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HIGH-DIMENSION MULTI-LABEL PROBLEMS: CONVEX OR NON
CONVEX RELAXATION?

NICOLAS PAPADAKIS∗, JEAN-FRANÇOIS AUJOL , VICENT CASELLES† , AND ROMAIN

YILDIZOĞLU

Abstract. This paper is concerned with the problem of relaxing non convex functionals, used
in image processing, into convex problems. We review most of the recently introduced relaxation
methods, and we propose a new convex one based on a probabilistic approach, which has the ad-
vantages of being intuitive, flexible and involving an algorithm without inner loops. We investigate
in detail the connections between the solutions of the relaxed functionals with a minimizer of the
original one. Such connection is demonstrated only for non convex relaxation which turns out to be
quite robust to initialization. As a case of study, we illustrate our theoretical analysis with numerical
experiments, namely for the optical flow problem.
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1. Introduction. This paper is concerned with image processing problems whose
solutions are computed as the minimizer of some functional (see e.g. [4]). The con-
sidered functionals have a data term which depends on the considered application,
and a regularization term. Many image processing problems can be modeled as the
minimizers of non convex functionals. This non convexity may arise from the physics
of the problem as in speckle noise removal [3]. It may be due to the non locality of
the functional [5]. It can also come from the problem itself as in image segmentation
[23, 14, 6, 9, 21], optical flow computation [4, 25], . . . .

Non convexity of the functional to minimize may cause several issues. On one
hand, the solution of the problem may not exist, and even when it exists may be
non unique. On the other hand, numerical algorithms to compute the solution may
get stuck into local minima, and the numerical solution may depend heavily on the
initialization choice (in the case of iterative algorithms).

For all these reasons, it is a major improvement when a non convex problem can
be turned into a convex one. Some steps in this direction have been done in the last
past years [10, 24, 2, 28, 27, 25, 12, 30, 9, 19] within the mathematical image processing
community. Convexification has been first used for image segmentation in [24], but
it is now used for some other problems such as disparity computation [28], or higher
dimensional problems like optical flow estimation [25]. The main idea of all these
approaches is to introduce a new variable defined in a higher dimensional space that
permits to write a convex relaxation of the original problem. If the original functional
has some properties such as satisfying a layer cake formula, then a thresholding of
the minimizer of the relaxed problem is a global minimizer of the original non convex
one (see [10, 24] for seminal works in this direction). Of course, due to the curse of
dimension, resorting to higher dimensional variables increases the computation time.
This is the reason why convexification methods become more challenging when the
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dimension of the variables is larger than one. This is the case for the optical flow
problem (as compared with the segmentation one [24]), and is the reason why we
focus in this paper on optical flow computation.

This paper is inspired by the works we recalled in the previous paragraphs. It
proposes new convexification choices, based on a probabilistic modeling and leading
to new algorithms. We illustrate our approach on the optical flow problem. Our
numerical experiments permit to derive some conclusions that justify the interest of
the approach.

In all models proposed here, the regularization term is based on total variation.
Such a term benefits from a layer cake formula thanks to the the coarea formula. This
property plays a key role when one wants to relate the solution of the relaxed problem
to the one of the original problem, as it will be detailed in the paper. Notice that
some approaches such as [27, 30] propose to use a truncated version of total variation,
as this was shown to be useful in image restoration (see [4]). This non convexity of
the regularization term may lead to better preservation of discontinuities. However,
as explained in the next paragraph, an important aspect of our work lies in the study
of how to get back from the solution of the relaxed problem to the one of the original
problem. The natural setting for such a study is to consider a classical total variation
term for the regularization and not a non convex version of it.

The main contributions of the paper are the following:

• We provide the reader with a review of most of the recently introduced con-
vexification methods in image processing. We discuss in particular the con-
nections between these approaches, as well as some of their advantages and
weaknesses.

• We introduce a general framework to relax image processing functionals into
convex problems linked with the works of [28, 27, 12]. Our approach is based
on a new probabilistic point of view which has the advantage of being flexible
and intuitive. It also relies on an exact algorithm without any inner loops
even for high dimensional problems.

• We propose two new relaxations for high dimensional problems: a non-convex
relaxation in section 4.1.1 (which is separately convex in each variable), that
represents a numerical and theoretical enhancement with respect to the model
first presented in [25], and a convex relaxation in section 4.2. In order to make
this paper as comprehensive as possible, we also review in section 4.1.2 the
convexification method proposed in [30].

• We discuss in detail possible strategies to get back from a solution of the
relaxed functionals to a minimizer of the original problem. As far as we
know, this issue has not been investigated thoroughly in the literature yet. It
is nevertheless a major problem, since computing a minimizer of the relaxed
functional could be of no interest if it is not related to a minimizer of the
original problem.

• We illustrate the different approaches presented in the paper, as well as the
new ones, on different applications, including the optical flow problem. Since
dimension is a major issue with convexification (as the dimension of the vari-
ables is increased when the functional is relaxed), we feel that optical flow is
a good application to test the different frameworks (in view of the curse of
dimension). We note that the different experiments focus on the ability of
the proposed approach to recover global minima of the corresponding original
problems.
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The outline of the paper is as follows. We introduce the discrete framework we
consider in Section 2. In particular, we detail the discretization choice, as well as the
primal-dual algorithm that will be at the heart of all the numerical methods presented
in the paper. For the sake of clarity, we first deal with the case of dimension 1 in
Section 3. We first recall the framework introduced in [28], and then we introduce
a new one based on a probabilistic modeling. In all these approaches, the solution
of the original problem is computed from the one of the relaxed problem by a sim-
ple thresholding strategy. We conclude Section 3 by showing the connection of our
probabilistic framework with the approach of Chambolle et al in [12].

We then concentrate on the dimension 2 case in section 4. We first recall the
approach of [25] where the problem is relaxed independently for each variable (and
this turns out to give a polyconvex energy). We also present the approach of [30]
which proposes a way to convexify the data term of the functional; however, in this
case, the relationship with the original problem is not clear, as will be illustrated
in the numerical section. Then we,recall the framework of [9] that gives a general
convexification method (which seems to be unrealistic to be used in practice for the
optical flow problem due to the use of Dijkstra’s algorithm to compute a complicated
projection). Finally we introduce our probabilistic framework in the 2D setting and we
show the equivalence between the two last relaxation methods. However, contrary to
the 1D setting, there is no simple thresholding strategy to get back from the solution
of the relaxed problem to the solution of the original one. This is the reason why
we investigate in Section 5 the problem of computing a good solution of the original
problem from the relaxed one. We then present extensive numerical examples in
Section 6.

2. Preliminaries.

2.1. General problem. We focus our attention here on multi-label problems
for image processing. Let Ω be the image domain, we assume Ω to be a non empty
open bounded subset of IR2 with Lipschitz boundary. We aim at estimating a set of
N functions ui : Ω 7→ Γi (with 1 ≤ i ≤ N) which take their values in a predefined
discrete set containing Mi ordered elements: Γi = {ui0 < · · · < uiMi−1}. This section
is then dedicated to the minimization w.r.t u = [u1, · · · , uN ] of the following class of
functionals:

JN (u) =

N∑
i=1

∫
Ω

|Dui(x)|+
∫

Ω

ρ(x, u(x))dx, (2.1)

where ρ is a given positive data function and ρ(x, u(x)) represents the cost of assigning
the values u(x) to the pixel x. We only assume that ρ is a bounded function that can
be non linear with respect to u. In the following, we will refer to the 1D case when
N = 1.

The first terms
∫

Ω
|Dui| contain the spatial regularization of the unknowns on

the image domain. More precisely, they measure the integral of the perimeters of the
level sets of u, assuming that u is a function of bounded variation (see [1] for more
details). Such a term, introduced in image processing in the seminal work [29], is
known as the total variation of u. This regularization is general and has been applied
to a lot of image processing problems such as restoration [29], depth estimation [28],
3D reconstruction [20], or optical flow [32].

Let us recall some technical elements that will be used all along the paper.
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2.2. Total variation.
Definition. The total variation of a function u ∈ L1(Ω) is defined as

∫
Ω
|Du| :=

sup{
∫

Ω
udivz, z ∈ C1

c (Ω)N , ‖ z ‖∞≤ 1}, where C1
c (Ω) denotes the space of C1 func-

tions with compact support in Ω (see [1]). Notice that in the case when u is a smooth
function, then

∫
Ω
|Du| =

∫
Ω
|∇u| dx. We denote by BV (Ω,R) the space of functions

with finite total variation in Ω.
Discretization schemes. The discretization used for the spatial gradient operator

Dx and its adjoint D∗x are the classical ones. We consider the discrete regular grid
x = (x, y), 1 ≤ x ≤ Lx, 1 ≤ y ≤ Ly representing the domain Ω. Looking at the discrete
gradient operator as a vector of matrices Dx = [Dx, Dy]T , the chosen discretizations
should satisfy (to have a discrete Gauss-Green formula without boundary terms):
〈Dxu, z1〉 + 〈Dyu, z2〉 =

〈
u,D∗xz1 +D∗yz2)

〉
. To that end, one can consider finite

differences and take Dxu(x, y) with a forward scheme and D∗xz with a backward one.
The gradient with respect to the first dimension then reads

Dxu(x, y) =

 u(x + 1, y)− u(x, y) if 1 ≤ x < Lx,

0 if x = Lx.

The corresponding divergence operator is given by D∗xz = D∗xz1 + D∗yz2, where the
gradient over the first dimension is taken as:

D∗xz(x, y) =


z(x, y) if x = 1,

z(x, y)− z(x− 1, y) if 1 < x < Lx,

−z(x− 1, y) if x = Lx.

We consider analogous discretizations for Dyu and D∗yz2. The discrete total variation
of u can be defined as

∫
Ω
|Dxu| =

∑
1≤x≤Lx

∑
1≤y≤Ly

|Dxu(x, y)|. Let us denote by B
the set of vector fields z = (z1, z2), with zi defined on Ω× Γi :

B = {z, s.t. z2
1(x, ui) + z2

2(x, ui) ≤ (ui − ui−1)2, ∀(x, ui) ∈ Ω× Γi}. (2.2)

Then the total variation can be rewritten in its dual form
∫

Ω
|Dxu| = maxz∈B 〈u,D∗xz〉.

2.3. Primal-dual algorithm.
Presentation. We recall the algorithm in [13]. U , Z are finite-dimensional vector

spaces, we denote by 〈., .〉 the standard inner products, K : U → Z is a linear operator,
and G : U → R ∪ {∞}, F ∗ : Z → R ∪ {∞} are convex functions. We want to solve

min
u∈U

max
z∈Z
〈Ku, z〉+G(x)− F ∗(y).

