High-dimension multi-label problems: convex or non convex relaxation?

Abstract : This paper is concerned with the problem of relaxing non convex functionals, used in image processing, into convex problems. We review most of the recently introduced relaxation methods, and we propose a new convex one based on a probabilistic approach, which has the advantages of being intuitive, flexible and involving an algorithm without inner loops. We investigate in detail the connections between the solutions of the relaxed functionals with a minimizer of the original one. Such connection is demonstrated only for non convex relaxation which turns out to be quite robust to initialization. As a case of study, we illustrate our theoretical analysis with numerical experiments, namely for the optical flow problem.
Type de document :
Article dans une revue
SIAM Journal on Imaging Sciences, Society for Industrial and Applied Mathematics, 2013, 6 (4), pp.2603-2639. 〈10.1137/120900307〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00757084
Contributeur : Nicolas Papadakis <>
Soumis le : lundi 22 avril 2013 - 12:47:10
Dernière modification le : mardi 22 mars 2016 - 01:27:40
Document(s) archivé(s) le : lundi 3 avril 2017 - 08:20:06

Fichier

siims3b.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Nicolas Papadakis, Romain Yildizoglu, Jean-François Aujol, Vicent Caselles. High-dimension multi-label problems: convex or non convex relaxation?. SIAM Journal on Imaging Sciences, Society for Industrial and Applied Mathematics, 2013, 6 (4), pp.2603-2639. 〈10.1137/120900307〉. 〈hal-00757084v3〉

Partager

Métriques

Consultations de
la notice

670

Téléchargements du document

363