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Abstract:  

 

Measurements from Non-Destructive Testing (NDT) techniques are affected in different ways by 

concrete properties such as porosity, complexity of the pore network, water content, strength, etc. 

Therefore, extracting one concrete property from one NDT measurement appears to result in 

uncertainties. This highlights the benefit of NDT data fusion to evaluate accurately concrete properties. In 

this paper, NDT measurements from GPR, electrical resistivity and ultrasonic pulse velocity were 

combined to predict more accurately concrete properties such as strength and water content. Two 

techniques of data fusion were used namely Response Surface Method (RSM) and artificial neural 

networks (ANN). 

The results obtained show the effectiveness of the statistical modeling to predict the properties of 

concretes by fusion of NDT measurements. In the context of this study, the performances of the two 

techniques of fusion appear relevant in terms of water content and concrete strength prediction. ANN 

models exhibit better predictive ability than RSM ones.  
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1. Introduction  

For a decade, research investigations have been carried out for examining the potential of NDT 

techniques for concrete condition evaluation. However, the measurement of NDT physical parameters 

such as velocity of ultrasonic waves, electrical resistivity or GPR wave is affected by noise “error” either 

from the accuracy of the measurement and/or the variability of the material. It is important to notice the 

limited ability of a single NDT technique to directly evaluate concrete property. For example, GPR 

technique is sensitive to moisture and also to chlorides [1,2], ultrasound is able to evaluate the modulus of 

elasticity but it is also sensitive to moisture and density [3], etc. For these reasons, some researchers have 

proposed the combination of techniques [4-6] or of several physical parameters obtained with the same 

technique [7-9] in an attempt to improve the interpretation of measurements and to reduce the uncertainty 

in predictions arising from surface condition, concrete condition, mix proportions, etc. This original 

approach is very interesting but only if the additional cost is balanced by the enhancement of the quality 

in the assessment [10]. Knowledge of the assessment quality is very important in order to be able to take a 

decision regarding additional cost or quality enhancement of the assessment by the use of several 

different measurements. Determining whether combination provides complementary or only redundant 

information is needed. This approach can lead to the selection of the best combination for the optimal 

evaluation of the concrete property [11].  

The results presented in this research work focus on the implementation of a general strategy for 

enhancing the assessment of RC structures by NDT techniques. A large laboratory and on site 

experimental programme was implemented as part of the SENSO national French project [12]. This paper 

deals with the implementation of two approaches of data fusion using statistical modelling with an aim of 

evaluating concrete properties from the measured NDT parameters. The two selected methods are the 

Response Surface Method (RSM) and the Artificial Neural Networks technique (ANN). The predictive 

performances of these two approaches are discussed.  

 

2. Experimental programme 

81 slabs (50 cm x 25 cm x 12 cm), made from eight different compositions of concrete, were used in 

this study. They were conditioned at various water saturation degrees. The mixes covered a range of 

water-to-cement ratio sufficiently extended to be representative of what is usually found in structures (0.3 

to 0.8). A large number of different NDT measurements were performed. 

Table 1 summarizes the first laboratory benchmark: mixtures, number of slabs, and the corresponding 

properties (degree of saturation, porosity, modulus of elasticity and strength). These properties were 

measured on cylindrical cores (modulus of elasticity, compressive strength, porosity), or by monitoring 

the slab’s weight (degree of saturation). For each slab, the different techniques provided 52 NDT 

measured physical parameters (e.g. Ultrasonic Pulse Velocity). About 12,700 numerical values were 

collected and stored in a database. The first purpose of the data analysis was aimed at reducing the set of 

values. The second one was aimed at finding the most relevant NDT parameters for the prediction of each 

concrete property [11].  