The algorithm

Algorithm 1 Primal-dual algorithm ([13])

uk+1 = (I + τ∂G)−1(uk − τKtzk)
zk+1 = (I + σ∂F ∗)−1(zk + σK(2uk+1 − uk))

with (I+ τ∂G)−1(û) := arg minu∈U G(u) + 1
2τ ‖ u− û ‖

2 and τσ ‖ K ‖2< 1 converges
to a saddle point in O( 1

k ). We have denoted by Kt the transpose of K. Notice that
when K is the chosen discretized gradient operator, then ‖K‖2 = 8.
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Proximal operator. If G is a convex proper lower semi continuous function, then
(I + τ∂G)−1 is the resolvent operator (which is a one to one mapping).

The proximity operator is defined by (see [22] for computation and details):

y = (I + τ∂G)−1(x) = proxGh (x) = argmin
u

{
‖u− x‖2

2τ
+G(u)

}
. (2.3)

We refer to [16] for examples of proximal operator computations. Notice that
computing the proximal operator is itself a minimization problem. This computation
amounts to computing a projection when G is the indicator of a closed convex set.

For instance, if G = χz∈B, where B is the set of vector fields z = (z1, z2) defined
by Equation (2.2), then the resolvent operator (I + τ∂G)−1 is (for any τ > 0) the
orthogonal projection:

PB(z(x, ui)) =
(ui − ui−1)z(x, ui)

max(ui − ui−1, ||z(x, ui)||)
(2.4)

where ||z(x, ui)||2 = z2
1(x, ui) + z2

2(x, ui).

3. Convexification of the 1D multi-label problem. This section is dedicated
to the 1D case, where we only want to estimate 1 unknown for each pixel of an image.
Concretely, we are interested in minimizing the functional:

J1(u) =

∫
Ω

|Du(x)|+
∫

Ω

ρ(x, u(x))dx. (3.1)

We assume that u takes values in Γ = {u0 < · · · < uM−1}.
For the segmentation of a grayscale image I : x ∈ Ω 7→ I(x) ∈ [0, 1] into M gray

labels Γ = {0, 1/(M−1), · · · 1}, the function ρ would read: ρ(x, u(x)) = (I(x)−u(x))2.
In the case of disparity estimation between two images I1 and I2, with disparity values
in Γ = {0, 1, · · · ,M − 1}, the cost would be: ρ(x, u(x)) = (I1(x)− I2(x+ u(x)))2.

3.1. Convexification of the 1D multi-label problem with upper level
sets. We briefly recall here the convexification technique of Pock et al. [28, 27].
The idea is to write the non-linearities of the functional J1(u) in a convex way, by
introducing an auxiliary variable φ : Ω × Γ 7→ {0, 1} that represents the different
values of u. The treatment here will be heuristic. Let

φ(x, s) = H(u(x)− s), (3.2)

where H is the Heaviside function (H(r) = 1 if r ≥ 0, and 0 otherwise). The unknown
u can then be recovered from φ by the layer cake formula as

u(x) = u0 +

M−1∑
i=1

(ui − ui−1)φ(x, ui). (3.3)

Using the coarea formula, we find
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Ω

|Du(x)| =
∫
s

∫
Ω

|D1u≥s(x)|dxds =

M−1∑
i=1

(ui − ui−1)

∫
Ω

|D1u≥ui(x)|dx

=

M−1∑
i=1

(ui − ui−1)

∫
Ω

|Dxφ(x, ui)|dx

∫
Ω

ρ(x, u(x)) =

∫
Ω

M−1∑
i=0

ρ(x, ui)1u=ui(x)dx

=

M−2∑
i=0

∫
Ω

ρ(x, ui)(φ(x, ui)− φ(x, ui+1))dx+

∫
Ω

ρ(x, uM−1)φ(x, uM−1)dx.

(3.4)

Hence we can rewrite functional (3.1) as a function of φ instead of u:

J1(u) =

M−1∑
i=1

(ui − ui−1)

∫
Ω

|Dxφ(x, ui)|dx+

M−2∑
i=0

∫
Ω

ρ(x, ui)(φ(x, ui)− φ(x, ui+1))dx

+

∫
Ω

ρ(x, uM−1)φ(x, uM−1)dx = J(φ),

(3.5)

and we are led to consider the minimizing problem:

min
φ∈Ā1

J(φ), (3.6)

where

Ā1 = {φ ∈ BV (Ω× Γ, {0, 1}) such that φ(x, u0) = 1, φ(x, ui) ≥ φ(x, ui+1)}. (3.7)

Following [28], we have the following theorem.

Theorem 3.1. The layer cake formula (3.3) defines a bijection f between A0

and BV (Ω, {0, 1}) such that J1(f(φ)) = J(φ).
Proof. We only need to verify that f is a bijection, the functional equality being

given by (3.5). Let φ ∈ A0, x ∈ Ω, there exists j such that φ(x, ui) = 1 for i ≤ j and
φ(x, ui) = 0 for i > j. Thus φ(x, .) is uniquely determined by this given j. We have

f(φ)(x) = u0 +
∑M−1
i=1 (ui − ui−1)φ(x, ui) = uj ∈ Γ, and f(φ) is of bounded variation

by (3.5), so f is well defined. Its inverse is f (−1)(u)(x, s) = H(u(x) − s). In other
words, we identify a function with the characteristic function of its subgraph.

Functional (3.5) is convex in φ. To find the global minimum of (3.1), one can find a
φ minimizing (3.5), and then recover u from φ. Care must be taken to ensure that it
is possible to compute u from φ. In particular, φ must be binary and decreasing with
s. Unfortunately, the set of such functions φ is not convex. To recover convexity, the
function φ should be allowed to take values on [0, 1]. We introduce a convex set of
admissible functions

A1 = {φ ∈ BV (Ω× Γ, [0, 1]) such that φ(x, a) = 1, φ(x, ui) ≥ φ(x, ui+1)}, (3.8)

and the convex problem

min
φ∈A1

J(φ). (3.9)
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Following [28], we have the following theorem.
Theorem 3.2. Let φ∗ be a solution of (3.9), then for almost any threshold µ,

H(φ∗ − µ) is a solution of (3.9) and of (3.6).
Proof. Let us consider the solution φ∗ of the relaxed problem (3.9). By the coarea

formula we obtain: ∫
Ω

|Dφ∗| =
∫ 1

0

(∫
Ω

|DH(φ∗ − µ)|
)
dµ. (3.10)

Furthermore ∫
Ω

ρ(x, ui)φ
∗(x, ui) =

∫
Ω

ρ(x, ui)

∫ 1

0

H(φ∗(x, ui)− µ)dµ

=

∫ 1

0

dµ

∫
Ω

ρ(x, ui)H(φ∗(x, ui)− µ).

(3.11)

Using (3.5) we have that J(φ∗) =
∫ 1

0
J(H(φ∗ − µ))dµ.

Let us now assume that B := {µ ∈ [0, 1]: H(φ∗ − µ) is not a global solution
of the non convex problem (3.6)} has a strictly positive measure. Then there exists
φ′ ∈ A1 such that J(φ′) < J(H(φ∗ − µ)) for every µ in B. This implies that J(φ′) =∫ 1

0
J(φ′)dµ <

∫ 1

0
J(H(φ∗ − µ))dµ = J(φ∗) which is impossible by definition of φ∗.

Therefore, a global minimum of (3.1) can be recovered as a ”cut” of φ. For almost
any threshold µ ∈ [0, 1], defining φµ = 1φ∗≥µ,

u(x) = u0 +

M−1∑
i=1

φµ(x, ui) (3.12)

is a global minimum of (3.1).

3.1.1. Numerical optimization. The previous minimization problem (3.9) can
be written as a primal-dual problem:

min
φ∈A1

max
z∈B,z3∈C

∫
Ω

M−1∑
i=1

Dxφ(x, ui) · z(x, ui)dx+

∫
Ω

M−1∑
i=0

Duφ(x, ui)z3(x, ui)dx, (3.13)

where the operator Du and its adjoint D∗u are defined as:

Duφ(x, ui) =

 φ(x, ui+1)− φ(x, ui) if i < M − 1,

−φ(x, uM−1) otherwise,
(3.14)

D∗uz(x, ui) =

 z(x, ui) if i = 0,

z(x, ui)− z(x, ui−1) if 0 < i ≤M − 1,
(3.15)

The orthogonal projection onto B denoted by PB is recalled in Equation (2.4). The
last dual variable z3 ∈ Ω× Γ is defined on the set

C = {z3, s.t. |z3(x, ui)| ≤ ρ(x, ui), ∀(x, ui) ∈ Ω× Γ}. (3.16)

We consider the projection operator

PC(z3(x, ui)) =


z3(x,ui)
|z3(x,ui)|ρ(x, ui) if |z3(x, ui)| > ρ(x, ui)

z3(x, ui) otherwise.

We end up with the algorithm 2 to minimize the energy (3.5)
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Algorithm 2 Minimizing the 1D energy (3.5)

Initialize φ0(., ui) = φ̄0(., ui) = uM−1−ui
uM−1−u0

, zi = 0, choose σ, τ > 0 such that στ < 1
8

while ||φk − φk−1|| > ε do
zk+1 = PB

(
zk + σDxφ̄

k
)

zk+1
3 = PC

(
zk3 + σDuφ̄

k
)

φk+1 = PA1

(
φk − τ

(
D∗xz

k+1 +D∗uz
k+1
3

))
,

φ̄k+1 = 2φk+1 − φk
end while

3.1.2. Important detail. The convex set A1 defined in Equation (3.8) involves
the negativity of the quantities φ(x, ui+1)− φ(x, ui). In the original paper [28], such
property was not considered and the projection was just:

PA1(φ(x, ui)) =


1 if i = 0,

max(0,min(1, φ(x, ui))) if 0 < i < M − 1,

0 if i = M − 1.

(3.17)

This issue was fixed in [11], where an iterative algorithm inspired by Dijkstra’s algo-
rithm was introduced to define PA1 and impose the constraint point-wise, for each
x ∈ Ω.

This is perhaps the main drawback of this convexification, as the process involves
time consuming iterative projections (and the primal projection PA1

is in theory
only exact with an infinite number of Dijkstra iterations). For 1D problems, it has
nevertheless been shown in [27] that such projection on decreasing constraint can be
avoided, but the proof can not be extended to higher dimensions.

We now explain how a slight modification of the previous approach leads to simple
projections for any N ≥ 1. We found out that the proposed approach is connected
with the recent one in [12], the one proposed here is based on an exact and simple
dual projection.

