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The Unitary Events (UE) method is one of the most popular and ef�cient methods

used this last decade to detect patterns of coincident joint spike activity among

simultaneously recorded neurons. The detection of coincidences is usually based

on binned coincidence count (Gr̈un, 1996), which is known to be subject to loss in

synchrony detection (Gr̈un et al., 1999). This defect has been corrected by the mul-

tiple shift coincidence count (Gr̈un et al., 1999). The statistical properties of this

count have not been further investigated until the present work, the formula being

more dif�cult to deal with than the original binned count. First of all, we propose
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a new notion of coincidence count, the delayed coincidence count which is equal to

the multiple shift coincidence count when discretized point processes are involved

as models for the spike trains. Moreover, it generalizes this notion to non dis-

cretized point processes, allowing us to propose a new Gaussian approximation of

the count. Since unknown parameters are involved in the approximation, we per-

form a plug-in step, where unknown parameters are replaced by estimated ones,

leading to a modi�cation of the approximating distribution. Finally the method

takes the multiplicity of the tests into account via a Benjamini and Hochberg ap-

proach (Benjamini & Hochberg, 1995), to guarantee a prescribed control of the

false discovery rate. We compare our new method, called MTGAUE for multi-

ple tests based on a Gaussian approximation of the Unitary Events, and the UE

method proposed in (Gr̈un et al., 1999) over various simulations, showing that

MTGAUE extends the validity of the previous method. In particular, MTGAUE

is able to detect both profusion and lack of coincidences with respect to the in-

dependence case and is robust to changes in the underlying model. Furthermore

MTGAUE is applied on real data.

1 Introduction

The study of how neural networks transmit activity in the brain and somehow code

information implies to consider various aspects of spike activity. Historically, �ring

rates have been �rstly considered as the main way for neurons or populations of neurons

to transmit activity, in correlation with some experimental or behavioral events. Such

kinds of correlations have been shown mainly by the use of peristimulus time histogram

(PSTH) (Abeles, 1982; Gerstein & Perkel, 1969; Shinomoto, 2010).

However, beside the role of �ring rate, it has been argued, �rst in theoretical stud-

ies, that the activity of ensemble of neurons may be coordinated in the spatiotemporal

domain (i.e. coordination of the occurrence of spikes between different neurons) to

form neuronal assemblies (Hebb, 1949; Palm, 1990; Sakurai, 1999; Von der Malsburg,

1981). Indeed, such assemblies could be constituted on the basis of speci�c spike tim-

ing, thanks to several mechanisms at the synaptic level (König et al., 1996; Rudolph

& Destexhe, 2003; Softky & Koch, 1993). The required neural circuitry could spon-

taneously emerge with spike-timing-dependent plasticity (Brette, 2012). Such coordi-

nated activity could easily propagate over neural networks (Abeles, 1991; Diesmann

et al., 1999; Goedeke & Diesmann, 2008) and be used as a potential ”code” for the

brain (Singer, 1993, 1999). Moreover simulation studies have shown how synchroniza-

tion emerges and propagates in neural networks, with or without oscillations (Diesmann

et al., 1999; Golomb & Hansel, 2000; Tiesinga & Sejnowski, 2004; Goedeke & Dies-

mann, 2008; Rudolph & Destexhe, 2003).
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In addition to these theoretical considerations, many experimental evidences have

been accumulated, which show that coordination between neurons is indeed taking

place. In particular, it has been shown that the mechanisms of spike generation can

be very precise (Mainen & Sejnowski, 1995) under physiological conditions (Boucsein

et al., 2011; Konishi et al., 1988; Lestienne, 2001; Prescott et al., 2008). Spike synchro-

nization, with or without oscillations, has been shown to be involved in the so-called

binding problem (Engel & Singer, 2001; Singer & Gray, 1995; Singer, 1999; Super

et al., 2003). Spike synchronization has also been studied in relation with �ring rate

(Abeles & Gat, 2001; Eyherabide et al., 2009; Gerstein, 2004; Grammont & Riehle,

1999, 2003; Heinzle et al., 2007; König et al., 1996; Kumar et al., 2010; Lestienne,

1996; Maldonado et al., 2000; Masuda & Aihara, 2007; Riehle et al., 1997; Vaadia

et al., 1995).

Most of these experimental evidences could not have been obtained without the de-

velopment of speci�c descriptive analysis methods of spike-timing over the last decades:

cross-correlogram (Perkel et al., 1967), gravitational clustering (Gerstein & Aertsen,

1985) or joint peristimulus time histogram (JPSTH) (Aertsen et al., 1989). However,

these methods do not necessarily answer to a major criticism that considers that spike

synchronization might just be an epiphenomenon of the variations of the �ring rate.

That is why, in direct line with these methods, Grün and collaborators developed the

Unitary Events (UE) analysis method (Grün, 1996).

The UE method is originally based on a binned coincidence count (see also Section

2.1 for a more precise de�nition). This method has been continuously improved until

today (Gr̈un et al., 2002a,b; Grün, 2009; Gr̈un et al., 2010; G̈utig et al., 2001; Gr̈un

et al., 2003; Pipa & Gr̈un, 2003; Pipa et al., 2003; Louis et al., 2010; Pipa et al., 2013).

It is a popular method which has been used successfully in several experimental studies

(Riehle et al., 1997, 2000; Grammont & Riehle, 1999, 2003; Maldonado et al., 2008;

Kilavik et al., 2009). However, these approaches suffer from several defects due to

the use of binned coincidence count. Indeed, as pointed out in (Grün et al., 1999,

2010), there may be, for instance, a large loss in synchrony detection, coincidences

being discarded when they correspond to two spikes lying in two adjacent distinct bins.

Actually, up to 60% of the coincidences can be lost when the bin length is the typical

delay/jitter between two spikes participating to the same coincidence. Another version

of the UE method has consequently been proposed: the multiple shift coincidence count

(Grün et al., 1999) (see Section 2.1 for precise de�nitions, see also (Pazienti, 2008) for

another development). However, and up to our knowledge, this notion has not been

as well explored as the notion of binned coincidence count. Indeed and as already

pointed out in (Gr̈un et al., 2010), the various shifts can make the coincidence count

more complex than a sum of independent variables, depending on the underlying model.

Therefore the main aim of this article is to complete the study of this notion of mul-
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tiple shift coincidence count and to propose a new method which extends the validity

of the original multiple shift UE method (Grün et al., 1999). To do so, we focus on the

symmetric multiple shift coincidence count, which is much more adapted to the pur-

pose of testing independence between two spike trains on a given window (see Section

2.1 for the distinction between symmetric and asymmetric multiple shift coincidence

count). Then we generalize the notion, that was given for discretized spike trains at a

certain resolution level. The delayed coincidence count de�ned in Section 2.3 is exactly

the same coincidence count for discretized spike trains but this new formula can now

be also applied to non discretized point processes as well. This mathematical notion

allows us to compute the expectation and the variance in the simplest case of Poisson

processes, which approximate Bernoulli processes used in (Grün et al., 1999). There-

fore the Fano's factor can be derived for the symmetric multiple shift / delayed coinci-

dence count, as it has been done for instance in (Pipa et al., 2013) for the more classical

notion of binned coincidence count. This also leads to a Gaussian approximation of the

distribution of the symmetric multiple shift / delayed coincidence count, when Poisson

or Bernoulli processes are involved as models for the spike trains.

However this approximation depends on unknown parameters in practice, namely

the underlying �ring rates. Such problems due to unknown parameters can be bypassed

by several methods, mainly based on surrogate data (see (Louis et al., 2010) for dither-

ing or (Gr̈un, 2009) for a more general review). On the binned coincidence count, there

are two main methods that can be easily statistically interpreted: trial-shuf�ing (Pipa &

Grün, 2003; Pipa et al., 2003), which is a permutation resampling method and condi-

tional distributions (G̈utig et al., 2001). However trial-shuf�ing has in this case clearly

non trivial and speci�c implementation solutions and when working conditionally to the

observed number of spikes (Gütig et al., 2001), the solution is completely linked to the

form of the binned coincidence count and the use of Bernoulli models. Both solutions

are consequently not used here for the symmetric multiple shift/delayed coincidence

count, which is more intricate than classical binned coincidence count. We prefer to

look more carefully at the replacement of the unknown �ring rates by estimated ones, a

step which is known in statistics as a plug-in step. By looking closely at the plug-in pro-

cedure, we show in Section 3.1 that it changes the variance of the asymptotic Gaussian

distribution, and, therefore, we correct the approximation to take this phenomenon into

account. Up to our knowledge, no correction due to the plug-in effect has been taken

into account even for the classical binned coincidence count. The last step (Section

3.2) of our procedure consists in carefully controlling the false discovery rate (FDR),

when several windows of analysis are considered, by using Benjamini and Hochberg

procedure (Benjamini & Hochberg, 1995).