 

3. NDT methods 

3.1 Ultrasound 

Ultrasonic Pulse Velocity (UPV) measurements were performed in direct transmission mode by 

250kHz compressional transducers. The emitter (Panametrics V1012) was driven by a high voltage 

pulser/receiver (Panametrics  5058 PR) in transmission mode, with a 40 dB pre-amplification for the 

receiver. The transmitted signal was recorded using an oscilloscope (Lecroy WS 442). The processed 

signal was the mean of 40-recorded signals. The time of flight is obtained by a zero crossing method 

(Fig.1). The signal is voluntarily over saturated, the noise level is estimated. The first point of the signal 

exceeding 3 noise level is expected to correspond to the time of flight (tf). The velocity (v) is obtained by 

v=d/tf where d is the distance between the emitter and the receiver. This distance was measured at 3 

points of each sample with a vernier caliper. The distance used for data processing was the mean of the 3 
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measured distances. To ensure the reproducibility of the measurements, the transducers were placed and 

held in place by mechanical holders attached to the samples. 

 

3.2 Ground Penetrating Radar (GPR) 

A radar system equipped with a ground-coupled antenna with a central frequency of 1.5 GHz was used. 

The antenna was first placed in air far from objects in order to record the direct wave signal as can be 

seen on figure 2, which was used as a reference for data normalization. The antenna was subsequently 

placed on the surface of the sample, radiating the EM energy through the material. The direct signal and 

the signal of the wave reflected by the bottom of the sample were recorded (Fig. 3). The processing of the 

radar data focused on the signal of the direct wave and consisted in applying a band-pass filter between 

0.3 and 3 GHz. The signal amplitude was extracted and normalized with respect to the amplitude of the 

air wave signal as follows: 

A =
Ab

Aa

æ

èç
ö

ø÷
  

Ab is the peak-to-peak amplitude of the direct wave signal recorded in concrete (Fig. 3).  

Aa is the peak-to-peak amplitude of the air wave signal (Fig. 2).  

 

3.3 Electrical resistivity 

The four-point method in a Wenner configuration, commonly used for the on-site measurements, was 

used for the measurement of the electrical resistivity of concrete. A low frequency electrical current (I) 

was applied through the external electrodes and this generated an electrical potential field in the material. 

The electrical potential (V) measured between the internal electrodes enables the electrical resistance to 

be calculated according to Ohm's theory (R = V/I). In a semi-infinite medium the electrical resistivity can 

be calculated using the following relation: 

                                                             r = 2pa
V

I
                                                   Eq. 1 

a is the distance between electrodes (5 cm in the case of this study) 

 

4. Experimental results and discussions 

The figures presented in this section show some relationships between data collected during the 

SENSO project. These experimentally determined relationships highlight the concomitant effects of 

several concrete properties on the physical parameters extracted from NDT measurements and, 

consequently, the benefit of their fusion to assess concrete properties. 

Figure 4 shows experimentally determined relationships between electrical resistivity and volumetric 

water content for two types of concrete: high performance concrete (w/c=0.3 in Tab.1) and normal 

strength concrete (w/c=0.55 in Tab.1). These concretes were made with the same aggregate and cement 

type. 

As expected, the electrical resistivity was highly influenced by the water content of concrete. The 

electrical resistivity increased as the water content decreased. A stronger increase in the resistivity was 

observed when the saturation degree became lower than 60 %, i.e. when there was no longer liquid phase 

continuity. However, it was also observed that electrical resistivity depended on concrete porosity since, 

for a given water content, the high performance concrete showed higher resistivity. To predict water 

content by the use of electrical resistivity, additional NDT methods are necessary to correct the effect of 

porosity. A resistivity of 1500 ohm.m could imply a water content of 4.2 % for an ordinary concrete 

while a 10.5 % for a high performance concrete. This noticeable uncertainty could be reduced by an 

additional NDT measurement. 

Figure 5 shows, for the same concrete types, the experimental relationship between the direct wave 

amplitude of GPR measurements at 1.5 GHz and the volumetric water content of the concrete. One can 
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see a weak effect of the porosity compared with resistivity measurements. GPR measurement is primarily 

sensitive to the volumetric water content since it involves quite exclusive propagation phenomena of 

electromagnetic energy. On the other hand, resistivity measurements involve conduction phenomena. 

Therefore, resistivity is not only sensitive to the volumetric water content, but also to the complexity of 

the pore microstructure network.   

Figure 6 shows the experimental relationship between concrete strength and ultrasonic wave velocity 

in transmission mode (Ultrasonic Pulse Velocity “UPV”). As the data number available was not sufficient 

to find the appropriate fitting procedure, a linear one was used. This figure highlights correlation between 

concrete strength and UPV measurements. However, the water content influenced this relationship 

showing that ultrasonic measurements alone are not sufficient to predict accurately the concrete strength. 