3.2. A new convexification based on a probabilistic point of view. Recall
that we are minimizing the functional

J1(u) =

∫
Ω

|Du(x)|+
∫

Ω

ρ(x, u(x))dx. (3.18)

The idea is to model the possible values of the data function ρ with

min
u∈Γ

∫
Ω

ρ(x, u(x))dx = min
w∈D1

∫
Ω

M−1∑
i=0

ρ(x, ui)w(x, ui)dx,

where w(x, ui) represents the probability of assigning the label ui to the pixel x. The
equivalence with the original problem is obtained by considering a particular space for
w that corresponds to a single assignation for each pixel x ∈ Ω: there exists a unique
s̃ ∈ Γ with w(x, s̃) = 1 and w(x, s) = 0 for s 6= s̃. Since probabilities with binary
values are involved, this problem of assignation is not convex. The new variable w is
then relaxed within the convex space

D1 =

{
w : Ω× Γ 7→ [0, 1], s.t.

∑
i

w(x, ui) = 1, ∀x ∈ Ω

}
. (3.19)
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The Total Variation of u can be rewritten in terms of w as∫
Ω

|Du| =
∫

Ω

M−1∑
i=1

(ui − ui−1)|DxH(u(x)− ui)|ds

=

∫
Ω

M−1∑
i=1

(ui − ui−1)

∣∣∣∣∣∣Dx

∑
j≥i

w(x, uj)

∣∣∣∣∣∣ dx,
so that the functional finally is

Jw(w) =

∫
Ω

M−1∑
i=1

(ui − ui−1)

∣∣∣∣∣∣Dx

∑
j≥i

w(x, uj)

∣∣∣∣∣∣ dx+

∫
Ω

M−1∑
i=0

ρ(x, ui)w(x, ui)dx.

(3.20)

The problem of minimizing (3.20) w.r.t w ∈ D1 is convex and a global minimum
can be estimated with the previously introduced optimization method involving a
dual formulation of the TV term.

3.2.1. Numerical optimization. The dual formulation consists in rewriting
the regularization term as

∫
Ω

M−1∑
i=1

(ui − ui−1)

∣∣∣∣∣∣Dx

∑
j≥i

w(x, uj)

∣∣∣∣∣∣ dx
= max

z∈B

∫
Ω

M−1∑
i=1

∑
j≥i

w(x, uj)

D∗xz(x, ui)dx,

where the variable z = (z1, z2), with zk ∈ Ω × Γ, is defined on the convex set given
by Equation (2.2), that is,

B = {z, s.t. z2
1(x, ui) + z2

2(x, ui) ≤ (ui − ui−1)2, ∀(x, ui) ∈ Ω× Γ}, (3.21)

with the convention that z(., u0) = 0 since the level u0 is useless for the TV energy
of w as

∑
j≥0 w(x, uj) = 1, ∀x ∈ Ω.

The projection operator PB is given in Equation (2.4). The projection of w onto
the convex set D1 (defined in Equation (3.19)) can finally be done point-wise for each
pixel x by means of the projection of w(x, .) onto a simplex of dimension M through
the operator PD1

: R|Ω|M → D1 (see [15] for a fast implementation).
A sketch of the process for estimating w∗ following the Primal-Dual approach of

[13] and the discretizations given in section 2 is given in Algorithm 3. With respect
to the previous section and the estimation of φ ∈ A1 (defined in Equation (3.8)),
the computational complexity is increased with the term

∑
l≥i w(x, ul). However, the

projection of the variable w is here exact [15], and not iterative as in the previous
formulation. This makes the computational time for each iteration of both approaches
equivalent, in case that we only do two iterations of Dijkstra’s algorithm to project φ
on A1 (and we note that 2 Dijkstra iterations are not sufficient in may cases). It is also
relevant to note that preconditioning techniques [26] can be considered to speed-up
the current process.
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Algorithm 3 Minimizing the 1D energy (3.20)

Initialize w0 = w̄0 = 1
M , z0 = 0, choose σ, τ > 0 such that στ < 1

8M
while ||wk − wk−1|| > ε do

zk+1(., ui) = PB

(
zk(., ui) + σDx

(∑
l≥i w̄

k(., ul)
))

, ∀ui ∈ Γ

w̃(., ui) = wk(., ui)− τ
(
ρ(., ui) +

∑
l≤iD

∗
xz
k+1(., ul)

)
, ∀ui ∈ Γ

wk+1 = PD1
(w̃), ∀x ∈ Ω

w̄k+1 = 2wk+1 − wk
end while

3.2.2. Equivalence with the original problem (3.18). Let us show that a
solution of the original problem (i.e. a label assignation) can be obtained from the
computed solution w∗. First of all, let us observe the relation with the approach in
section 3, where the convexification is done with φ = H(u(x)− s), and the functional
to minimize for φ ∈ A1 is

J(φ) =

M−1∑
i=1

(ui − ui−1)

∫
Ω

|Dxφ(x, ui)|dx+

M−2∑
i=0

∫
Ω

ρ(x, ui)(φ(x, ui)− φ(x, ui+1))dx

+

∫
Ω

ρ(x, uM−1)(φ(x, uM−1))dx

(3.22)

with A1 = {φ ∈ BV (Ω× Γ, [0, 1]) such that φ(x, uO) = 1, φ(x, ui) ≥ φ(x, ui+1)}.

Proposition 3.3. There exists a bijection f between the convex sets A1 and D1,
with f(φ)(x, ui) = φ(x, ui)− φ(x, ui+1) and f−1(w)(x, ui) =

∑
j≥i w(x, uj).

Hence, setting φ(x, ui) =
∑
j≥i w(x, uj) and observing that w(x, ui) = φ(x, ui)−

φ(x, ui+1), we have that

min
φ∈A1

J(φ) = min
w∈D1

J(f−1(w)) = min
w∈D1

Jw(w). (3.23)

As a consequence, if w∗ is a global minimizer of the energy (3.20), then φ∗ =
f−1(w∗) is a global minimizer of the energy (3.22).

We know from section 3 that the problem in φ is convex and that for almost any
threshold µ then H(φ∗ − µ) is also a global solution. We can therefore build φ∗ from
w∗ and threshold it to recover a global solution of the original problem.

3.3. Connections with the approach of Chambolle et al [12]. Notice that
in [12], the authors have tackled the related problem of computing minimal partitions.
Each label is represented by si and a cost σij is the given distance between labels i
and j. In our problem σij = |si − sj |. The problem is then to minimize w.r.t to a
label map λ : x ∈ Ω 7→ λ(x) = i ∈ [1, N ], the energy:

J(λ) =

∫
Ω

ρ(x, λ(x)) +
∑
i

∑
j

σij |∂Ωi ∩ ∂Ωj |,

where the partition of Ω in N areas is defined by

Ωi = {x ∈ Ω s.t. λ(x) = i}.
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The problem is relaxed by minimizing

min
w∈D1

Ψ(Dw) +

∫
Ω

ρ(x, ui)w(x, ui)dx (3.24)

with Ψ(Dw) := sup(q)∈K
∫

Ω
qi.Dxw(x, ui), K = {(qi), |qi − qj | ≤ |ui − uj |}. This is

equivalent to our formulation. Indeed, we have

M−1∑
i=1

(ui − ui−1)

∫
Ω

|D
∑
j≥i

wj | = sup
|qi|≤ui−ui−1

M−1∑
i=1

∫
Ω

qiD
∑
j≥i

wj

= sup
|qj |≤ui−ui−1

∫
Ω

N∑
j=1

Dwj

∑
i≤j

qi

 .

(3.25)

Setting q′j =
∑
i≤j qi, we have qj = q′j+1 − q′j and :

M−1∑
i=1

(ui − ui−1)

∫
Ω

|D
∑
j≥i

wj | = sup
|q′j+1−q′j |≤ui−ui−1

M−1∑
j=1

∫
Ω

q′jDwj , (3.26)

which gives exactly the set K = {|q′j+1 − q′j | ≤ ui − ui−1} which they prove to be the
best relaxation for the minimal partition problem. As a consequence, our approach
is similar to [12], but with a different probabilistic point of view.

4. Convexification of the 2D multi-label problem. We now look at the
following class of functionals:

J2(u, v) =

∫
Ω

|Du(x)|+
∫

Ω

|Dv(x)|+
∫

Ω

ρ(x, u(x), v(x))dx, (4.1)

defined for the variables u(x) and v(x) taking their values in the discrete sets Γu =
{u0 < · · ·uM−1} and Γv = {v0 < · · · vM−1}. For sake of clarity we will now consider
that the discretization step of Γu and Γv is uniform, so that ui − ui−1 = ∆u, and
vi − vi−1 = ∆v for i = 1 · · ·M − 1.

Let us give an example of the data term ρ for the problem of optical flow esti-
mation between two images. In this case, we seek the 2D vector field correspond-
ing to the flow w(x) = (u(x), v(x)) going from image I1 to image I2. The field
w(x) = (u(x), v(x)) represents the displacement field of pixels x of image I1. The cost
function ρ can then be defined as

ρ(x, u(x), v(x)) = min(κ, |I1(x)− I2(x+ w(x))|), (4.2)

where κ > 0 is used to threshold the data term and deal with local artifacts. We just
set ρ(x, ., .) = κ when x+ w(x) is outside Ω.

4.1. Independent relaxation. In this part, we consider the natural extension
of the previous section that consists in introducing an auxiliary function for each
variable to estimate. Following the probability formulation of section 3.2, we now
have two functions wu and wv that belong to the convex set of admissible functions
D1, defined in (3.19). The regularization terms of energy (4.1) can thus be written as
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Ω

|Du| =
∫

Ω

M−1∑
i=1

(ui − ui−1)|DxH(u(x)− ui)|ds

= ∆u

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

∑
j≥i

wu(x, uj)

∣∣∣∣∣∣ dx∫
Ω

|Dv| = ∆v

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

∑
j≥i

wv(x, vj)

∣∣∣∣∣∣ dx
(4.3)

Let us now detail how to treat the data term.