Each time a thorough simulation study shows the actual performance of our proce-

dure. An analysis of real data is also performed in Section 4 on data that have already
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been partially published, so that the detection ability of the method can be demonstrated

in concrete situations. Finally, we discuss the overall improvements due to our proce-

dure with respect to the original method of (Grün et al., 1999) in Section 5.

In all the sequel, we write in italic technical expressions, the �rst time they are en-

countered and we give in the same paragraph their de�nition. We also use the following

notation, that is the one generally used in point process theory (Daley & Vere-Jones,

2003). Apoint processN is a random countable set of points (ofR+ here). Each point

corresponds to the detection time of a spike of the considered neuron by the recording

electrode. For any setA of R+ , N (A) is the number of points inA andN (dt) is the

associated point measure, that isN (dt) =
P

S2 N � S where� S is the Dirac measure at

the pointS. This means that for every functionf ,
R

f (t)N (dt) =
P

S2 N f (S). The

point process corresponding to the spike train of neuronj is denotedN j and whenM

trials are recorded, the point process corresponding to the spike train of neuronj during

trial m is denotedN (m)
j . In all the sequel and whatever the chosen model, we assume

that theM trials are independent and identically distributed (i.i.d.), which means er-

godicity across the trials, except when precisely stated otherwise. We denote byP the

probability measure, byE its corresponding expectation and by Var its corresponding

variance. Also1A denotes the indicator function of the eventA, which takes value 1

whenA is true and0 otherwise. Hence a function � 1A takes value on A and0 on

the complementary eventAc.

Fundamental notions for the present article are given in the following de�nition (see

also (Staude et al., 2010) for this kind of distinction).
'

&

$

%

De�nition 1: Real single unit data are recorded with a certain resolutionh, which

is usually10� 3s or 10� 4s depending on the experiment. Formally time is cut into

intervals of lengthh and of the form[ih � h=2; ih + h=2). Then one associates to

any point process,N , its associated sequence at resolutionh, i.e. a sequence of0

and1, (Hn )n , whereH i = 1 corresponds to the presence of (at least) one point of

N in [ih � h=2; ih + h=2) (see also Figure 1.A). Reciprocally, to a sequence of0

and1, (Hn )n , we associate a point processN by taking the set of all points of the

typeS = ih such thatH i = 1. Such point process that is forced to have only points

of the typeih , for some integeri , is calleddiscretized at resolutionh.

2 Probabilistic study of the coincidence count

2.1 The multiple shift coincidence count

A pair of neurons being recorded, the question is how to properly de�ne a coincidence

and more precisely, the coincidence count. Usually those counts are computed over

5



several windows of time. We focus in this section on only one windowW of length

T, keeping in mind that this small window is strictly included in a much larger record-

ing. Because processes can be discretized, and to avoid tedious indexations, it is easier

to think thatW corresponds to indicesi = 1; :::; n with T = nh (see Figure 1.A).

However, the reader has to keep in mind that there are points outside this window, cor-

responding to indicesi that can be non positive or larger thann.

In classical UE methods, both spike trains are usually represented by sequences of

0 and1 of lengthr = T=(d � h), for some integerd � 1 (Grün, 1996; Gr̈un et al.,

2010). The presence of1 at positioni indicates that there is at least one spike in the

i th segment of lengthd � h. The segments of lengthd � h are usually calledbins

and are centred around points of the typeid � h. The previous construction means

that the real data have beenbinnedat a coarser level (namelyd � h) than their original

resolutionh. We denote byD 1
1; :::; D1

r and byD 2
1; :::; D2

r , the associated sequence to the

�rst and second neuron respectively. According to this bin construction, a coincidence

at timeC = id � h happens ifD 1
i = D 2

i = 1. The coincidence count, in this binning

framework, is then the number ofi 's such thatD 1
i = D 2

i = 1. The problem, underlined

in (Grün et al., 1999), is that for reasonabled (typically d � h = 0:005s), a signi�cant

number of spikes that are at distance less thand � h are not counted if they fall in two

adjacent and distinct bins: the binning effect generates a signi�cative loss in synchrony

detection.

The multiple shift method, introduced in (Grün et al., 1999), uses a notion of coin-

cidence count that corrects this loss in synchrony detection by shifting one spike train

(N2) with respect to another spike train (N1), which is �xed, by step of sizeh, both

spike trains being kept at their original resolution levelh. There are two ways of de�n-

ing the multiple shift coincidence count depending on whether data outside the window

of interest,W, may enter or not when the spike trainN2 is shifted as one can see on

Figure 1.B.

In thesymmetric multiple shift coincidence count, both spike trains,N1 andN2, are

observed on a windowW and data outsideW are discarded. Those spike trains are

discretized at resolutionh and are consequently considered as a sequence of0 and1,

denotedH 1
1 ; :::; H 1

n andH 2
1 ; :::; H 2

n respectively in the sequel. Then a(near) coincidence

is observed at timeih on the windowW, if there exists a shiftj , integer inf� d; :::; dg,

such thatH 1
i = H 2

i + j = 1. Note that this de�nition implies in particular that such aj

should also satisfy that

1 � i + j � n (1)

since the recordings outside the windowW of interest are discarded. Thesymmetric

multiple shift coincidence countis then de�ned by the total number of (near) coinci-
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A: Discretization of a spike train

time

Window W

h/2 nh+h/2h/2-dh nh+h/2+dh

Window Wd

x x x x xx x x x x

x = spike

Non discretized spike train N

Associated sequence 
       of N on W

1 1 00 1 0

Associated sequence
      of N on Wd

1 1 1 0 1 0 1 0 1 0

B: Multiple Shift coincidence count (d=2)

Symmetric Asymmetric

N1 on W

N2 on W

Shift of N2

j=0

j=1

j=-1

j=2

j=-2

N1 on W

N2 on Wd

1 0 1 0 1 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0 1

1

1

1

1 1

1

1

1

1

1 0

1 0

1 0

1 0

1 0

C: Interpretation in term of delay

Symmetric Asymmetric

1 0 1 0 1 0

1 1 0 0 0 0

1 0 1 0 1 0

1 11 0 0 0 0 0 1 1

4 coincidences 6 coincidences

N1 on W

N2 on W N2 on Wd

N1 on W

Figure 1: Discretization and multiple shift coincidence count. InA, illustration of the

discretization of a spike train on the windowW and on the enlarged windowWd. In B,

illustration of both symmetric and asymmetric multiple shift coincidence counts. InC,

interpretation of those notions in term of delay: an edge corresponds to a couple(i; k ),

wherei (resp. k) is the position of a1 in the �rst (resp. second) spike train, and for

which the delayji � kj is less thand. The number of coincidences is then the number

of edges. In grey are represented data that are outsideW but insideWd and that are

therefore taken into account in the asymmetric notion but not in the symmetric one.
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dences on the windowW, i.e. formally speaking

X =
nX

i =1

X

j= jj j� d and1� i + j � n

1H 1
i = H 2

i + j =1 : (2)

Takingk = i + j in the previous sum, we obtain

X =
nX

i =1

nX

k=1

1jk� i j� d1H 1
i =1 1H 2

k =1 : (3)

Hence, it can be also understood as the total number of couples(i; k ) such thatH 1
i =

H 2
k = 1, such that the delayjk � i j � d and such that bothi andk belong tof 1; :::; ng.

Both i andk correspond to a spike in the window of interestW: this present notion is

therefore symmetric in the �rst and second spike trains (see Figure 1.C).