Therefor, the water content needs to be assessed in order to accurately predict concrete strength from 

UPV measurements [11].  

These examples illustrate that the prediction of a concrete property from a single NDT measurement 

appears challenging since it is affected by other concomitant effects. This highlights the possible benefits 

that can be achieved by combining data from GPR, resistivity and ultrasonic pulse velocity 

measurements, in order to accurately evaluate concrete properties such as water content, strength, 

porosity, etc, which are important indicators of the durability of reinforced concrete structures.  

  

5. Fusion of NDT techniques 

Several techniques of data fusion are available for combining NDT measurements in order to improve 

results and reduce uncertainties, in particular for the on site assessment. For instance, several methods 

were employed in the literature. The probabilities were already often explored. The Dempster Shaffer 

theory [13] is well adapted to the classification of information to detect defects [14-15]. The theory of the 

possibilities is able to take into account the information given by both experts and indicators analysis 

[16,17]. In this study, methods based on training laws (response surface and artificial neural networks), 

are implemented and tested. 

 

4.1 Response Surface Method (RSM) 

A response surface is the output representation of a physical process to input variables [18]. The 

studied property or response "y", results from the transfer, by an explicit response function or transfer 

function, of the input variables of the system. Modification of the input data results in a change of the 

response value.  

Input variables, xi (i = 1, ..., n) also called basic variables of the phenomenon, are characterized by a 

set of recorded statistical information j (j = 1, ..., p) as distribution functions (which could be correlated 

or not), standardized moments, etc. 

The variables xi are generally spatial-temporal processes, called stochastic process and reduced to 

random variables when time and space indices are fixed. To create a response surface model, one must 

provide:  

• Representative and ordered basic variables {x} = {x1, ..., xn}. Their representativeness is 

to use only explanatory variables and one need also to order the measured values of each variable 

from its lowest value to its greatest, 

• The statistical information set of the vector {x} (distribution functions { } = { 1, ..., 

n}), 

• The function which is an approximation of the response "y", explicitly formulated in 

terms of {x} knowing the variables statistics, 

• A metric (distance function) for the basic variables and the response space. This metric 

measures how good the fit of the approximation function is to the response "y". 

Several criteria enable preselecting the formulation type of the chosen response function to represent 

changes to the response "y". These may be: 

• the level of complexity which determines the computation time; 

• the possibility of an experimental approach; 

• and the current state of knowledge including deterministic models as reference. 
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The construction of response surfaces consists therefore in fitting an approximate transfer model from 

a selected database using the usual functions, such as polynomial functions (analytical response surface). 

The coefficients of the polynomial function are determined such as to minimize the error between 

simulated values obtained with this approximated function and real values. The estimation of these 

coefficients requires the completion of a series of experiments with input variables selected in accordance 

with an experimental design.  

The choice of the degree of the polynomial function, its features and design of the experimental plan 

are linked. The number of coefficients to be determined increases (and similarly, the size of the 

experimental programme of work) with the degree of the polynomial function. Because of the 

mathematical form of correlations between observable-measured values NDT techniques and state 

indicators, full quadratic response surface (with cross terms) was used. The response y (x) has the form: 

 

 CxxBxAxy TT )(                  Eq. 2 

 

Where A is a scalar, B and C are respectively vectors and matrix consisting of coefficients of 

polynomials that can be defined by: 

 

                                                                                                Eq. 3 
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                                                                                               Eq. 5 

 

Knowing the matrix x (n: number of variables, p : number of measurements), entities A, B and C 

are determined from the least squares method. 

  

4.2 Artificial Neural Networks technique  

Artificial neural networks (ANN) have been widely described by several authors [19-21]. In civil 

engineering applications, ANNs have generally been applied for evaluation of concrete properties such as 

compressive strength [22]. The ANN concept consists in learning experimental relationships between 

input and output data using mathematical training processes. An artificial neuron is presented in the Fig. 