4.1.1. Non convex data term. Using the previously introduced notations, the
data term reads∫

Ω

ρ(x, u(x), v(x))dx =

∫
Ω

M−1∑
i=0

M−1∑
j=0

ρ(x, ui, vj)1u=ui(x)1v=vj (x)dx

=

M−1∑
i=0

M−1∑
j=0

∫
Ω

ρ(x, ui, vj)wu(x, ui)wv(x, vj),

(4.4)

and we end up with the following problem

min
(wu,wv)∈D1×D1

J(wu, wv), (4.5)

with

J(wu, wv) =

M−1∑
i=0

M−1∑
j=0

∫
Ω

ρ(x, ui, vj)wu(x, ui)wv(x, vj)

+ ∆u

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

∑
j≥i

wu(x, uj)

∣∣∣∣∣∣dx+ ∆v

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

∑
j≥i

wv(x, vj)

∣∣∣∣∣∣ dx.
(4.6)

The data term of this energy is not jointly convex in the variables wu and wv, so that
we will only be able to reach a local minima of the problem (4.5). Nevertheless, we are
able to recover some interesting properties on the obtained local minima of the non
convex functional. Using the upper level set formulation and extending Proposition
3.3 to the 2D case, the functional can be equivalently reformulated as

J(φu, φv) =

M−1∑
i=1

∫
Ω

|Dxφu(x, ui)|dx+

M−1∑
j=1

∫
Ω

|Dxφv(x, vj)|dx

+

M−2∑
i=0

M−2∑
j=0

∫
Ω

ρ(x, ui, vj)(φu(x, ui)− φu(x, ui+1))(φv(x, vi)− φv(x, vj+1))dx

+

M−2∑
j=1

∫
Ω

ρ(x, uM−1, vj)φu(x, uM−1)(φv(x, vi)− φv(x, vj+1))dx

+

M−2∑
i=1

∫
Ω

ρ(x, ui, vM−1)(φu(x, ui)− φu(x, ui+1))φv(x, vM−1)dx

+

∫
Ω

ρ(x, uM−1, vM−1)φu(x, uM−1)φv(x, vM−1)dx

(4.7)
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with φu ∈ Au and φv ∈ Av defined in

Au = {φu ∈ BV (Ω× Γu, {0, 1}) such that φu(x, u0) = 1, φu(x, ui) ≥ φu(x, ui+1)},
Av = {φv ∈ BV (Ω× Γv, {0, 1}) such that φv(x, v0) = 1, φv(x, vj) ≥ φv(x, vj+1)}.

(4.8)

The functional J is convex in φu and in φv but not in (φu, φv). We have the following
properties.

Proposition 4.1. Let (φ∗u, φ
∗
v) ∈ Au × Av be a local minimum of J , then, for

almost any µ ∈ [0, 1], J(H(φ∗u − µ), φ∗v) = J(φ∗u, H(φ∗v − µ)) = J(φ∗u, φ
∗
v).

Proof. We know from the co-area theorem that J(φu, φv) =
∫ 1

0
J(H(φu−µ), φv)dµ.

By contradiction, assume that there exists µ such that J(H(φ∗u−µ), φ∗v) < J(φ∗u, φ
∗
v).

As (φ∗u, φ
∗
v) is a local minimum, for any small ε > 0, we have:

J(φ∗u, φ
∗
v) ≤ J((1− ε)φ∗u + εH(φ∗u − µ), φ∗v).

From the convexity of J in its first variable φu, we have ∀ε ∈ (0, 1):

J(φ∗u, φ
∗
v) ≤ J((1− ε)φ∗u + εH(φ∗u − µ), φ∗v)

≤ (1− ε)J(φ∗u, φ
∗
v) + εJ(H(φ∗u − µ), φ∗v)

< J(φ∗u, φ
∗
v),

(4.9)

which leads to a contradiction. Thus we have J(H(φ∗u − µ), φ∗v) ≥ J(φ∗u, φ
∗
v) for any

µ ∈ [0, 1]. Since the co-area formula holds, this implies that J(H(φ∗u − µ), φ∗v) =
J(φ∗u, φ

∗
v) for any µ ∈ [0, 1] (first we deduce this for almost any µ ∈ [0, 1] and then for

any µ ∈ [0, 1] by the lower semi-continuity of the energy).
Proposition 4.2. Let (φ∗u, φ

∗
v) ∈ Au × Av be a local minima of J , then for

almost any (µ, ν) ∈ [0, 1]2, J(H(φ∗u − µ), H(φ∗v − ν)) = J(φ∗u, φ
∗
v).

Proof. Assume that there exist µ, ν such that J(H(φ∗u−µ), H(φ∗v−ν)) < J(φ∗u, φ
∗
v).

From the previous proposition we know that J(H(φ∗u−µ), φ∗v) = J(φ∗u, φ
∗
v). With the

convexity of J in its second variable φv, we have ∀ε ∈ (0, 1):

J(H(φ∗u − µ), (1− ε)φ∗v + εH(φ∗v − ν))︸ ︷︷ ︸
A

≤(1− ε) J(H(φ∗u − µ), φ∗v)︸ ︷︷ ︸
=J(φ∗u,φ

∗
v)

+ε J(H(φ∗u − µ), H(φ∗v − ν))︸ ︷︷ ︸
<J(φ∗u,φ

∗
v)

<J(φ∗u, φ
∗
v).

(4.10)

With the convexity of J in its first variable, we can also notice that

J((1− ε)φ∗u + εH(φ∗u − µ), (1− ε)φ∗v + εH(φ∗v − ν))

≤(1− ε) J(φ∗u, (1− ε)φ∗v + εH(φ∗v − ν))︸ ︷︷ ︸
=J(φ∗u,φ

∗
v)

+ε J(H(φ∗u − µ), (1− ε)φ∗v + εH(φ∗v − ν))︸ ︷︷ ︸
=A<J(φ∗u,φ

∗
v)

<J(φ∗u, φ
∗
v).

(4.11)

However, if ε→ 0 (with ε > 0) then (1− ε)φ∗u + εH(φ∗u − µ), (1− ε)φ∗v + εH(φ∗v − ν)
belongs to the neighborhood of the local minima (φ∗u, φ

∗
v), so we necessarily have:

lim
ε→0

J((1− ε)φ∗u + εH(φ∗u − µ), (1− ε)φ∗v + εH(φ∗v − ν)) ≥ J(φ∗u, φ
∗
v),

which leads to a contradiction.

Hence, we know that any thresholding of a local minima will give us a solution
of the original problem with the same energy. To obtain a local minima, we consider
the following approaches.
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Alternate minimization. Assuming that wv (resp. wu) is known, the functional
can be minimized alternatively with respect to wu (resp. wv) until convergence [25] .
In both cases, we can linearize with respect to the optimized variable and recover the
original 1D problem. For instance, when optimizing with respect to φ, we have the
problem

min
wu

∆u

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

∑
j≥i

wu(x, uj)

∣∣∣∣∣∣ dx+

M−1∑
i=0

∫
Ω

ρu(x, ui)wu(x, ui), (4.12)

where the data value ρu is obtain by integration over the dimension associated to v:

ρu(x, ui) =

M−1∑
j=0

ρ(x, ui, vj)wv(x, vj). (4.13)

The theoretical optimization tools of section 3.1.1 can be used to minimize (4.12). At
convergence of the process, the obtained local minima (w∗u, w

∗
v) can be used to build

φu = f(w∗u) and φv = f(w∗v), with the function f defined in Proposition 3.3.
By thresholding such functions, we can produce an admissible function of the

original non convex problem : u∗(x) = u0 + ∆u

∑M−1
i=1 φu(x, ui, ) and v∗(x) = v0 +

∆v

∑M−1
i=1 φv(x, vi). However, we here have no information on the obtained couple

(u∗(x), v∗(x)), which has no reason to be a local extremum.

Joint minimization. In order to minimize properly the non convex functional
(4.6), the joint descent direction can be considered for the couple (wu, wv). Hence,
the optimal relations given by the partial derivatives of (4.6) w.r.t (wu, wv) read:

wk+1
u (., ui) = wku(., ui)− τ

∑
l≤i

D∗xz
k+1
u (., ul) +

M−1∑
j=0

ρ(., ui, vj)w
k+1
v (., vj)


wk+1
v (., vj) = wkv (., vj)− τ

∑
l≤j

D∗xz
k+1
v (., vl) +

M−1∑
i=0

ρ(., ui, vj)w
k+1
u (., ui)


The solution (wk+1

u , wk+1
v ) can be obtained by solving for each point x ∈ Ω:



wk+1
u (x, u1)

...

wk+1
u (x, uM )

wk+1
v (x, v1)

...

wk+1
v (x, vM )


=

 Id τρ(x, ., .)

τρT (x, ., .) Id

−1

︸ ︷︷ ︸
A



wku(x, u1)− τ
∑
l≤1D

∗
xz
k+1
u (x, ul)

...

wku(x, uM )− τ
∑
l≤M D∗xz

k+1
u (x, ul)

wkv (x, v1)− τ
∑
l≤1D

∗
xz
k+1
v (x, vl)

...

wkv (x, vM )− τ
∑
l≤M D∗xz

k+1
v (x, vl)


where the constant matrix A of size 4M2 is constant and can be inverted beforehand.
This approach therefore requires a lot of memory, but we will see in the experimental
section that it produces results of the same quality (or even better accuracy) than the
convex relaxations. The full process is given in algorithm 5.
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Algorithm 4 Alternate minimization of the 2D non-convex energy (4.6)

Initialize w0
u = w̄0

u = 1
M , w0

v = w̄0
v = 1

M ,z0
u = z0

v = 0, σ, τ > 0 such that στ < 1
8M

while ||wlu − wl−1
u ||+ ||wlv − wl−1

v || > ε do

Compute ρu(x, ui) =
∑M−1
j=0 ρ(x, ui, vj)w

l
v(x, vj)

Set w0
u = wl−1

u

while ||wku − wk−1
u || > ε do

zk+1
u (., ui) = PB

(
zku(., ui) + σDx

(∑
l≥i w̄

k
u(., ul)

))
, ∀ui ∈ Γu

w̃u(., ui) = wku(., ui)− τ
(
ρu(., ui) +

∑
l≤iD

∗
xz
k+1
u (., ul)

)
, ∀ui ∈ Γu

wk+1
u = PD1

(w̃u), ∀x ∈ Ω

w̄k+1
u = 2wk+1

u − wku
end while
Set wl+1

u = wk+1
u

Compute ρv(x, vj) =
∑M−1
i=0 ρ(x, ui, vj)w

l+1
u (x, ui)

Set w0
v = wl−1

v

while ||wkv − wk−1
v || > ε do

zk+1
v (., vj) = PB

(
zkv(., vj) + σDx

(∑
l≥j w̄

k
v (., vl)

))
, ∀vj ∈ Γv

w̃v(., vj) = wkv (., vj)− τ
(
ρv(., vj) +

∑
l≤j D

∗
xz
k+1
v (., vl)

)
, ∀vi ∈ Γv

wk+1
v = PD1

(w̃v), ∀x ∈ Ω

w̄k+1
v = 2wk+1

v − wkv ,

end while
Set wl+1

v = wk+1
v

end while

Algorithm 5 Minimizing the 2D non-convex energy (4.6)

Initialize w0
u = w̄0

u = 1
M , w0

v = w̄0
v = 1

M , z0
u = z0

v = 0, choose σ, τ > 0 such that
στ < 1

8M
while ||wku − wk−1

u ||+ ||wkv − wk−1
v || > ε do

zk+1
u (., ui) = PB

(
zku(., ui) + σDx

(∑
l≥i w̄

k
u(., ul)

))
, ∀ui ∈ Γu

zk+1
v (., vj) = PB

(
zkv(., vj) + σDx

(∑
l≥j w̄

k
v (., vl)

))
, ∀vj ∈ Γv

bu(., ui) = wku(., ui)− τ
∑
l≤iD

∗
xz
k+1
u (., ul), ∀ui ∈ Γu

bv(., vj) = wkv (., vj)− τ
∑
l≤j D

∗
xz
k+1
v (., vl), ∀vj ∈ Γvw̃u(x, .)

w̃v(x, .)