If condition (1) is not ful�lled and if j is free, then when the shift is performed, data

outside ofW ”enter” and interact with data insideW (see Figure 1.B). This leads to the

asymmetric multiple shift coincidence count, formally de�ned as follows

X a =
nX

i =1

X

j= jj j� d

1H 1
i = H 2

i + j =1 : (4)

Takingk = i + j in the previous sum, we obtain this time

X a =
nX

i =1

X

k2 Z

1jk� i j� d1H 1
i =1 1H 2

k =1 =
nX

i =1

n+ dX

k=1 � d

1jk� i j� d1H 1
i =1 1H 2

k =1 : (5)

Hence, it can be also understood as the total number of couples(i; k ) such thatH 1
i =

H 2
k = 1, such that the delayjk � i j � d, such thati (in f 1; :::; ng) corresponds to a spike

of N1 in W and such thatk (in f 1 � d; :::; n + dg) corresponds to a spike ofN2 in the

enlarged windowWd = f y = x + u; x 2 W; u 2 [� dh; dh]g. Note that withh = 10� 3s,

it is quite usual to haven = 100 and up tod = 20. Hence, in the asymmetric notion,

one sequence can be 40% larger than the other one.

In the original Matlab code of (Grün et al., 1999), coincidences, i.e. couples(i; k )

such thatjk � i j � d, were identi�ed at �rst and indexed by their position on the �rst

spike train,N1. Therefore when focusing on a given windowW, all the coincidences

(i; k ) for which i corresponds to a spike of the �rst spike trainN1 in W were counted,

whatever the value ofk. This is exactly the asymmetric multiple shift coincidence

count.

However, on the one hand, all coincidence counts are classically used to detect

dependence. They are compared to the distribution expected under the independence

hypothesis. Since the UE method aims at locally detecting the dependence, the inde-

pendence hypothesis is a local one, which depends on the underlyingW, and which
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is classically understood asH0: ”N1 and N2 are independent on the window of in-

terestW”. But using an asymmetric test statistic (as the asymmetric multiple shift

coincidence count) for testing a symmetric notion (namely the independence) can lead

to different detections with the same data set, depending on which spike train is re-

ferred asN1 (see also Figure 11 for a concrete example on real data for the original UE

method). Therefore the symmetric notion leading to symmetric answers to the question

of whether the two spike trains are independent or not, seems the more natural.

On the other hand, one faces the problem of understanding the distribution under

the independence hypothesis. Usually, models of independence consequently need to

be imposed and in many articles on the UE method (in particular in (Grün et al., 1999)),

the spike trains are modelled by independent Bernoulli processes. More precisely, the

H j
i are assumed to be independent and identically distributed Bernoulli variables with

parameterpj = � j h, where� j is the �ring rate of the neuronj . Based on the fact that

Uik = 1H 1
i =1 1H 2

k =1 is also a Bernoulli variable of parameterp1p2, and that for eachi

there are2d + 1 correspondingUik in the sum of (5), it is easy to prove that

mg = � 1� 2h2n(2d + 1) ; (6)

is the expectation of the asymmetric multiple shift coincidence count,X a (see (5)). This

is the main quantity used in (Grün et al., 1999) to understand the distribution under

the independence assumption (see (15) in (Grün et al., 1999)). The problem is more

complex for the symmetric multiple shift coincidence count. The main problem with

such a derivation for the symmetric notion is that wheni is close to1 or n one cannot

always �nd (2d + 1) indicesk such thatjk � i j � d andk 2 f 1; :::; ng. There could be

much less. This edge effect is negligible for smalld but becomes more critical whend

is large. Because we consider that the symmetric notion is the most relevant one, one

of our �rst aim is to take this edge effect into account and we want to propose a correct

formula forX too.

Note also that when deriving (6) for the asymmetric notionX a, we have been forced

to implicitly assume more thanH0: ”N1 andN2 are independent on the window of

interestW”, because the indexk may correspond to points in the enlarged windowWd

that are not in the window of interestW. In fact, we have assumed thatH 0
0: ”N1 onW is

independent onN2 on Wd”. This is actually this last asymmetric hypothesisH 0
0 which

is natural when considering the asymmetric multiple shift coincidence count, and not

the symmetric hypothesisH0. However, if one rephrases the independence hypothesis

asH 0
0, two different sets of windows need to be considered: one set of classical windows

for N1 and one set of enlarged windows forN2. This is not reasonable either, since again

conclusions of the UE detection method can be different when exchanging the role of

N1 andN2 (see also Figure 11).

Finally, in (Gr̈un et al., 1999), the distribution of multiple shift coincidence count
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is approximated by a Poisson distribution, as it is classically done for binned coinci-

dence count, set-up where the Poisson distribution is viewed as the approximation of

a Binomial distribution. However, if it is true that the present coincidence count is a

sum of Bernoulli variables, these variables are not independent because the variableH j
i

may participate in more than one coincidence, as already noted in (Grün et al., 2010).

Therefore the present multiple shift coincidence count is not a Binomial variable when

Bernoulli processes are considered. This fact makes the behavior of this precise multi-

ple shift coincidence count different from other classical notions of coincidence count

based on binning. Therefore the present work proposes a limit distribution for the coin-

cidence count that takes this dependency into account, so that the approximation is valid

for a larger set of parameters than the Poisson approximation done in (Grün et al., 1999).

If it is quite dif�cult to directly do so for Bernoulli processes, this probabilistic result

can be easily derived if we approximate Bernoulli processes by Poisson processes.

2.2 Bernoulli and Poisson processes

Recall thatBernoulli processesare generated as follows. For a windowW of length

T, at the resolutionh, n = T=h independent Bernoulli variables,B i , with parameter

p = �h are simulated, where� is the �ring rate of the considered neuron. The associated

point process (see De�nition 1) is denotedNB in the sequel.

It is well known that whenh tends to 0, then the Bernoulli process tends to a Poisson

process. This can for instance be seen because the number of points,NB (W), is a

binomial variable that tends in distribution towards a Poisson variable with parameter

�T whenh tends to0. In particular the approximation is valid as soon asn � 100

andp � 0:1, (Hogg & Tanis, 2009, p. 159). Since, by construction, for any disjoint

setsA1; :::; Ak , NB (A1); :::; NB (Ak) are independent variables, we recover the classical

de�nition of a homogeneous Poisson processof intensity� (see (Daley & Vere-Jones,

2003) for a precise de�nition). Note that Poisson processes are not discretized at any

resolution level, whereas Bernoulli processes are (see De�nition 1).

More precisely, in our set-up, windows of length0:1s are classically considered,

with �ring rates less than100Hz and with resolutionh = 10� 3s orh = 10� 4s. We are

consequently typically in a case where the Poisson approximation is valid. In (Reynaud-

Bouret et al., 2013), several classical tests, originally due to (Ogata, 1988), have been

used to test whether a point process is a homogeneous Poisson process or not and we

refer the reader to this article for detailed explanations on the procedures. In Figure 2,
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we run those tests on a simulated Bernoulli process. The p-values2 are large, meaning

that the various tests accept the Poisson assumption (see also (Ventura, 2010) for precise

de�nitions of tests and p-values). Moreover the repartitions of the p-values are close to

the diagonal meaning that the distributions of the various statistics (positions, numbers

of spikes or delays between spikes) are the ones given by a classical Poisson process,

and they become closer to the diagonal whenh decreases.

Hence, Bernoulli processes can be well approximated by Poisson processes on the

typical set of parameters used in neuroscience and they are even almost statistically

indistinguishable from Poisson processes, at the resolutionh = 10� 4s.