7, where Xi refers to input information i, wi refers to the weight affected to input Xi, b refers to neuron 

bias, Y is the neuron output and F refers to the activation function that processes input information.  

Artificial neurons may be interconnected in order to generate an ANN able to model linear or 

nonlinear relationship between any type of data. The Multi-Layer Perceptron (MLP) is most popular 

ANN. An example of MLP is given in Fig.8. Training this type of network consists in optimizing model 

parameters (weights and bias) in order to minimize an error function computed from predicted and target 

data using, in the case of this study, back-propagation (BP) algorithm. BP is a gradient descent algorithm, 

which consists of changing network parameters (weights and bias) according to the negative of the error 

function. The new weights and bias are expressed by equations 5 and 6. The experimental database has to 

be divided into two parts: the training database (involved in the mathematical training process) and the 

testing database (used to stop the training process before achieving overtraining). 

BT = b1,b2 ,...,bn[ ]



 
6 

wiii Eww /1                        Eq.6 

b/ii1i Ebb            Eq.7 

wi+1 and bi+1 are the corrected weight and bias values, wi and bi are the weight and bias values at 

iteration i, η refers to the learning rate,  i is the error gradient computed at iteration i: 

w

E
E i

wi



 /                     Eq.8 

Ei designates the Root Mean Square Error (RMSE) and it is defined by: 





N

n

ii e
N

E
1

21
          Eq.9 

where ei is the absolute error between predicted and actual data 

 

6. Results from data fusion 

The implementation of a statistical model by RSM or ANN requires first a selection of the inputs of 

the model. This selection must be based on an optimum combination of the inputs allowing a better 

prediction of concrete properties [23]. In this study, an application of fusion methods on a set of 3 inputs 

is presented. These inputs were considered as the most relevant regarding the prediction of strength and 

water content. The presented methodology will be the same for other properties such as the modulus of 

elasticity, porosity, etc. All this data is available and summarized in the SENSO project database [12].  

The first step for the implementation of the RSM or the ANN consists in dividing the database into 

two groups of data so as to use the first to carry out the identification of the model parameters (regression 

for the RSM and training process for ANN). In the case of this study, the first group of data (training) 

represents 80% of the total data. For a test of the RSM, the 3 inputs available were used to identify the 

coefficients of the models of compressive strength and water content. In this study, full quadratic 

response surface (with cross terms) is used because of the mathematical form of the correlations between 

the physical parameters of NDT techniques (e.g. UPV) and concrete properties (e.g. compressive 

strength). Regarding ANN models, the number of neurons and the number of layers are fixed according to 

an optimisation process that minimizes the error between actual and predicted values. 

The presented results were used to systematically compare the measured data (actual values) and those 

calculated by the model on the training and testing groups of data. Figures 9 to 12 present typical results 

of the RMS and ANN models trained for compressive strength and volumetric water content predictions. 

Good correlations can be observed between actual data and those calculated by the models of RSM. 

These results confirm the choice of the form of the quadratic models. However, the accuracy of prediction 

of the ANN is lower as can be seen in figures 10 and 12. This is because the ANN model takes into 

account the testing group of data during the training process.  

The results obtained from both techniques are presented on figures 13 to 16 for the group of testing 

data. From these figures, the ANN models have a better predictive ability than the RSM for testing 

database. It is recognized that the validation of a statistical model is exclusively based on the ability of the 

model to predict new data not used for the training process “optimization of the parameters of the model”. 

Comparing the two techniques of statistical modelling on the basis of their prediction ability on new data, 

the ANN showed better results. For example, although the R
2
 are similar in Table 2, the RSM model 

evaluates compressive strength with a mean absolute error of ± 6.2 MPa that is higher than that of ANN 

model (5 MPa). Table 2 shows that the ANN model with R
2
 = 0.94, AME = 0.9 and RMSE = 1.3 

predicted concrete water content with more accuracy than the RSM (R
2
 = 0.86, AME = 1.6, RMSE = 

2.2). Moreover, figure 13 shows that the RSM model tends to over-estimate the compressive strength.  
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From these results, ANN appears to be more promising in its predictive ability on new data. However, 

It is important to point out that RSM has the advantage of being simple to implement and in addition the 

model parameters are more easily determined.  