 = A

bu(x, .)

bv(x, .)

, ∀x ∈ Ω

wk+1
u = PD1

(w̃u), ∀x ∈ Ω

w̄k+1
u = 2wk+1

u − wku
wk+1
v = PD1

(w̃v), ∀x ∈ Ω

w̄k+1
v = 2wk+1

v − wkv
end while
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Remark. When looking at the continuous formulation (∆u and ∆v tending to 0)
within the upper level sets framework, the data term reads:∫

Γu

∫
Γv

∫
Ω

ρ(x, s, t)∂sφu(x, s)∂tφv(x, t)dsdtdx.

It has been noticed in [25] that this term is polyconvex in the sense of [8] as it involves
the determinant of the Jacobian Matrix in (s, t): ∂sφ ∂tφ

∂sψ ∂tψ

 =

 ∂sφ 0

0 ∂tψ

 .

Polyconvex functionals are quasiconvex. As quasiconvexity is the right extension of
the notion of convexity for vector valued functions, it guarantees, under assumptions,
the existence of minimizers and the well-posedness (in a certain sense) of the energies.
Since the probability formulation shares the properties of the upper level sets one, it
may explain the good behavior of the non convex approach on real experiments that
will be detailed in the application section.

4.1.2. Convexification of the data term. To tackle properly the whole en-
ergy, some convex relaxations of the data term have been proposed in [17, 30]. The
idea of [30] is to compute the biconjugate of the data term with the Legendre-Fenchel
transform in order to obtain a tight relaxation. This leads to reformulate the data
term for binary variables (wbu, w

b
v) in the following convex way:

M−1∑
i=0

M−1∑
j=0

∫
Ω

ρ(x, ui, vj)w
b
u(x, ui)w

b
v(x, vj)

= max
(qu,qv)∈Q

M−1∑
i=0

∫
Ω

(
wbu(x, ui)qu(x, ui) + wbv(x, vi)qv(x, vi)

)
,

where two other auxiliary variables qu(x, ui) and qv(x, vj) have been introduced. They
are defined in the convex set:

Q ={qu : Ω× Γu 7→ R, qv : Ω× Γv 7→ R,
s.t. qu(x, ui) + qv(x, vj) ≤ ρ(x, ui, vj)∀x ∈ Ω, 0 ≤ i, j ≤M − 1}.

Notice that for non binary variables (wu, wv), we will have:

M−1∑
i=0

M−1∑
j=0

∫
Ω

ρ(x, ui, vj)wu(x, ui)wv(x, vj)

≥ max
(qu,qv)∈Q

M−1∑
i=0

∫
Ω

(wu(x, ui)qu(x, ui) + wv(x, vi)qv(x, vi)) .

(4.14)

Slightly modifying the approach of [30], we end up with the following energy to
minimize w.r.t wu and wv:

JC(wu, wv) = max
(qu,qv)∈Q

M−1∑
i=0

∫
Ω

(wu(x, ui)qu(x, ui) + wv(x, vi)qv(x, vi))

+ ∆u

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

∑
j≥i

wu(x, uj)

∣∣∣∣∣∣dx+ ∆v

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

∑
j≥i

wv(x, vj)

∣∣∣∣∣∣ dx.
(4.15)
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As the orthogonal projection onQ can not be written explicitly, the corresponding
proximal operator needed by the primal-dual algorithm of [13] can not be formulated
directly for the new variables (qu, qv). One solution is therefore to do inner loops in
order to approximate the projection onto Q. The authors of [30] chose to consider
a Lagrange multiplier, by introducing a new variable λ(x, ui, vj) ∈ Ω × Γu × Γv to
enforce the constraint qu(x, ui) + qv(x, vj) ≤ ρ(x, ui, vj). The projection onto Q is
therefore done by solving

PQ(q̃u, q̃v) = min
(qu,qv)

max
λ≥0
||qu − q̃u||2 + ||qv − q̃v||2

+

M−1∑
i=0

M−1∑
j=0

∫
Ω

(qu(x, ui) + qv(x, vj)− ρ(x, ui, vj))λ(x, ui, vj),
(4.16)

with an Uzawa’s algorithm. Such projection then requires additional parameters for
monitoring the inner loops. In our experiments, we realized a fixed number of 50
iterations in our implementation to approximate the projection on Q, that turns out
to be a good compromise between computational cost and quality of the results.
The process converges perfectly with such parametrization but the complexity of the
projection is not negligible as it consists in iterations in the domain of λ ∈ R|Ω|M2

.
The final process is illustrated in Algorithm 6.

With this new convexification of the data term and contrary to the previous non
convex approach, the equivalence with the upper level set formulation does no longer
hold, and the layer cake formula can no longer be used. To be more precise, let us
rewrite the new data term within the upper level set formulation:

D(wu, wv)

= max
(qu,qv)∈Q

M−1∑
i=0

∫
Ω

(wu(x, ui)qu(x, ui) + wv(x, vi)qv(x, vi))

= max
(qu,qv)∈Q

M−2∑
i=0

∫
Ω

(φu(x, ui)− φu(x, ui+1)qu(x, ui) + (φv(x, vi)− φv(x, vi+1)qv(x, vi))

+

∫
Ω

φu(x, uM−1)qu(x, uM−1) +

∫
Ω

φv(x, vM−1)qv(x, vM−1)

= max
(qu,qv)∈Q

D̃(φu, φv, qu, qv)

= D̃(φu, φv, q
∗
u, q
∗
v)

= D(φu, φv),

where the couple (q∗u, q
∗
v) ∈ Q maximizes the previous relation for (φu, φv) given. One

can therefore observe that

D(φu, φv) =

∫ 1

0

D̃(H(φu − µ), H(φv − µ), q∗u, q
∗
v)dµ

≤
∫ 1

0

max
(qu,qv)∈Q

D̃(H(φu − µ), H(φv − µ), qu, qv)dµ

≤
∫ 1

0

D(H(φu − µ), H(φv − µ))dµ.

From relation (4.14), we thus have:

JC(wu, wv) ≤ J(wu, wv),
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where JC and J respectively refer to expressions (4.6) and (4.15). We can only
prove that both functionals are equivalent for binary arguments. As a consequence,
if the computed global minimum of JC is not binary, we have no guarantee that a
thresholding operation will be able to recover a minimum (neither local or global)
for both the relaxed non convex problem (4.6) and the original problem (4.1). This
is the reason why the authors of [30] proposed to build an admissible function of
the original problem by keeping for each pixel x, the couple of labels (ui, vj) that
maximize w∗u(x, ui) + w∗v(x, vi).

Algorithm 6 Minimizing the 2D convex energy (4.15)

Initialize w0
u = w̄0

u = 1
M , w0

v = w̄0
v = 1

M , z0
u = z0

v = q0
u = q0

v = 0, choose σ, τ > 0
such that στ < 1

8M2

while ||wku − wk−1
u ||+ ||wkv − wk−1

v || > ε do

zk+1
u (., ui) = PB

(
zku(., ui) + σDx

(∑
l≥i w̄

k
u(., ul)

))
, ∀ui ∈ Γu

zk+1
v (., vj) = PB

(
zkv(., vj) + σDx

(∑
l≥j w̄

k
v (., vl)

))
, ∀vj ∈ Γv

q̃u(., ui) = qku(., ui) + σ(w̄ku(., ui) +
∑M
j=1 λ(., ui, vj)), ∀ui ∈ Γu

q̃v(., vj) = qkv (., vj) + σ(w̄kv (., vj) +
∑M
i=1 λ(., ui, vj)), ∀vj ∈ Γv

[qk+1
u , qk+1

v ] = PQ([q̃u, q̃v]), ∀x ∈ Ω

w̃u(., ui) = wku(., ui)− τ
(
qk+1
u (., ui) +

∑
l≤iD

∗
xz
k+1
u (., ul)

)
, ∀ui ∈ Γu

wk+1
u = PD (w̃u), ∀x ∈ Ω

w̄k+1
u = 2wk+1

u − w̄ku
w̃v(., vj) = wkv (., vj)− τ

(
qk+1
v (., vj) +

∑
l≤j D

∗
xz
k+1
v (., vl)

)
, ∀vj ∈ Γv

wk+1
v = PD (w̃v), ∀x ∈ Ω

w̄k+1
v = 2wk+1

v − w̄kv
end while

Finally notice that this process involves relations between all the label pairs
through the couples (qu(x, ui), qv(x, vj)), so that it leads to store additional variables
λ of size |Ω|M2 during the projection on Q. Such storage can in practice be avoided
as the projection is done point-wise and a parallel computation may decrease this
dimension as mentioned in [30, 18]. Nevertheless, if one want to avoid the storage of
variables of such dimensions, then ρ (which is also of size |Ω|M2) must be recomputed
at each iteration of the process, which has a huge computational cost.

4.2. General convexification. We now look at another convexification that
increases the primal dimension but which allows gathering all the unknowns in a
single auxiliary variable.

4.2.1. Convexification with upper level sets. As in [9], we can follow the
strategy of section 3.1 and consider the function φ(x, ui, vj) = H(u(x)− ui)H(v(x)−
vj) to convexify the problem (4.1). Note that since H(u(x)− u0) = H(v(x)− v0) = 1
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we have φ(x, u0, vj) = H(v(x)− vj) and φ(x, ui, v0) = H(u(x)− ui). Observing that∫
Ω

ρ(x, u(x), v(x))dx

=

∫
Ω

M−2∑
i,j=0

ρ(x, ui, vj)(H(u(x)− ui)−H(u(x)−ui+1))(H(v(x)−vj)−H(v(x)−vj+1)) dx

=

M−1∑
i,j=0

∫
Ω

ρ(x, ui, vj)(φ(x, ui, vj)−φ(x, ui, vj+1)−φ(x, ui+1, vj)+φ(x, ui+1, vj+1))

(4.17)∫
Ω

|Du(x)| =
M−1∑
i=1

∫
Ω

(ui − ui−1)|DxH(u(x)− ui)|dx

=∆u

M−1∑
i=1

∫
Ω

|Dxφ(x, ui, v0)|dx (4.18)

∫
Ω

|Dv(x)| =∆v

M−1∑
i=1

∫
Ω

|Dxφ(x, u0, vi)|dx (4.19)

we can then consider the functional J(φ) defined as the sum of the three terms (4.17),
(4.18) and (4.19) and look at the convex problem

min
φ∈Ā2

J(φ), (4.20)

defined on the relaxed convex set of admissible functions:

Ā2 = {φ : (x, s, t) ∈ BV (Σ, [0, 1]), φ(x, u0, v0) = 1,

φ(x, ui, vj)− φ(x, ui, vj+1)− φ(x, ui+1, vj) + φ(x, ui+1, vj+1) ≥ 0

φ(x, ui, uj) ≥ φ(x, ui+1, vj), φ(x, ui, uj) ≥ φ(x, ui, vj+1)∀i, j},

where Σ = Ω× Γu × Γv.
Hence, one can show that if the function φ∗ is a binary minimizer of J , then the

couple (u∗, v∗) defined as

u∗(x) = u0 + ∆u

M−1∑
i=1

φ(x, ui, v0)

v∗(x) = v0 + ∆v

M−1∑
i=1

φ(x, u0, vi)

(4.21)

is a global minimizer of the functional (4.1). However, if φ∗ is not binary, we can not
use relations (4.21) to build a solution of the original non convex problem. This is
due to the fact that in the 2D case, the characteristic functions of the level sets of φ
may not belong to the set of admissible functions A2, defined as:

A2 = {φ : (x, s, t) ∈ BV (Σ, [0, 1]), φ(x, u0, v0) = 1,

φ(x, ui, vj)− φ(x, ui, vj+1)− φ(x, ui+1, vj) + φ(x, ui+1, vj+1) ∈ {0, 1}
φ(x, ui, uj) ≥ φ(x, ui+1, vj), φ(x, ui, uj) ≥ φ(x, ui, vj+1)}.
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This main issue will be discussed in section 5. The projection on the derivative
constraints included in the convex set A2 seems here unrealistic due to the complexity
of the iterative Dijkstra algorithm that should be done point-wise, for each x ∈ Ω.
For D > 1 multi-label problems, there is no relation of order between labels. As a
consequence, the results of [27] can no longer be used and the projection is necessary.
We now detail the equivalent probabilistic formulation that involves exact projections.

4.3. The 2D probabilistic point of view. A probabilistic formulation of the
convexification for the 2D problem is now proposed. As in section 3.2, we introduce
the variable w(x, ui, vj) measuring the probability of assigning the label pair (ui, vj) ∈
Γu × Γv to the pixel x ∈ Ω. The data term now reads:

min
u∈Γu,v∈Γv

∫
Ω

ρ(x, u(x), v(x))dx = min
w∈D2

∫
Ω

M−1∑
i=0

M−1∑
j=0

ρ(x, ui, vj)w(x, ui, vj)dx,

where Σ = Ω × Γu × Γv. The previous relation is valid for binary values of w with
a single one that is 1 for each x ∈ Ω. As before, since such class of functions is not
convex, the set of admissible functions is relaxed as

D2 =

w : Σ 7→ [0, 1], s.t.

M−1∑
i=0

M−1∑
j=0

w(x, ui, vj) = 1, ∀x ∈ Ω

 . (4.22)

Again, the Total Variation of u and v can be rewritten in terms of w as:

∫
Ω

|Du| = ∆u

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

M−1∑
j=1

∑
k≥i

w(x, uk, vj)

∣∣∣∣∣∣ dx∫
Ω

|Dv| = ∆v

∫
Ω

M−1∑
j=1

∣∣∣∣∣∣Dx

M−1∑
i=1

∑
k≥j

w(x, ui, vk)

∣∣∣∣∣∣ dx
The functional to minimize is then

Jw(w) =

∫
Ω

M−1∑
i=1

M−1∑
j=1

ρ(x, ui, vj)w(x, ui, vj)dx+∆u

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

M−1∑
j=1

∑
k≥i

w(x, uk, vj)

∣∣∣∣∣∣dx
+ ∆v

∫
Ω

M−1∑
i=j

∣∣∣∣∣∣Dx

M−1∑
i=1

∑
k≥j

w(x, ui, vk)

∣∣∣∣∣∣dx.
(4.23)

The problem of minimizing (4.23) w.r.t w ∈ D2 is convex and a global minimum
can be found with the previously introduced dual optimization methods. The process
is summed up in Algorithm 7. The projection on D2 can also be done point-wise
by projecting, for each pixel x the vector of coordinates w(x, ., .) onto a simplex of
dimension M2, which makes the primal projection exact, contrary to the upper level
set formulation. Also notice that contrary to the previous convexification of the data
term, we here do not have any inner loop inside the algorithm, so that there is no
approximation with this formulation.
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Algorithm 7 Minimizing the 2D convex energy (4.23)

Initialize w0 = w̄0 = 1
M2 , z0

u = z0
v = 0, choose σ, τ > 0 such that στ < 1

8M3

while ||wk − wk−1|| > ε do

zk+1
u (., ui) = PB

(
zku(., ui) + σDx

(∑M−1
j′=0

∑
i′≥i w̄

k(., ui′ , vj′)
))

, ∀ui ∈ Γu

zk+1
v (., vj) = PB

(
zkv(., vj) + σDx

(∑M−1
i′=0

∑
j′≥j w̄

k(., ui′ , vj′)
))

, ∀vj ∈ Γv

w̃(., ui, vj) = wku(., ui) + τ
(∑

i′≤iD
∗
xz
k+1
u (., ui′)

+
∑
j′≤j D

∗
xz
k+1
v (., vj′)− ρ(., ui, vj)

)
, ∀ui, vj ∈ Γu × Γv

wk+1 = PD (w̃), ∀x ∈ Ω

w̄k+1 = 2wk+1 − wk
end while

Equivalence between the relaxed problems. Probability and upper level sets formu-
lations are equivalent, as in 1D. Indeed, by taking φ(x, s, t) = H(u(x)−s)H(v(x)− t)
and by considering the problem minφ∈A2

J(φ), we find the same kind of relation as
in section 3.2:

Proposition 4.3. There exists a bijection f between the convex sets A2 and D2,
with f(φ)(x, ui, vj) = φ(x, ui, vj) − φ(x, ui, vj+1) − φ(x, ui+1, vj) + φ(x, ui+1, vj+1)
and f−1(w)(x, ui, vj) =

∑
k≥i
∑
l≥j w(x, uk, vl) and we have J(φ) = Jw(f(φ)).

An example of such relation between local values of w(x, ., .) and φ(x, ., .) is given in
Figure 4.1. Note that the upper level set approach for 2D problems has also been
recently proposed in [19], where the constraints associated to A2 are treated with an
additional auxiliary variable instead of using a Dijkstra algorithm, as done in [7] for
1D problems.

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0.4 0

0 0 0.2 0.2 0 0

0 0 0 0 0 0

0.2 0 0 0 0 0

⇔

0 0 0 0 0 0

0 0 0 0 0 0

0.4 0.4 0.4 0.4 0.4 0

0.8 0.8 0.8 0.6 0.4 0

0.8 0.8 0.8 0.6 0.4 0

1 0.8 0.8 0.6 0.4 0

w∗(x, ., .) φ∗(x, ., .)

Fig. 4.1. On the left: example of values w∗(x, ., .). On the right: corresponding values φ∗(x, ., .).

The next proposition is a straightforward consequence of what we discussed so far.
Proposition 4.4. If w∗ is a global minimizer of the functional Jw defined in

(4.23) w.r.t w ∈ D2, then φ∗ = f−1(w∗) is a global minimzer of problem (4.20).
The method can easily be extended to N −D by following the previous approach

and defining the corresponding convex set DN . With respect to the non convex
approach of section 4, we here gain convexity. On the other hand, the dimension
of the state explodes, as |Ω|MN > MN |Ω| for practical problems where M >> 1.
Moreover, the question remains in dimensions N > 1 of getting back to a minimizer
of the original problem. This is a tough question, as explained in [12], since there
may be no connections between the two minimizers. Notice that this issue is not
considered in [30], and that the solution proposed in [9] is not satisfactory as will be
explained in the next section.



22 N. PAPADAKIS AND J-F. AUJOL AND V. CASELLES AND R. YILDIZOGLU

5. How to get back to the original problem ?. In the 1D case, we know how
to get a solution of the original problem from the relaxed one. In 2D, the approach
with upper level sets does not always give a solution since upper level sets do not
always lie in the domain of the original problem. We discuss this further and we
propose strategies to go back to the domain of the original problem. We compare
the energies of the original problem obtained by these strategies with some other
strategies used for the previous formulations.

5.1. Box functions : where it works. In any dimension N , the layer cake
formula is valid for the energy J so that

J(φ∗) =

∫ 1

0

J(H(φ∗ − µ))dµ,

In dimension N = 1, the characteristic function of the level sets of φ also belongs to
the set of acceptable solutions A1. This means, as we have already seen in Theorem
3.2, that for almost every threshold µ ∈ [0, 1], H(φ∗ − µ) is a global solution of the
convex and non convex problems. In 2D the layer cake formula is still true if we
extend the energy to BV (Ω × Γu × Γv, [0, 1]), but H(φ∗ − µ) is not bound to be in
A2 and we can not conclude in general.

Next, following [9], we define the box functions set Bf as the set of functions such
that for almost every threshold µ, H(φ(x, ui, vj)−µ) = H(ui−ukx,µ)H(vj−vlx,µ). This
definition is motivated by the fact that it is then possible to get back by thresholding to
the definition domain of the original problem by choosing (u(x), v(x)) = (ukx,µ , vlx,µ)
and we find a global minimum of the original energy. This is illustrated in Figure 5.1.

0 0 0 0 0 0

0 0 0 0 0 0

0.4 0.4 0.4 0.4 0.4 0

0.8 0.8 0.8 0.6 0.4 0

0.8 0.8 0.8 0.6 0.4 0

1 0.8 0.8 0.6 0.4 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 0

1 1 1 1 1 0

1 1 1 1 1 0

1 1 1 1 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

φ∗(x, ., .) µ = 0.3 µ = 0.5 µ = 0.7

Fig. 5.1. When φ∗(x, ., .) is a box function (on the left), then any level set 1φ∗(x,.,.)>µ is also
a box function (examples are given for thresholds µ ∈ {0.3, 0.5, 0.7}).

Unfortunately, for general problems, we may have that φ∗ is not a box function,
so that recovering (u, v) involves ambiguities. A sketch of such ambiguity is given in
Figure 5.2. Moreover, as the box functions set is not convex, it is difficult to impose
such a constraint in practice. Nevertheless, we show in Figure 5.3 the percentage
of pixels where we do not find a box function after thresholding in an optical flow
estimation. This shows that for real applications, where few global minima of the
non convex energy are expected, we can expect recovering interesting solutions of the
original problem. Note that this result contradicts the analysis of [19], where the
authors observe box functions everywhere in their results.