2.3 The delayed coincidence count

Let us focus now on the symmetric notion, at least in a �rst approach. If we want to use

Poisson processes instead of Bernoulli processes to perform the computations, we need

to rewrite the symmetric multiple shift coincidence count in terms of point processes

that are not necessarily discretized at the resolution levelh (see De�nition 1). To turn

(3) into a more generic formula valid for any point process, let us remark the following

phenomenon. Fixi � k and �x somex = ih as point ofN1. If N2 is not discretized

and if we consider its associated sequence(H 2
1 ; :::; H 2

n ) at resolutionh (see De�nition

1), then a pointy of N2 that corresponds to ak such thatjk � i j � d, could be as far as

d � h + h=2 and still counted as a near coincidence. In particular, whend = 0, y is in

the segment of centerx with lengthh if and only if jy � xj � h=2. Therefore, let

� = d � h + h=2: (7)

The delayed coincidence count, generalizing the notion of symmetric multiple shift

coincidence count for general point process, can be written as follows.
'

&

$

%

De�nition 2: The delayed coincidence count with delay� on the windowW is

given by

X =
Z

W 2
1jx � yj� � N1(dx)N2(dy): (8)

WhenN1 andN2 are discretized with resolutionh, both Equations (3) and (8) coin-

cide and both coincidence counts are exactly the same.

2A p-value is the random value of� for which a test of level� passes from ”accept” to ”reject”. Note
that usually when� = 0 , the test always accepts, whereas it always rejects when� = 1 : therefore there
is a limit value which depends on the observations for which one passes from one decision to another
one. If the test is of type I error exactly� for all � , then one can prove that the corresponding p-value is
uniformly distributed on[0; 1] underH0. Therefore their value as position of their normalized rank over
an i.i.d. sample should be close to the diagonal of the square.
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D: Exponentiality test on 10s

Figure 2: Poisson approximation of the Bernoulli process. 2000 p-values for the fol-

lowing tests are displayed as function of their rank divided by 2000, the diagonal is also

represented. Two Bernoulli processes are simulated with� = 30Hz andh = 10� 3s or

10� 4s. InA, for each simulation, Kolmogorov-Smirnov uniformity test is performed on

a Bernoulli process simulated on a windowW = [ h=2; T + h=2] of lengthT = 2s. The

test statistic issupx2 W jF̂ (x) � (x � h=2)=Tj whereF̂ (x) is the empirical cumulative

distribution function of the points of the considered process. If the test statistic is larger

than the1� � quantile of the tabulated Kolmogorov-Smirnov distribution, then the uni-

formity hypothesis is rejected. InB, Kolmogorov-Smirnov uniformity test is performed

on the aggregated process over 40 simulated trials (i.e. the considered point process is

the union of 40 i.i.d. Bernoulli processes simulated onW with T = 0:1s). In C, the

chi-square Poisson test over 40 trials is performed on the total number of points per

trials for Bernoulli point processes simulated onW with T = 0:1s. InD, exponentiality

Test 1 (Reynaud-Bouret et al., 2013) of the delays (ISI) between points of a Bernoulli

process onW with T = 10s is performed. See Test 1 of (Reynaud-Bouret et al., 2013)

for more insight, here used with subsample size given by ”(total number of delays)2=3”.
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If the symmetric case is the most relevant one in our framework and if the delayed

coincidence count should always be understood as a symmetric quantity in(N1; N2),

note that however the same translation can be done for the asymmetric notion, and one

can also introduce

X a =
Z

W

� Z

W �

1jx � yj� � N2(dy)
�

N1(dx); with W� = f y = x+ u; x 2 W; u 2 [� �; � ]g

(9)

which is clearly not symmetric.

Now let us translate the multiple shift UE method introduced by Grün and her col-

laborators to the general point process framework. Equation (6) can be easily rewritten

as

mg = 2�T � 1� 2; (10)

whereT is the length of the windowW.

In (Grün et al., 1999), the distribution ofX a is approximated by a Poisson distribu-

tion with parametermg. We will see later in Section 3 that assumingX to be Poisson

distributed with parametermg, may also lead in certain cases to a reasonably correct be-

havior of the UE procedure. Therefore in the sequel, we will always study both cases,

the UE symmetric procedure (UEs), whereX is assumed to be Poisson distributed with

parametermg, and the UE asymmetric procedure (UEa), whereX a is assumed to be

Poisson distributed with parametermg.

Our new method focuses on the (symmetric) delayed coincidence countX . For this

count, assuming that bothN1 andN2 are now Poisson processes, one can prove the

following result.

Theorem 1. Let us �x � in (8) such that

0 < 2� < T; (11)

whereT is the length of the windowW. If N1 andN2 are independent homogeneous

Poisson processes with respective intensities� 1 and � 2 on W, then the expectation of

the delayed coincidence countX and its variance are given by

m0 := E(X ) = � 1� 2
�
2�T � � 2

�
(12)

and

� 2 := V ar(X ) = � 1� 2
�
2�T � � 2

�
+

�
� 2

1� 2 + � 1� 2
2

�
�
4� 2T �

10
3

� 3

�
: (13)

Moreover ifM i.i.d. trials are available, then

p
M

�m � m0p
� 2

L�! N (0; 1); (14)
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where �m is the average observed coincidence count with delay� , i.e.

�m =
1

M

MX

m=1

X (m) with X (m) =
Z

W 2
1jx � yj� � N

(m)
1 (dx)N (m)

2 (dy): (15)

The symbol L�! meansconvergence in distribution whenM tends to in�nity. This

means for instance that the quantiles of
p

M=� 2 ( �m � m0) tend to those ofN (0; 1),

whenM becomes larger. The proof is given in the supplementary �le.

This result states �rst thatE(X ) can be computed when both observed point pro-

cesses are independent homogeneous Poisson processes and that the edge effects appear

in m0 via a quadratic term in� which is the difference with respect tomg. Therefore it

needs to be taken into account if one wants to compute delayed coincidence count with

large� . Note that if (11) is not satis�ed, then all the couples(x; y) in W are affected by

this edge effect and in this case, the above formula for the expectation and variance are

not valid anymore.

Note also that the Fano factor3 i.e.

F :=
Var(X )
E(X )

= 1 + 2( � 1 + � 2)� (1 + o(1)); (16)

is strictly larger than 1. The gap between the variableX and a Poisson variable increases

with the �ring rate and with� . Several papers have also considered the Fano factor

for binned coincidence count showing that the distribution may be different from a

Poisson distribution, but up to our knowledge nothing has been done for the multiple

shift coincidence count. In particular, in the recent (Pipa et al., 2013), Fano factors for

renewal processes are computed only in the case of a coincidence count, which is binned

but not clipped. Multiple shift coincidence count and binned clipped coincidence count

are exactly the same when the size of the bin ish for the binned coincidence count and

whend = 0 in (2) or (4) for the multiple shift symmetric or asymmetric coincidence

count. The fact that coincidence counts are clipped or not has almost no effect for

very small resolutionh. Since delayed coincidence count is a generalization of the

symmetric multiple shift coincidence count, it is logical that we recover results of the

same �avour as the ones of (Pipa et al., 2013), in the Poisson case, with� = h=2 (i.e. (7)

with d = 0). Note however that both results are not equivalent since they are not based

on the same notion of coincidence count. Using Poisson processes instead of Bernoulli

processes allows us to produce such results for the generalization of the symmetric

multiple shift coincidence count to the more general not necessarily discretized point

process case.

Note that for the asymmetric notion, one can also show thatE(X a) = mg, when

X a is de�ned by (9). We will see later on simulations thatX a (discretized or not) is

3In the following equation,o(1) denotes a quantity that tends to 0 when� tends to0.
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not Poisson either. Other similar computations would lead to another Gaussian approx-

imation ofX a. However we do not want to perform them and consequently correct the

asymmetric UE procedure in this way. Indeed, as stated before, the asymmetric notion

can lead to very awkward results that depend on which spike train is referred asN1,

when testing the independence hypothesis onW which is a symmetric statement (see

Figure 11 for a practical example). Even if we correct the approximation, those awk-

ward conclusions will remain and are intrinsic to the notion of asymmetric coincidence

count itself.

In addition, let us conclude this section with some simulations to underline the fact

that the present approximation of (14) is not only valid for Poisson processes in theory

but also for Bernoulli processes in practice and also to show that the distributions ofX

or X a are not Poisson in any case.

In Figure 3, the coincidence counts are symmetric. The three distributions, i.e. the

one of the delayed coincidence counts for Poisson processes with� = d � h, the one

with � = d� h+ h=2 and the one of the symmetric multiple shift coincidence counts for

Bernoulli processes with resolutionh are almost indistinguishable. They are all three

very well approximated by the Gaussian approximationN (Mm 0; M� 2) of (14) and the

distinction between� = d� h or � = d� h + h=2 cannot be made whenh = 10� 4s. On

the contrary, all the Poisson distributions either with meanMm g (biased with neglected

edge effects) orMm 0 (unbiased with edge effects taken into account), with� = d � h

or � = d � h + h=2 are not �tting the coincidence count distribution: the variance is

larger than what it is predicted by the Poisson approximation.