 

7. Conclusions 

NDT measurements are affected by several factors, and as a result of this, attempts at predicting a 

concrete property from a single NDT measurement may lead to considerable uncertainties. For example, 

the determination of concrete strength using ultrasonic pulse velocity is affected by water content. GPR 

and electrical resistivity are affected by both water content and concrete porosity.  Developing 

methodologies for the assessment of concrete structures based on fusion of NDT techniques are needed to 

evaluate concrete properties on site. In this paper, two methodologies were tested, the method of response 

surfaces (RSM) and the artificial neural networks (ANN). The results of this study show that both 

techniques have satisfactory ability to predict concrete properties based on the fusion of ultrasonic, GPR, 

and electrical resistivity measurements. The surface response technique is simple to implement but its 

prediction ability on new data is, however, lower than that of the ANN. Taking into account material 

variability: moisture variation, water/cement ratio, and type of aggregates and dimensions, the 

combination of NDT parameters using ANN enables concrete compressive strength determination within 

+/- 5 MPa. Regarding water content prediction, the determination is within +/- 1.3 %.  

To complete this study, new measurements are being implemented to assess the ability of NDT and 

data fusion techniques to quantify carbonation depth and chloride concentrations. On-site measurements 

data are being processed to evaluate the efficiency of the developed approach. 
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Tables 

Table 1 Mixtures and characteristics (SENSO project – First benchmark, Sr is the water saturation). 

Aggregates 
Round Siliceous 

0 – 14  mm 

Round 

Siliceous 

0-20 mm 

Crushed 

Siliceous 

0-14  mm 

Crushed 

limestone 

0-14  mm 

W/C (Porosity) 0.30 0.45 0.55 0.65 0.80 0.55 0.55 0.55 

Reference G1 G2 G3 G3a G7 G8 G4 G5 G6 

Number of batches 1 1 2 1 1 1 1 1 

Series 
Sr 

(%) 
Number of slabs 

Series 1 0 9 9 9 9 9 9 9 9 9 

Series 3 

40 3 3 3 3 3 3 3 3 3 

60 3 3 3 3 3 3 3 3 3 

80 3 3 3 3 3 3 3 3 3 

Series 2 100 9 9 9 9 9 9 9 9 9 

Porosity (%) 12.5 14.3 15.5 16.0 15.9 18.1 14.2 15.2 14.9 

Modulus of  

elasticity 

(GPa) 

0 35.75 30.92 29.72 28.91 29.18 22.86 30.76 33.32 39.36 

100 35.46 28.36 30.04 27.93 27.45 21.27 26.71 29.71 35.8 

Strength 

(MPa) 

0 77.2 55.6 - 46.0 44.0 27.0 47.0 53.0 44.0 

100 77.9 43.3 43.5 40.5 38.3 20.2 36.6 45.0 38.2 

 

Table 2. Prediction performance of RSM and ANN for the testing dadabase 

        Concrete properties 

Methods 

Compressive 

Strength (MPa) 

Water content (%) 

 R
2
 

AME 

(MPa) 

RMSE 

(MPa) 
R

2
 

AME 

 (%) 

RMSE 

(MPa) 

RSM 0.75 6.2 9.9 0.86 1.6 2.2 

ANN 0.73 5.0 6.8 0.94 0.9 1.3 

* AME : absolute mean error ; RMSE : root mean square error 
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Fig.6. Experimental relation between concrete strength and transmission velocity of US waves 
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Fig.8. Example of MLP 

 

 

Fig.9. Actual compressive strength versus predicted compressive strength by RSM on training database 
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Fig.10. Actual compressive strength versus predicted compressive strength by ANN on training database 

 

 

Fig.11. Actual water content versus predicted water content by RSM on training database 

 

 

Fig.12. Actual water content versus predicted water content by ANN on training database 

 

 

Fig. 13. Actual compressive strength versus predicted compressive strength by RSM on testing database 
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Fig.14. Actual water content versus predicted water content by RSM on testing database 

 

 

Fig.15. Actual compressive strength versus predicted compressive strength by ANN on testing database  

 

 

Fig.16. Actual water content versus predicted water content by ANN on testing database 

 

 