5.2. Stair functions. As we have seen, we can conclude in the case of box
functions, but this case is not general enough for our purpose. Let us explain what
happens in dimension 2, if we threshold φµ = 1φ∗≥µ, then φµ(x, s, t) ∈ {0, 1}, but
φµ(x, ui, vj) − φµ(x, ui, vj+1) − φµ(x, ui+1, vj) + φµ(x, ui+1, vj+1) ∈ {−1, 0, 1}. With
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0 0 0 0 0 0

0 0 0 0 0 0

0.4 0.4 0.4 0.4 0 0

0.8 0.4 0.4 0.4 0 0

0.8 0.8 0.4 0.4 0 0

1 0.8 0.8 0.6 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

φ∗(x, ., .) µ = 0.3 µ = 0.5 µ = 0.7

Fig. 5.2. When φ∗(x, ., .) is not a box function (on the left), then its level sets 1φ∗(x,.,.)>µ have
no reason to be box functions. Examples are given for thresholds µ ∈ {0.3, 0.5, 0.7}. A box function
is obtained with µ = 0.3 but stairs functions are obtained with the other thresholds.

Fig. 5.3. For any threshold µ ∈]0, 1[, we plot the percentage of pixels where the function
H(φ∗−µ) is not a box function. These estimations have been done on 4 different data configurations,
the last one being with random data, whereas the other correspond to realistic, where few global
minima are expected.

respect to wµ = ∂stφµ, we will have
∑
s

∑
t wµ(x, s, t) = 1, but wµ(x, s, t) ∈ {−1, 0, 1},

which is not acceptable for a distribution.
Let us now assume that at a point x, H(φ∗ − µ) is not a box function, then

H(φ∗ − µ) is necessarily a binary ”stair function” defined in the set Sf :

Sf = {φ(s, t) : φ(x, y) ≥ φ(s, t)∀x < s, y < t)}.

A sketch of binary stair functions is given in Figure 5.2. The trouble is that stair
functions are not necessary box functions, so that the characteristic function of the
level sets of φ∗ do not necessary belong to the set of acceptable solutions A2.

This explains the reasoning of [9]. The authors advocate the threshold µ = 1 that
always lead to a binary box function. The trouble is that such a thresholding is not
the best choice as we will see. Another solution to necessarily obtain a box function
is to select one (if not unique) of the highest values of w∗(x, ., .) for each x ∈ Ω, but
we will see that that such strategy is not optimal in practice.

5.3. How to choose a box function to approximate a solution of the
original problem. In view of the discussion above, a solution to estimate u and v is
to consider different thresholdings of φ∗ that lead to box functions. Let us consider
the box function φbµ,ν = H(φ∗(x, s, v0)− µ)H(φ∗(x, u0, t)− ν)

Regularization term case. We have that∫
Ω

M−1∑
i=1

(ui − ui−1)|Dxφbµ,ν(x, ui, v0)|

=

∫
Ω

M−1∑
i=1

(ui − ui−1)|DxH(φ∗(x, ui, v0)− µ)H(φ∗(x, u0, v0)− ν)|

=

∫
Ω

M−1∑
i=1

(ui − ui−1)|DxH(φ∗(x, ui, v0)− µ)|,
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and∫
Ω

M−1∑
i=1

(vi − vi−1)|Dxφbµ,ν(x, u0, vi)| =
∫

Ω

M−1∑
i=1

(vi − vi−1)|DxH(φ∗(x, u0, vi)− ν)|.

Denoting as JTV , the total variation part of the energy J , thanks to the coarea
formula we therefore see that∫ 1

0

∫ 1

0

JTV (φbµ,ν) dνdµ

=

∫ 1

0

∫ 1

0

(∫
Ω

M−1∑
i=1

∆ui |Dxφ
b
µ,ν(x, ui, v0)| +

∫
Ω

M−1∑
i=1

∆vi |Dxφ
b
µ,ν(x, u0, vi)|

)
dνdµ

=

∫ 1

0

∫ 1

0

(∫
Ω

M−1∑
i=1

∆ui |DxH(φ∗(x, ui, v0)− µ)|+
∫

Ω

M−1∑
i=1

∆vi |DxH(φ∗(x, u0, vi)− ν)|

)
dνdµ

=

∫
Ω

M−1∑
i=1

∆ui |Dxφ
∗(x, ui, v0)|+

∫
Ω

M−1∑
i=1

∆vi |Dxφ
∗(x, u0, vi)|

=JTV (φ∗)

Data term case. For the data term JData, we need
∫ 1

0

∫ 1

0
φbµ,νdνdµ = φ∗, but∫ 1

0

∫ 1

0

φbµ,νdνdµ=

∫ 1

0

∫ 1

0

H(φ∗(x, s, v0)−µ)H(φ∗(x, u0, t)− ν)dνdµ=φ∗(x, s, v0)φ∗(x, u0, t).

where ∆ui = ui − ui−1 and ∆vi = vi − vi−1 . So if φ∗(x, s, v0)φ∗(x, u0, t) = φ∗(x, s, t)
or, in terms of w, if u and v are independent, then we can find a global solution of the
original problem for almost any threshold (µ, ν). If this is not the case, coming back
to the upper level sets φ∗µ = H(φ∗ − µ), one knows that the points (s, t) such that
φ∗µ(x, ui, vj)−φ∗µ(x, ui, vj+1)−φ∗µ(x, ui+1, vj)+φ

∗
µ(x, ui+1, vj+1) = 1 should correspond

to high probabilities w(x, s, t), one could then observe that choosing one of these
couples to build a box function should be better for the data term JData of the energy.
We denote by (si, ti) these nx ≥ 1 points. For each point x and each extremal point
(si, ti), we can therefore define a box function φbi (x, s, t) = H(si − s)H(ti − t). The
two box functions associated to the particular extremal points (s1, t1) and (snx , tnx)
are then represented as φb1 and φbn.

With these notations, the box function φbµ,µ is the smallest one to include the
binary stair function H(φ∗−µ). The coordinates of such box function are represented
with the couple of point (s∗, t∗). An illustration of this is given in Figure 5.4 to explicit
all these cases. Hence, setting JTV = Ju + Jv, we could expect that the different
thresholdings of the estimated global solution φ∗ have the following properties:
- JTV (φbµ,µ) = JTV (φ∗µ) ≈ JTV (φ∗) and there is no prior on JData(φbµ,µ)

- Ju(φb1) = Ju(φ∗µ) ≈ Ju(φ∗), JData(φb1) ≈ JData(φ∗) and there is no prior on Ju(φb1)

- Jv(φ
b
n) = Jv(φ

∗
µ) ≈ Jv(φ∗), JData(φbn) ≈ JData(φ∗) and there is no prior on Jv(φ

b
n)

The energies for the three previously mentioned particular box functions derived
from H(φ∗ − µ) are illustrated in Figure 5.5. These results demonstrate numerically
what has been detailed before, apart from the fact that the data term is increasing for
large µ > 0.5. This is due to the fact that in the present experiment, the estimated
w(x, ., .) appeared to be either unimodal or bimodal for almost any x ∈ Ω.

It can be noticed that the first thresholding choice (where the regularization term
is controlled by selecting a box function with the pairs (s∗, t∗)) seems to lead to good
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0 0 0 0 0 0 0

0 0 0 0 0 0 0

(s4, t4) (s∗, t∗)
1 0 0 0 0 0 0

(s3, t3)
1 1 0 0 0 0 0

(s2, t2)
1 1 1 1 0 0 0

(s1, t1)
1 1 1 1 1 0 0

1 1 1 1 1 0 0

Fig. 5.4. The thresholded solution H(φ∗−µ) is given, and the different possible natural binary
box functions are shown (defined with the pairs of labels (s, t)). We here have nx = 4.

results in all the cases. We will therefore consider such a thresholding approach in
the following. The best threshold is around µ = 0.5 and we will consider this value
from now on. This experiment also shows that the strategy of [9] is not optimal, as
the threshold µ = 1 leads to a worse energy.

Remark. Recalling the equivalence between w and φ described Figure 4.1, it is
interesting to see that box functions will be found anytime as long as we can define,
for every x ∈ Ω a non decreasing path (sk, tk) with sk+1 ≥ sk and tk+1 ≥ tk that
crosses all the non null weights w(x, s, t). Naturally, if we can define for every x ∈ Ω
a path (sk, tk) with sk+1 ≤ sk and tk+1 ≥ tk, then we would have box functions by
taking the upper level sets of u and the lower level sets of v. Having such the same
configuration of weights for all pixels has nevertheless no reason to occur in general.

(a) (b) (c) (d)

Fig. 5.5. The energy of the computed global minima φ∗ is compared to the energies of the
different thresholding approaches to obtain box functions. (a) Data term. (b) TV(u). (c) TV(v).
(d) Complete energies ((a)+(b)+(c)).

5.4. Comparison with the other approaches. With respect to the non con-
vex approach [25] (which is a lot faster), the solutions obtained with the proposed
convex approach always have smaller energies. We also reach the same global energy
minima than the ones obtained with the convexification of the data term in [30]. This
is illustrated in Table 5.1, where the energies estimated by the convex and non convex
approaches are presented for a real optical flow experiment. The given estimations
correspond to a stopping threshold of ε = 10−6 in the previously given algorithms. As
expected, the solutions obtained with the convex approaches are independent from
the initialization. Even if there exist no relations between the non binary global min-
ima of the convex models and the original problems, the thresholding procedure is
able to recover solutions of good quality in terms of energy, both with [30] and the
proposed model. It is important to notice that the non convex approach with the
joint minimization algorithm can produce better estimations of the original problem.
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As suggested in [30], we also show the energies obtained by keeping the most
probable value for every x ∈ Ω, that leads to bad estimations only for the proposed
convex approach. We also computed the energy associated with the weighted mean
value, but do not present them as it gives worse results in practice.

Relaxed energy: Original energy: Original energy:

minima estimation best threshold highest probability

Uniform initialization

Non convex [25] 438.67 441.06 441.58

Non convex joint 432.25 435.48 435.84

Data convexified [30] 428.86 435.53 439.19

Proposed convex 428.87 435.19 465.23

Best label initialization

Non convex [25] 461.92 464.89 466.32

Non convex joint 431.57 434.03 434.35

Data convexified [30] 428.86 435.51 439.35

Proposed convex 428.87 435.23 464.85

Random initialization

Non convex [25] 602.05 607.72 610.14

Non convex joint 432.01 435.25 435.44

Data convexified [30] 428.87 435.63 438.16

Proposed convex 428.87 435.18 466.18

Table 5.1
Comparison for a real example. The energies of the minima of the relaxed problems obtained

with the different methods and different initializations (uniform, best label without regularization and
random) are given in the first column. The original energy is then computed for the solution built
by thresholding the corresponding upper level set function (second column) or by keeping the label
with the highest probability (last column). The convex approaches lead to the same global minima
for any initialization. The non convex approach allows recovering solutions of the original problem
whose energies are close to the one of the local solution estimated for the relaxed problem. Note that
the new algorithm for the non convex model performs very well.