In Figure 4, the coincidence counts are asymmetric. It is once again clear that the

asymmetric multiple shift coincidence count on Bernoulli processes is almost indistin-

guishable from its generalization on Poisson processes. It is also clear that they are not

Poisson distributed, in particular for large� , even if mg correctly matches the mean,

the difference being less obvious for small� . Once again there is no real difference in

considering� = d � h or � = d � h + h=2 whenh is small (h = 10� 4s).

As a summary of this section, note consequently that

� Symmetric coincidence count are much more adapted to the purpose of testing an

independence hypothesis betweenN1 andN2 on a �xed windowW, which is a

symmetric statement.

� It is equivalent to simulate Poisson or Bernoulli processes for coincidence counts

(symmetric or not).

� Symmetric multiple shift coincidence counts are distributed as delayed coinci-

dence counts, the latter being just the generalization of the former to the general

point process theory. A similar version exists for the asymmetric case.
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Figure 3: Repartition of the symmetric total coincidence count (i.e. the sum of the co-

incidence counts overM trials). In all the experiments,� = 30Hz, M = 40 trials and

a windowW of lengthT = 0:1s are used. Bernoulli processes have been simulated

with resolutionh. Are plotted histograms over 5000 runs of symmetric multiple shift

coincidence count for Bernoulli processes (see (2)) and of delayed coincidence count

with � = x or � = x + h=2 for Poisson processes (see De�nition 2). Are also plotted

densities of the corresponding Gaussian approximation as well as probability distribu-

tion functions of the corresponding Poisson approximation with meanMm g or Mm 0,

for the different choices of� .

� In either case, the distribution is not Poisson.

� In both cases (Poisson or Bernoulli processes), the Gaussian approximation of

(14) is valid for the symmetric notion, on the classical set of parameters.

� Edge effects need to be taken into account for large� , when dealing with the

symmetric notion of coincidence count.

� Considering� = d � h or � = d � h + h=2 with h = 10� 4s is completely

equivalent.

Therefore, in the sequel, we use delayed coincidence count with� of the typed� h.

Bernoulli processes are replaced by Poisson processes when necessary. When real data
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Figure 4: Repartition of the asymmetric total coincidence count. In all the experiments,

� = 30Hz, M = 40 trials and a windowW of lengthT = 0:1s are used. Bernoulli

processes have been simulated with resolutionh. Are plotted histograms over 5000

runs of asymmetric multiple shift coincidence count (see (4)) for Bernoulli processes

and of X a (see (9)) with� = x or � = x + h=2 for Poisson processes. Are also

plotted probability distribution functions of the corresponding Poisson approximation

with meanMm g, for the different choices of� .

are considered, we use the resolutionh = 10� 4s, which is the machine resolution of the

recorded spike trains.

3 Statistical study of the independence tests

The previous section gives a probability result, namely the Gaussian approximation.

Now let us see how this approximation can be turned into a fully operational statistical

method. There are two main points that need to be taken into account. First, we do

not know the value ofm0 in practice and we therefore need to plug an estimate in:

how does this plug-in affect the distribution? Secondly, we usually consider several

windows, therefore several tests are performed at once: how can one guarantee a small

false discovery rate for all the tests at once?
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3.1 Plug-in and modi�cation of the Gaussian approximation

Equation (14) depends onm0 and� that are unknown. Hence to perform the approx-

imation in practice, we need to replace them by corresponding estimates, based on the

observations. This step is known in statistics as a plug-in step and it is known to some-

times dramatically modify the distribution. One of the most famous example is the

Gaussian distribution which has to be replaced by a Student distribution when the vari-

ance is unknown and estimated by an empirical mean over less than 30 realizations4

(Hogg & Tanis, 2009, Table VI, p 658).

Theoretical study

In the present set-up, as far as asymptotic in the number of trialsM is concerned, the

plug-in of an estimate of� does not change the Gaussian distribution, whereas the plug-

in of an estimate ofm0 changes the variance of the limit, as we can see in the following

result.

Theorem 2. With the same notation as in Theorem 1, let�̂ j be the unbiased estimate of

� j , the �ring rate of neuronj , de�ned by

�̂ j :=
1

MT

MX

m=1

N (m)
j (W): (17)

Let alsom̂0 be an estimate ofm0 de�ned by

m̂0 := �̂ 1�̂ 2[2�T � � 2]: (18)

Then under the assumptions of Theorem 1,
p

M ( �m � m̂0) L�! N (0; v2); (19)

where

v2 := � 1� 2
�
2�T � � 2

�
+ � 1� 2 [� 1 + � 2]

�
2
3

� 3 � T � 1� 4

�
: (20)

Moreoverv2 can be estimated by

v̂2 := �̂ 1�̂ 2
�
2�T � � 2

�
+ �̂ 1�̂ 2

h
�̂ 1 + �̂ 2

i �
2
3

� 3 � T � 1� 4

�
(21)

and p
M

�m � m̂0p
v̂2

L�! N (0; 1): (22)

The proof is given in the supplementary �le.

4More precisely, ifX 1; :::; X n are i.i.d. Gaussian variables with meanm and variance� 2 then
p

n=� 2
P n

i =1 (X i � m) � N (0; 1) whereas
p

n=�̂ 2
P n

i =1 (X i � m) � T(n � 1) where �̂ 2 is the
unbiased estimate of� 2.
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Figure 5: Repartition of the different renormalizations of the various coincidence

counts. Each time 5000 simulations of two independent Poisson processes with

� 1 = � 2 = 30Hz, M = 40 trials, a windowW of lengthT = 0:1s and� = 0:02s

are performed. InA, histograms of
p

M ( �m � m0)=� , of
p

M ( �m � m̂0)=v and of
p

M ( �m � m̂0)=v̂ with �m the average delayed coincidence count. InB, histogram of
p

M ( �m � m̂0)=� and of
p

M ( �m � m̂0)=�̂ with �m the average delayed coincidence

count. InC, histogram of
p

M ( �m � mg)=
p

mg and of
p

M ( �m � m̂g)=
p

m̂g with �m the

average delayed coincidence count. InD, same thing as inC but with �m, the average of

X a (see (9)), the asymmetric coincidence count.

Figure 5 illustrates the impact of the plug-in in the renormalized coincidence count

distribution. When using plug-in, we need to renormalize the count since at each run a

new value for the estimate is drawn. Therefore our reference in Figure 5 is the standard

Gaussian variable. First we see that the Gaussian approximation of (14) is still valid,

but more importantly that the plug-in steps of (19) and (22) are valid on Figure 5.A.

Instead of the new variancev2 and its estimatêv2, we have also plugged̂m0 in with the

original variance,� 2, or a basic estimate of� 2, namely

�̂ 2 = �̂ 1�̂ 2
�
2�T � � 2

�
+

h
�̂ 2

1�̂ 2 + �̂ 1�̂ 2
2

i �
4� 2T �

10
3

� 3

�
: (23)
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The result in Figure 5.B clearly shows that the variance� 2 or the plug-in�̂ 2 are wrong.

Hence the plug-in correction de�nitely needs to be taken into account. Figure 5.C and

Figure 5.D show what happens for the Poisson approximation of (Grün et al., 1999).

More precisely, Poisson variables with parameter� are well approximated byN (�; � ),

as soon as� is large enough. So the variables are accordingly renormalized so that

they can be plotted in the same space as the standard Gaussian variables. The Poisson

approximation with parameterMm g or its estimationM m̂g with

m̂g = 2 �̂ 1�̂ 2�T; (24)

are clearly not satisfactory for the symmetric count (see Figure 5.C), because of a bias

towards the left due to the neglected edge effects. For the asymmetric count (see Fig-

ure 5.D), if the variance is too large when usingmg, the approximation is much more

accurate when replacingmg by m̂g.

