate chair in front
of a vertical panel on which seven touch-sensitive light-emitting diodes were mounted,
one in the center and six placed equidistantly (60 degrees apart) on a circle around it.
The monkey had to initiate a trial by touching and then holding with the left hand the
central target. After a x delay of 500ms, the preparatory signal (PS) was presented by
illuminating one of the six peripheral targets in green. After a delay of either 600ms
or 1200ms, selected at random with various probability, it turned red, serving as the
response signal and pointing target. During the rst part of the delay, the probability
Presp fOr the response signal to occur at (500+600)ms =1.1s was either 0.3, 0.5 or 0.7,
depending on the experimental condition. Once this moment passed without signal oc-
currence, the conditional probability for the signal to occur at (500+600+600)ms =1.7s
changed to 1. The monkey was rewarded by a drop of juice after each correct trial. Re-
action time (RT) was de ned as the release of the central target. Movement time (MT)
was de ned as the touching of the correct peripheral target.

Recording technique Signals recorded from up to seven microelectrodes (quartz in-
sulated platinum-tungsten electrodes, impedance: 2-%#1000Hz) were ampli ed

and band-pass Itered from 300Hz to 10kHz. Using a window discriminator, spikes
from only one single neuron per electrode were then isolated. Neuronal data along with
behavioral events (occurrences of signals and performance of the animal) were stored
on a PC for off-line analysis with a time resolution of 10kHz.

In the following study, only trials where the response signal occurs at 1.7s are consid-
ered. Wherpes, = 0:3 (respectively 0.5 or 0.7), the corresponding data are called
Data30(respectivelyData50andData70. There are respectively 43, 34 and 27 pairs
of neurons that have been registered in respectbalp3Q Data50andData7Q

Assuming that the synchrony only depends on the time of signal occurrences and not
of the movement directions, we test for the independence of neuron pairs in a pooled
fashion over all direction of movement, as already done in the previous study but in
a different way (Grammont & Riehle, 2003). Note that a study with respect to the
movement directions could also have been done if data with less than 20 trials per
direction were discarded, but th&ata70would have almost completely disappeared.
Note also that small heterogeneity in the data as shown with Case L of Figure 8 does
not really affect the method. Moreover, we did not discard pairs of neurons whose ring
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rate is smaller than 7Hz (Roy et al., 2000), as done by Riehle et al. (2000) or Grammont
& Riehle (2003) because even in this case the MTGAUE detections can be trusted (see
Figure 6).

4.2 Symmetric detections

Before making the analysis of the whole three data sets, let us focus on some examples
to underline the main difference between MTGAUE and both UE methods. MTGAUE
(see De nition 5) has been applied on the activity of two pairs of neurons (pairs 13
and 40 ofData30), recorded during the experiment described in Section 4.1, for var-
ilous choices for the FDR control parametger Both multiple shift UE methods with
symmetric tests and with parameter= 0:05 have also been applied. The results are
displayed in Figure 9.

The black points correspond to MTGAUE detections wat= 0:01 and conse-
guently at the most 1% of those detections are false discoveries in average. Those are
the safest detections. Because of the monotonicity in termstbé classical detections
with g = 0:05 correspond to the union of black and magenta points. At the opposite,
yellow circles correspond to untrusted detections since they are detected only for a FDR
control parameteg strictly larger than 80%. In this respect, on Figure 9, several periods
are detected by MTGAUE which correlate with the occurrence of speci c events of the
behavorial protocol (see also Figure 12 in this respect). Interestingly, there is no real
gain by looking at the detections fgr= 0:05. Most of them are already detected for
g = 0:01for larger and therefore, these detections are really signi cant. Both UE
methods with symmetric tests and with= 0:05 detect several intervals correspond-
ing toq > 0:8 and therefore, those are untrusted (yellow) detections for the MTGAUE
method.

4.3 Is the count signi cantly too low or too large ?

For single tests, the detection ofY™ at level = 0:05is just the detection of both

tests * and at level = 0:025and this for both UE and GAUE methods (see

De nitions 3 and 4). When dealing with a collection of tests, this result is still valid for
the UE method which does not correct for multiplicity. However, it is not valid anymore
for MTGAUE (see De nition 5) since this method is based on the rank of all the p-
values of all the symmetric tests. Indeed the set of considered p-values corresponds to a
set of test statistics whose positive and negative values are mixed and whose rank only
corresponds to their absolute value. The result of Benjamini and Hochberg procedure
is consequently intertwining positive and negative detections (i.e. detections for which
m > My orm < ). Since the interest lies in both distinct detections (upper and
lower values) on the experimental data, it is meaningless to independently perform tests
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Figure 9: Representation of the detections of the three methods (MTGAUE UHE)

as a function of the FDR control parametpsf the MTGAUE method, performed over
sliding windows of length 0.1s shifted by 0.001s on pairs 13 and 4Dab&3Q Each

line corresponds to a different value ofrom 0.001s to 0.04s. Each window is associ-
ated to a colored point at the center of the window, whose color depends on the value
of the parameteg in the MTGAUE method for which this window is detected. For the
UEs and UE, methods, the colored point exists if and only if the corresponding window
was detected by the method with symmetric tests at the lewe0 :05. For MTGAUE,

all the colored points, i.e. all the windows, are represented. The rst black vertical bar
corresponds to the preparatory signal (PS), the blue vertical bar to the expected signal
(ES), the second black vertical bar to the response signal (RS). The rst hatched box
corresponds to the interval [mean reaction time (RT) minus its standard deviation, mean
reaction time (RT) plus its standard deviation], the second hatched box corresponds to
the same thing but for the movement time (MT).
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