We show in Figure 5.6 that the non convex method and the proposed convex
method give reasonable estimations (in terms of energy) for any threshold, whereas
the convex method of [30] is more sensible to thresholding values. The corresponding
optical flow estimations are given in Figure 6.5 of next section. Note that in this
example realized on a realistic data configuration, we expect the modeling to be well
suited, so that the original non convex problem should have few global minima. This
explains why the recovered solutions give satisfactory energies.

These examples have been obtained by considering Mu = 8 and Mv = 7 labels.
One can observe that the required memory needed by each approach is:

• Non convex [25]: 3(Mu +Mv)|Ω|, as ρu, wu, and zu are of size Mu|Ω|, while
ρv, wv and zv are of size Mv|Ω|

• Non convex joint minimization: ((Mu +Mv)
2 + 2(Mu +Mv))|Ω|, as the pre-

computed inverse matrix is of size (Mu + Mv)
2 at each point x, wu and zu

are of size Mu|Ω|, while wv and zv are of size Mv|Ω|
• Convex [30]: (3Mu + 3Mv + 2MuMv)|Ω|, as wu, qu and zu are of size Mu|Ω|

and ρ and λ are of size MuMv|Ω|.
• Our approach: (Mu +Mv + 2MuMv)|Ω|, as zu is of size Mu|Ω| and ρ and w

of size MuMv|Ω|.
In all cases, the required memory could be reduced by computing the cost variable ρ
when needed, but this would drastically increase the computational cost. Notice that
an optimized implementation allows one to reduce the memory requirement of [30] but
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(a) (b)
Fig. 5.6. (a) Comparison of thresholded solutions. The convex approach of [30] (in green) gives

very bad estimations for thresholds far from µ = 0.5. (b) A zoom of the plot is given for threshold
in the interval [0.4, 0.6].

increase the computational cost. At the present day, the non convex approach of [25]
(which is a lot faster) and the convex one of [30] are the only ones being able to deal
with very high dimensions. Notice that [30] is nevertheless not exact as it requires
inner loops (we realized a fixed number of 50 inner loops in our implementation to
approximate with accuracy the projection on Q) and it is in practice more sensible
to thresholding.

When increasing the number of labels, the original non convex approach of [25]
is more frequently stuck in poor local minima. The new conjoint minimization of
the non convex model is nevertheless more robust and is able to produce very good
estimations of the original problems in all cases. This is illustrated in Table 5.2 which
presents the same kind of results for random data ρ. We also observe that the convex
approaches allow one to estimate a better minima of the relaxed energy. However,
as the data are totally random, there are a lot of global minima. As a consequence,
there are no reasons to recover unimodal probabilities. Hence, when thresholding the
solutions given by the convex approaches, it leads to very bad estimations for the
original non convex problem, whereas the non convex approach still allows recovering
acceptable solutions for the original problem.

Relaxed energy: Original energy: Original energy:

minima estimation best threshold highest probability

Non convex [25] 6264 6267 6276

Non convex conjoint 6155 6164 6164

Data convexified [30] 5888 6735 7059

Proposed convex 5888 6725 7308

Table 5.2
The energies of the minima of the relaxed problems obtained with the different methods for

random data ρ are given in the first column. The original energy is then computed for the solution
built by thresholding the corresponding upper level set function (second column) or by keeping the
label with the highest probability (last column).

We can therefore conclude that:
- The level sets of the solution φ∗ obtained with the non convex approach have

almost the same energy than φ∗, but it is not the case for the solution obtained
with the convex methods

- The proposed thresholding method associated to our convex method seems good
enough for real applications (since the energy is not so far after thresholding to a
box function)

- Equivalent solutions are recovered with the model of [30] only with thresholds of
value close to 0.5 or keeping the highest probability.

- The improved non convex approach gives quite good local minima with any ini-
tialization. This validates experimentally the work of [25].
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6. Applications. In this section, we present some numerical results obtained
for multi-label problems involving up to N = 3 dimensions.

6.1. The 1D case.

6.1.1. Color based segmentation. Given one grayscale image I, we look at
the segmentation problem

J1(u) = λ

∫
Ω

|Du(x)|+
∫

Ω

|I(x)− u(x)|dx. (6.1)

With u taking its values in Γu = {0 < 1/(M − 1) · · · < 1}. This corresponds to
take ρ(x, u(x)) = |I(x) − u(x)| and we apply Algorithm 3. This is a simple case as
the data term ρ is here convex w.r.t u. The result obtained for λ = 10 and M = 9
is presented in Figure 6.1 and compared to the method of [28] (Algorithm 2). The
obtained segmentations are here equivalent.

I Our method [28]
Fig. 6.1. Comparison of the results with [28] with the same parameters M = 9 and λ = 4.

Both methods are equivalent.

6.1.2. Disparity. Given two rectified images I1 and I2, (presented in Figure
6.2), we look at the disparity estimation problem

J1(u) = λ

∫
Ω

|Du(x)|+
∫

Ω

|I1(x)− I2(x+ u(x)|dx, (6.2)

with u taking its values in Γu = {4 = u0 < · · · < uM−1 = 16} and λ = 7. The data
term is non convex as we have ρ(x, u(x)) = |I1(x)−I2(x+u(x))|. The result obtained
with Algorithm 3 is presented in Figure 6.3 and compared with the method of [28]
obtained with Algorithm 2, Figure 6.3 shows that both methods are equivalent.

I1 I2 utruth
Fig. 6.2. Stereo data and disparity ground truth.

6.2. 2D optical flow. The optical flow between the images shown in 6.4 has been
computed with various approaches: Non convex with joint minimization (Algorithm
5), Data convexified [30] (Algorithm 6) and proposed convex (Algorithm 7). The
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Our method [28]
Fig. 6.3. Comparison of the method with [28] with the same parameters M = 13 and λ = 7.

We recover exactlty the same dispartity maps.

results are presented in Figure 6.5. It illustrates that the non convex approach leads
to acceptable estimations with any initialization, while being more robust to the
thresholding step.

I1 I2 (u, v)truth
Fig. 6.4. Images I1 and I2 of the RubberWhale sequence. The optical flow ground truth is

presented, the color representing the direction of the flow, while the intensity is related to the norm
of the vector.

The convex approaches are more sensible to thresholding, namely the one of [30].
Notice that the proposed approach allows to recover a thresholded solution with the
lower energy, as illustrated in Table 5.1.

6.3. Experiments for N = 3. We now show some experiments involving higher
dimensions. The following results have been obtained by extending the Algorithm 7
to dimensions 3.

6.3.1. Optical flow with occlusion mask. In order to enhance the optical
flow modeling, one could also consider the simultaneous estimation of the occlusion
mask. This amounts to increase with one additional dimension to model the occlusion
mask. We then have as data term:

ρ(x, u(x), v(x),m(x)) = |I1(x)− I2(x+ w(x))|(1−m(x)) + κm(x),

where m(x) ∈ [0, 1] represent the occlusion map and κ ≥ 0 is the occlusion cost.
As occlusions form connected areas, the occlusion map can therefore be spatially
regularized by minimizing:

β

∫
Ω

|∇m|,

with β > 0. An example of estimation with κ = 40/255, β = 0.005, λ = 0.04 and
comparisons with the proposed convex method (without occlusion mask) as well as
the non convex method are given in Figure 6.6. This illustrates the ability of the
method to deal with larger dimensions and simultaneously estimate informations of
different nature (flow and mask) in a convex way.
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(a)

(b)

(c)

(d)
Proposed Convex Convex [30] Non convex [25]

Fig. 6.5. Comparison of the optical flow between I1 and I2 of Figure 6.4 estimated with the
proposed convex, convex of [30] and non convex [25] approaches for different thresholds (a: µ = 0.1,
b: µ = 0.5, c: µ = 0.9) or highest probability (d). For this simple experiments realized on images
of size 146× 97 (a 25% rescale of the original size to let the methods converge in reasonable time),
we set λ = 0.04 and only used 8× 7 labels in order to visualize the difference between the methods.
Note that these results correspond to the Table 5.5, so that the energy of the relaxed solution of
[30] is the global minima, but the thresholded solutions are noisy. The proposed convex method
allows recovering better solutions of the original problem. The non convex method is less sensible to
thresholding.

Non convex Convex Convex+occlusion

Fig. 6.6. Solutions obtained on the image RubberWhale of size 292 × 196 (rescaled at 50% of
its original size) with 10× 9 labels. The occlusions are represented with black pixels.

6.3.2. The Chan and Vese model. We consider the Chan and Vese’s model:

J(u, c0, c1) =

∫
Ω

||I − c0||2udx+

∫
Ω

||I − c1||2(1− u)dx+ λ

∫
Ω

|Du|.

Following [9], we convexify the problem by considering the function w(x, r, s, t) =
δ(u(x) = r)δ(c0 = s)δ(c1 = t) which gives us a data cost:

ρ(x, r, s, t) = ||I − s||2r + ||I − t||2(1− r).
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With this formulation, we have to consider maps of constants c0(x) and c1(x) and
add additional terms: κ

∫
Ω
|Dc0| and κ

∫
Ω
|Dc1| to the energy, with κ→∞, to ensure

recovering constants. Such a modeling is nevertheless not satisfactory. Indeed, if
(u, c0, c1) is a solution, so is (1− u, c1, c0), and also (1/2, (c1 + c0)/2, (c1 + c0)/2), by
convexity. A constraint like c0 < c1 should be added. It could be done by adding
the penalization ε(

∫
Ω
||c0||2dx+

∫
Ω
||1− c1||2dx), or better by defining the domain of

search as s ≤ t, which corresponds to only treat half of the possibilities.
We applied such a framework as illustrated in Figure 6.7 with a set of possible

labels [0, 1
4 ,

1
2 ,

3
4 , 1] which gives us the estimation c0 = 1

4 and c1 = 3
4 . By injecting

these estimated constants c0 and c1 in a classic TV segmentation model, where c0 and
c1 are fixed [31], we even exactly recover the same segmentation map with the same
energy. It shows that the thresholded solutions are optimal in practice.

u∗ c∗0(= 1
4 ) c∗1(= 3

4 ) u∗2

Fig. 6.7. Solution obtained with the full convex model (u∗, c∗0, c
∗
1). The image u∗2 denotes the

solution obtained when fixing c0 = 1
4

and c1 = 3
4

. We see that u∗ = u∗2, which means that the
recovered solution u∗ should be optimal.

7. Conclusion. This paper deals with the computation of global minima of non
linear multi-label problems for image processing purposes. We have studied different
convex and non-convex relaxations of the non linear problems and we have shown
that computing the global minima of a relaxed energy is not sufficient to recover ei-
ther local or global minima of the original problems. The non-convex approach that
estimates a local minima can produce better estimations in practice. These behaviors
have been justified theoretically and illustrated experimentally. It therefore appears
that in all the presented approaches, there is a duality between being able to com-
pute global minima of relaxed functionals and being able to recover a solution of the
original problems. Future work will attempt to deal with such issue.
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