The Gaussian approximation of the UE method - denoted GAUE in the following -

given by Theorem 2, leads to three different single tests depending on what needs to be

detected.
'

&

$

%

De�nition 3: The GAUE tests

� the symmetric test� sym
GAUE (� ) of H0: ”N1 andN2 are independent” versus

H1: ”N1 andN2 are dependent”, which rejectsH0 when �m andm̂0 are too

different:

j �m � m̂0j � z1� �= 2

r
v̂2

M
(25)

� theunilateral test by upper value� +
GAUE (� ) which rejectsH0 when �m is too

large:

�m � m̂0 + z1� �

r
v̂2

M
(26)

� theunilateral test by lower value� �
GAUE (� ) which rejectsH0 when �m is too

small:

�m � m̂0 � z1� �

r
v̂2

M
(27)

wherezt is thet-quantile ofN (0; 1), i.e. the real numberzt such that

P(N (0; 1) � zt ) = t;

and where�m is the average delayed coincidence count (see De�nition 2).

By Theorem 2, those three tests are asymptotically of type I error� , if the pro-

cessesN j are homogeneous Poisson processes. It means that under this assumption,

the probability that the test rejects the independence hypothesis, whereas the processes

are independent, tends to� when the number of trialsM tends to in�nity.

20



The original UE multiple shift method of (Grün et al., 1999) can be formalized in

the same way.
'

&

$

%

De�nition 4: The UE tests

� a symmetric test� sym
UE (� ) which rejectsH0 whenM �m � q�= 2 or M �m �

q1� �= 2

� the unilateral test by upper value� +
UE (� ) which rejectsH0 whenM �m �

q1� �

� theunilateral test by lower value� �
UE (� ) which rejectsH0 whenM �m � q�

where qt is the t-quantile of a Poisson variable whose parameter is given by

M m̂g = 2M�T �̂ 1�̂ 2.

Each of the previous tests exists in two versions (UEs or UEa respectively) depend-

ing on whether�m is the average delayed coincidence count (symmetric notion, see

(8)) or the averageX a (asymmetric notion, see (9) ).

Up to our knowledge, no other operational method based on multiple shift coin-

cidence count has been developed. In particular, the distribution free methods such

as trial-shuf�ing methods developped by Pipa and collaborators, which avoid plug-in

problems, are based on binned coincidence count (Pipa & Grün, 2003; Pipa et al., 2003)

and not on multiple shift coincidence count. Plug-in effects can also be avoided in an-

other way, on binned coincidence count, by considering conditional distribution (Gütig

et al., 2001).

Simulation study on one window

The simulation study is consequently restricted to the two previous sort of tests (GAUE

and UE) to focus on this particular notion of delayed/multiple shift coincidence count,

which is drastically different from binned coincidence count.

Simulated processes Several processes have been simulated. The Poisson processes

have already been described in Section 2.2. They constitute a particular case of more

general counting processes, called theHawkes processes, which can be simulated by

thinning algorithms (Daley & Vere-Jones, 2003; Ogata, 1981; Reimer et al., 2012). Af-

ter a brief apparition in (Chornoboy et al., 1988), they have recently been used again

to model spike trains in (Krumin et al., 2010; Pernice et al., 2011, 2012). A bivariate

Hawkes process(N1; N2) is described by its respectiveconditional intensitieswith re-

spect to the past,(� 1(:); � 2(:)) . Informally, the quantity� j (t)dt gives the probability

that a new point onN j appears in[t; t + dt] given the past. We refer the reader to (Brown
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et al., 2002) for a more precise de�nition. General bivariate Hawkes processes are given

for all time t and all indexesi 6= j in f 1; 2g by

� j (t) =
�

� j +
Z

u<t
hj ! j (t � u)N j (du) +

Z

u<t
hi ! j (t � u)N i (du)

�

+

: (28)

The � j 's are real parameters called thespontaneous parameters. The functionshj ! j ,

representing self-interaction, andhi ! j , representing the interaction of neuroni on neu-

ron j , are functions with support inR+ and are called theinteraction functions. This

equation means in particular that before the �rst occurrence of a spike, theN j 's behave

like homogeneous Poisson processes with intensity� j . The �rst occurrence of a spike

(and the next ones) affects all the processes by increasing or decreasing the conditional

intensities via the interaction functions.

For instance, ifhi ! j takes large positive values in the neighborhood of a delay

x = 5ms and is null elsewhere, then5ms after a spike inN i , the probability to have a

new spike inN j will signi�cantly increase: the processN i excites the processN j . On

the contrary, ifhi ! j is negative aroundx, then5ms after a spike inN i , the probabil-

ity to have a new spike inN j will signi�cantly decrease: the processN i inhibits the

processN j . So Hawkes processes enable us to model lack of coincidences as well as

profusion of coincidences depending on the sign of the interaction functions. The pro-

cesses(N1; N2) in this Hawkes model are independent if and only ifh1! 2 = h2! 1 = 0.

Note also that the self-interaction functionshj ! j , when very negative at short range,

model refractory periods, making the Hawkes model more realistic than Poisson pro-

cesses with respect to real data sets, even in the independence case. In particular when

hj ! j = � � j � 1[0;x ], all the other interaction functions being null, the couple of sim-

ulated processes are independent Poisson processes with dead timex (PPD), modeling

strict refractory periods of lengthx (Reimer et al., 2012). Finally Hawkes processes are

not discretized at any resolution level as well as Poisson processes.

Another popular example is theinjection model, which is discretized at the reso-

lution h and which is used in (Grün et al., 1999). Two independent Bernoulli pro-

cessesNB 1 andNB 2 are generated with respective �ring rates� 1 and� 2. Then a third

Bernoulli processNc is generated with �ring rate� c. A fourth point processN 0
c is gen-

erated fromNc by moving independently each point ofNc by a random uniform shift

in f� x; :::; xg � h, for a prescribed nonnegative integerx. Then the two spike trains

are given byN1 = NB 1 [ Nc andN2 = NB 2 [ N 0
c (see (Gr̈un et al., 1999) for more

details). This injection model can only model profusion of coincidences and not lack of

coincidences. We refer the interested reader to the supplementary �le for a more precise

correspondence of the parameters between Hawkes and injection models.

Injection and Hawkes models arestationary, which means that their distribution

does not change by shift in time (see (Daley & Vere-Jones, 2003, p. 178) for a more

precise de�nition). This is also the case of homogeneous Poisson processes. One can

22



also simulate inhomogeneous Poisson processes, which correspond to a conditional

intensity t ! � (t) which is deterministic but not constant. These inhomogeneous

Poisson processes are therefore non stationary in time (see (Daley & Vere-Jones, 2003)

for more details).

Figure 6 gives the percentage of rejections over various numerical experiments, that

have been led on those simulated processes.

Type I error SinceH0 refers to ”N1 andN2 are independent onW” (or ” N1 on W

is independent ofN2 on W� ” for UEa), we have simulated various situations of inde-

pendence. Our theoretical work proves that the level is asymptotically guaranteed if the

processes are homogeneous Poisson processes. Our aim is now twofolds: First check

whether the level is controlled for a �nite, relatively small, number of trials (Experi-

ments A and B). Next check if it still holds, when the processes are not homogeneous

Poisson processes (Experiments C, D and E). Moreover we want to compare our results

to the ones of UEs and UEa. The upper left part of Figure 6 shows that the three forms

of GAUE (symmetric, upper and lower value) guarantee a level of roughly5% and this

even for a very small number of trials (M = 20) with a very small �ring rate (� = 3Hz)

or with large� (� = 0:02s). In this sense, it clearly extends the validity of the original

UE method (UEa in the lower part of Figure 6), which is known to be inadequate for

�ring rates less than7Hz (Roy et al., 2000), as one can see with Experiments A. Note

also that the level for GAUE as well as for UEa seems robust to changes in the model:

non stationarity for inhomogeneous Poisson processes (Experiments C), refractory pe-

riods when using Hawkes processes (Experiments D and E). Note �nally that the UEs

method does not guarantee the correct level except for the test by upper value, which is

much smaller than5%.

Power Several dependence situations have been tested in the right part of Figure 6:

GAUE tests by upper value can adequately detect profusion of coincidences induced

by injection models (see Experiments F and G) or Hawkes models (see Experiments

H and I). GAUE tests by lower value can on the contrary detect lack of coincidences,

simulated by inhibitory Hawkes processes (see Experiments J and K). Note moreover

that symmetric GAUE tests can detect both situations. The same conclusions are true

for both UE methods, the power being of the same order as the GAUE tests except for

the injection case with low� c (Experiments F with� = 0:02 andM = 100) where

GAUE is clearly better.

As a partial conclusion, the Gaussian approximation of Theorem 1 needs to be mod-

i�ed to take into account the plug-in effect. Once this modi�cation is done (see The-

orem 2) the Gaussian approximation leads to tests that are shown to be of asymptotic

level � . Our simulation study has shown (see Figure 6) that MTGAUE type I error is
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of order5% even for small �ring rates and that those tests seem robust to variations

in the model (non stationarity, refractory periods). Moreover symmetric GAUE tests

are able to detect both profusion and lack of coincidences. Except for very small �ring

rates where its level is not controlled, the original UE method (UEa) shares the same

properties, whereas the level of UEs is not controlled in any cases except for the test by

upper values.

3.2 Multiple tests and false discovery rate

Classical UE analysis (Grün, 1996; Gr̈un et al., 1999) is performed on several windows,

so that dependence regions can be detected through time. We want to produce the same

kind of analysis with GAUE. However, since a test is by essence a random answer, it is

not true that the control of one test at level� automatically induces a controlled number

of false rejections.

Indeed, let us consider a collectionW of possibly overlapping windowsW, with

cardinalityK and, to illustrate the problem, let us assume that we observe two indepen-

dent homogeneous Poisson processes. Now let us perform any of the previous GAUE

tests at level� on each of the previous windows. Then by linearity of the expectation,

one has that

E(number of rejections) = K P(one test rejects) ! M !1 K�: (29)

Moreover, ifL is the maximal number of disjoint windows inW, then the probability

that theK tests accept the independence hypothesis is upper bounded by

P(theL tests accept) = P(one test accepts)L ! M !1 (1 � � )L ! L !1 0; (30)

by independence of the test statistics between disjoint windows. This means that for

largeM , this procedure is doomed to reject in averageK� tests and the procedure will

reject at least one test, whenL grows. Consequently, one cannot apply multiple tests

procedure without correcting them for multiplicity. Ventura also underlined the problem

of the multiplicity of the tests, and proposed a procedure which is not as general as the

one described here (Ventura, 2010).

Multiple testing correction: a Benjamini and Hochberg approach

Let us denote� W the test considered on the windowW.

One way to control multiple testing procedure based on the� W 's, is to control the

so calledfamilywise error rate(FWER) (Hochberg & Tamhame, 1987), which consists

in controlling

FWER = P(9W 2 W ; � W wrongly rejects): (31)
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This can be easily done by Bonferroni bounds:

P(9W 2 W ; � W wrongly rejects) �
X

W 2W

P(� W wrongly rejects) ! M !1 K�:

(32)

So Bonferroni's method (Holm, 1979) consists in applying the� W tests at level�=K

instead of� to guarantee a FWER less than� . However, the smaller the type I error, the

more dif�cult it is to make a rejection. Usually, the rejected tests are calleddetections

(or discoveries). So whenK is large, Bonferroni's procedure potentially leads to no

discovery/detection at all, even in cases where dependent structures exist.

Another notion, popularized by (Benjamini & Hochberg, 1995) has consequently been

introduced in the multiple testing areas leading to a large amount of publications in

statistics, genomics, medicine etc in the past ten years (Benjamini, 2010). This is the

false discovery rate(FDR). Actually, a false discovery (also named false detection) is

not that bad if the ratio of the number of false discoveries divided by the total number

of discoveries is small.

More formally, let us use the notation given in Table 1.

Number ofW such that � W accepts � W rejects Total

Independence onW Tnd = ” number of F d = ”number of K 0 =”number of windows
correct non discoveries” false discoveries” where independence is satis�ed”

Dependence onW F nd = ”number of Td = ”number of K 1 =”number of windows
false discoveries” correct discoveries” where dependence exists”

Total K � R R = ”discoveries” K

Table 1: Repartition of the answers for the multiple testing procedure.

Then thefalse discovery rateis de�ned by

FDR = E
�

Fd

R
1R> 0

�
: (33)

Note that when both spike trains are independent for all windows,K 1 = 0, which leads

to Td = 0 andFd = R. Hence, the FDR in the full independent case is also a control of

P(9W 2 W ; � W wrongly rejects), i.e. the FWER. In all other cases,FDR � FWER.

This means that when there are someW for which the independence assumption does

not hold, controlling the FDR is less stringent, whereas the relative con�dence that we

can have in the discoveries is still good: if we make 100 discoveries with a FDR of5%,

this means that on average only5 of those discoveries will be potentially wrong.
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The question now is: how to guarantee a small FDR? To do so, Benjamini and Hochberg

(Benjamini & Hochberg, 1995) proposed the following procedure: for each test� W ,

the corresponding p-valuePW is computed. They are next ordered such that:

P (1)
W (1) � ::: � P (` )

W (`) � ::: � P (K )
W (K ) : (34)

Let q 2 [0; 1] be a �xed upper bound that we desire on the FDR and de�ne:

k = maxf ` such thatP (` )
W (`) � `q=Kg: (35)

Then the discoveries of this BH-method are given by the windowsW(1); :::; W(k) cor-

responding to thek smallest p-values.

The theoretical result of (Benjamini & Hochberg, 1995) can be translated in our frame-

work as follows: if the p-values are uniformly and independently distributed under the

null hypothesis, then the procedure guarantees a FDR less thanq.

Now let us �nish to describe our method namedMTGAUE, for multiple tests based

on a Gaussian approximation of the Unitary Events, which is based on symmetric tests

to be able to detect both profusion and lack of coincidences.
'

&

$

%

De�nition 5: MTGAUE

- For eachW in the collectionW of possible overlapping windows, compute the

p-value of the symmetric GAUE test (see De�nition 3).

- For a �xed parameterq, which controls the FDR, order the p-values according to

(34) and �ndk satisfying (35).

- Return as set of detections, thek windows corresponding to thek smallest p-

values.

The corresponding program inR is available at

math.unice.fr/ � malot/liste-MTGAUE.html

Note that in our case, the assumptions required in the approach of Benjamini-

Hochberg are not satis�ed. Indeed, the tests� sym
GAUE are only asymptotically of type

I error � , which is equivalent to the fact that asymptotically and not for �xedM , the

p-values are uniformly distributed. Therefore, there is a gap between theory and what

we have in practice. However, as we illustrate hereafter in simulations, this difference

does not seem to signi�cantly impact the FDR.

Moreover, to have independent p-values we should have considered disjoint windows

W. However, it is possible that we miss some detections because the dependence region

is small and straddles two disjoint windows. Therefore, it is preferable to consider slid-

ing windows that overlap. In theory, few results exist in this context - see for instance

(Benjamini & Yekutieli, 2001). In practice, we will see in the next section that this lack

of independence does not impact the FDR as well.

Finally note that when the FDR parameterqgrows, there are more and more detections.
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Hence if a window is detected forq = q0, it is detected for allq � q0. Therefore there

is a monotony of the set of detected windows as a function ofq, in terms of inclusion.

Simulation study

On Figure 7, we see an example of detection by both methods: MTGAUE and UE with

symmetric tests. Note that UE is here performed without corrections due to the multi-

plicity of the tests as in (Grün et al., 1999) and therefore its parameter is� , which should

re�ect the level of each individual test. MTGAUE clearly detects relevant regions and

very few false positives and this even for large delays� , with a clear continuity in� :

once a region has been detected for a small� , it remains generally detected for a larger

� , until the number of imposed coincidences is diluted because� is much too large.

Therefore there is usually an interval of possible� around the actual maximal true inter-

action (here0:02s, whatever the model, injection or Hawkes) where the same window

is detected. Note also that profusion of coincidences in Hawkes model (Experiments

G) or in the injection model (Experiments I) are usually detected and that the detected

regions correspond to positive values for the difference�m � m̂0. Reciprocally nega-

tive interactions in Hawkes model (Experiments K), i.e. lack of coincidences, are also

detected and correspond to negative values of�m � m̂0, since they appear on Figure 7

but not in the positive detections part. Both UE methods have a much larger number of

false discoveries except when considering the positive detections of UEs.

Figure 8 gives the FDR and the false non-discovery rate. Clearly MTGAUE ensures

a FDR less than 5% as expected by the choice of the parameterq = 0:05 and this, in

all simulations. Moreover the proportion of false non discoveries is relatively small

(less than 30%) and clearly decreases whenM and� increase. Note also than even if

the trials are not i.i.d. (Case L), the method still guarantees a controlled FDR and a

reasonable amount of false negative. Both UE methods have a large FDR except the

UEs method with tests by upper values and the UEa method by lower values.

4 Real data study

MTGAUE being validated on simulated data, the method is now applied on real data,

that have already been partially published. This study is an illustration which shows

that MTGAUE is able to detect phenomenons in line with the time of the experiment.

Furthermore some novel aspects are revealed thanks to this method, completing the

existing results on those data.
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Figure 7: Detections with symmetric tests of MTGAUE withq = 0:05and of both UEs
and UEa methods with� = 0:05, on one run withM = 20. The positive detections of
MTGAUE or UEs correspond to the detections for which�m > m̂0 for MTGAUE, or
detections for which�m > m̂g for UE (see De�nition 4). 1900 single tests have been
performed on 1900 overlapping (sliding) windows of length 0.1s shifted by 0.001s.
The corresponding detections are marked by a point at the center of the windows. Each
line corresponds to a different delay: 40 different delays� from 0.001s to 0.04s are
considered. Each time, two homogeneous independent Poisson processes are simulated
on [0; 0:5] [ [0:7; 1:5] [ [1:6; 2]s with �ring rates � 1 = � 2 = 30Hz. On [0:5; 0:7]s
and[1:5; 1:6]s two dependent processes are simulated. Those dependent processes are
simulated according to Experiments G, I or K (see Figure 6). The black vertical lines
delimit the regions where the tests should detect a dependence, that is each time the
windowW intersects a dependence region.
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4.1 Description of the data

Behavioral procedure The data used in this theoretical article to test the detection

ability of the MTGAUE method were already partially published in previous experi-

mental studies (Riehle et al., 2000; Grammont & Riehle, 2003; Riehle et al., 2006).

These data were collected on a 5-year-old male Rhesus monkey who was trained to per-

form a delayed multidirectional pointing task. The animal sat in a primate chair in front

of a vertical panel on which seven touch-sensitive light-emitting diodes were mounted,

one in the center and six placed equidistantly (60 degrees apart) on a circle around it.

The monkey had to initiate a trial by touching and then holding with the left hand the

central target. After a �x delay of 500ms, the preparatory signal (PS) was presented by

illuminating one of the six peripheral targets in green. After a delay of either 600ms

or 1200ms, selected at random with various probability, it turned red, serving as the

response signal and pointing target. During the �rst part of the delay, the probability

presp for the response signal to occur at (500+600)ms =1.1s was either 0.3, 0.5 or 0.7,

depending on the experimental condition. Once this moment passed without signal oc-

currence, the conditional probability for the signal to occur at (500+600+600)ms =1.7s

changed to 1. The monkey was rewarded by a drop of juice after each correct trial. Re-

action time (RT) was de�ned as the release of the central target. Movement time (MT)

was de�ned as the touching of the correct peripheral target.

Recording technique Signals recorded from up to seven microelectrodes (quartz in-

sulated platinum-tungsten electrodes, impedance: 2-5M
 at 1000Hz) were ampli�ed

and band-pass �ltered from 300Hz to 10kHz. Using a window discriminator, spikes

from only one single neuron per electrode were then isolated. Neuronal data along with

behavioral events (occurrences of signals and performance of the animal) were stored

on a PC for off-line analysis with a time resolution of 10kHz.

In the following study, only trials where the response signal occurs at 1.7s are consid-

ered. Whenpresp = 0:3 (respectively 0.5 or 0.7), the corresponding data are called

Data30(respectivelyData50andData70). There are respectively 43, 34 and 27 pairs

of neurons that have been registered in respectivelyData30, Data50andData70.

Assuming that the synchrony only depends on the time of signal occurrences and not

of the movement directions, we test for the independence of neuron pairs in a pooled

fashion over all direction of movement, as already done in the previous study but in

a different way (Grammont & Riehle, 2003). Note that a study with respect to the

movement directions could also have been done if data with less than 20 trials per

direction were discarded, but thenData70would have almost completely disappeared.

Note also that small heterogeneity in the data as shown with Case L of Figure 8 does

not really affect the method. Moreover, we did not discard pairs of neurons whose �ring
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rate is smaller than 7Hz (Roy et al., 2000), as done by Riehle et al. (2000) or Grammont

& Riehle (2003) because even in this case the MTGAUE detections can be trusted (see

Figure 6).

4.2 Symmetric detections

Before making the analysis of the whole three data sets, let us focus on some examples

to underline the main difference between MTGAUE and both UE methods. MTGAUE

(see De�nition 5) has been applied on the activity of two pairs of neurons (pairs 13

and 40 ofData30), recorded during the experiment described in Section 4.1, for var-

ious choices for the FDR control parameterq. Both multiple shift UE methods with

symmetric tests and with parameter� = 0:05 have also been applied. The results are

displayed in Figure 9.

The black points correspond to MTGAUE detections withq = 0:01 and conse-

quently at the most 1% of those detections are false discoveries in average. Those are

the safest detections. Because of the monotonicity in terms ofq, the classical detections

with q = 0:05 correspond to the union of black and magenta points. At the opposite,

yellow circles correspond to untrusted detections since they are detected only for a FDR

control parameterqstrictly larger than 80%. In this respect, on Figure 9, several periods

are detected by MTGAUE which correlate with the occurrence of speci�c events of the

behavorial protocol (see also Figure 12 in this respect). Interestingly, there is no real

gain by looking at the detections forq = 0:05. Most of them are already detected for

q = 0:01 for larger � and therefore, these detections are really signi�cant. Both UE

methods with symmetric tests and with� = 0:05 detect several intervals correspond-

ing to q > 0:8 and therefore, those are untrusted (yellow) detections for the MTGAUE

method.

4.3 Is the count signi�cantly too low or too large ?

For single tests, the detection of� sym at level � = 0:05 is just the detection of both

tests� + and � � at level � = 0:025 and this for both UE and GAUE methods (see

De�nitions 3 and 4). When dealing with a collection of tests, this result is still valid for

the UE method which does not correct for multiplicity. However, it is not valid anymore

for MTGAUE (see De�nition 5) since this method is based on the rank of all the p-

values of all the symmetric tests. Indeed the set of considered p-values corresponds to a

set of test statistics whose positive and negative values are mixed and whose rank only

corresponds to their absolute value. The result of Benjamini and Hochberg procedure

is consequently intertwining positive and negative detections (i.e. detections for which

�m > m̂0 or �m < m̂0). Since the interest lies in both distinct detections (upper and

lower values) on the experimental data, it is meaningless to independently perform tests
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Figure 9: Representation of the detections of the three methods (MTGAUE, UEs, UEa)
as a function of the FDR control parameterq of the MTGAUE method, performed over
sliding windows of length 0.1s shifted by 0.001s on pairs 13 and 40 ofData30. Each
line corresponds to a different value of� from 0.001s to 0.04s. Each window is associ-
ated to a colored point at the center of the window, whose color depends on the value
of the parameterq in the MTGAUE method for which this window is detected. For the
UEs and UEa methods, the colored point exists if and only if the corresponding window
was detected by the method with symmetric tests at the level� = 0:05. For MTGAUE,
all the colored points, i.e. all the windows, are represented. The �rst black vertical bar
corresponds to the preparatory signal (PS), the blue vertical bar to the expected signal
(ES), the second black vertical bar to the response signal (RS). The �rst hatched box
corresponds to the interval [mean reaction time (RT) minus its standard deviation, mean
reaction time (RT) plus its standard deviation], the second hatched box corresponds to
the same thing but for the movement time (MT).
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