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A Survey of Actor-Critic Reinforcement Learning:
Standard and Natural Policy Gradients

Ivo Grondman, Lucian Busoniu, Gabriel A.D. Lopes and RoberuBka

Abstract—Policy gradient based actor-critic algorithms are optimization procedures can be used directly. The benefit of
amongst the most popular algorithms in the reinforcement parameterized policy is that a spectrum of continuous astio
learning framework. Their advantage of being able to search can be generated, but the optimization methods used (tipica

for optimal policies using low-variance gradient estimates has . . . . .
made them useful in several real-life applications, such as called policy gradient methods) suffer from high variange i

robotics, power control and finance. Although general surveys the estimates of the gradient, leading to slow learning[§l]-
on reinforcement learning techniques already exist, no survey  Critic-only methods that use temporal difference learning
is specifically dedicated to actor-critic algorithms in particular.  have a lower variance in the estimates of expected retuins [3
This paper therefore describes the state of the art of actor- [5], [6]. A straightforward way of deriving a policy in critt
critic algorithms, with a focus on methods that can work in P ; . . . .
an online setting and use function approximation in order to only methods is by se_lect!ng_reedy actiond7]: actions for
deal with continuous state and action spaces. After Starting Wh|Ch the Value funCt|On |nd|Ca.teS tha.t the eXpeCted return
with a discussion on the concepts of reinforcement learning and is the highest. However, to do this, one needs to resort
the origins of actor-critic algorithms, this paper describes the to an optimization procedure in every state encountered to
workings of the natural gradient, which has made its way into find the action leading to an optimal value. This can be
many actor-critic algorithms in the past few years. A review of . - : : . . .
computationally intensive, especially if the action spase

several standard and natural actor-critic algorithms follows and f ' >
the paper concludes with an overview of application areas and continuous. Therefore, critic-only methods usually dsize

a discussion on open issues. the continuous action space, after which the optimizatioar o
Index Terms—reinforcement learning, actor-critic, natural gra- 1€ @ction space becomes a matter of enumeration. Obvjously
dient, policy gradient this approach undermines the ability of using continuous

actions and thus of finding the true optimum.
Actor-critic methods combine the advantages of actor-only
and critic-only methods. While the parameterized actordsin
EINFORCEMENT learning is a framework in which anthe advantage of computing continuous actions without the
agent (or controller) optimizes its behavior by interagtinneed for optimization procedures on a value function, the
with its environment. After taking an action in some stal, t critic’'s merit is that it supplies the actor with low-variza
agent receives a scalar reward from the environment, whikhowledge of the performance. More specifically, the cstic
gives the agent an indication of the quality of that actiorestimate of the expected return allows for the actor to wpdat
The function that indicates the action to take in a certaatest with gradients that have lower variance, speeding up the
is called thepolicy. The main goal of the agent is to findlearning process. The lower variance is traded for a larger
a policy that maximizes the total accumulated reward, al®ias at the start of learning when the critic’'s estimates are
called thereturn. By following a given policy and processingfar from accurate [5]. Actor-critic methods usually haveodo
the rewards, the agent can build estimates of the return. Td@vergence properties, in contrast to critic-only methfdd.
function representing this estimated return is known as theThese nice properties of actor-critic methods have made
value function Using this value function allows the agenthem a preferred reinforcement learning algorithm, alseai-
to make indirect use of past experiences to decide on futlife application domains. General surveys on reinforceimen
actions to take in or around a certain state. learning already exist [8]-[10], but because of the growing
Over the course of time, several types of RL algorithmgopularity and recent developments in the field of actdiecri
have been introduced and they can be divided into into thrakgorithms, this class of reinforcement algorithms desera
groups [1]: actor-only, critic-only and actor-critic metis, survey in its own right. The goal of this paper is to give
where the words actor and critic are synonyms for the poli@n overview of the work on (online) actor-critic algorithms
and value function, respectively. Actor-only methods ¢glly  giving technical details of some representative algorighamd
work with a parameterized family of policies over whichalso to provide references to a number of application papers
Additionally, the algorithms are presented in one unified
. Grondman, G.A.D. Lopes and R. Balka are with the Delft Cen- npotation, which allows for a better technical comparison of
ter for Systems and Control, Delft University of Technolo@628 CD . . . . .
Delft, The Netherlands (email: i.grondman@tudelft.nl; dedgadolopes; the variants and implementations. Because the discrate-ti
r.babuska@tudelft.nl). variant has been developed to a reasonable level of maturity

L. Busoniu is with CNRS, Research Center for Automatic Captdniver-  thijg paper solely discusses algorithms in the discrete-tim
sity of Lorraine, 54500 Nancy, France and also with the Depant of

Automation, Technical University of Cluj-Napoca, 40002iiNapoca, Ro- S€tting. Continuous'time variants of ?—Ftor'critic algoms,
mania (e-mail: lucian@busoniu.net). e.g. [11], [12] and multi-agent actor-critic schemes [13}]
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are not considered here. which depends on the previous state, the current state and th
The focus is put on actor-critic algorithms based on policgction taken. The reward functignis assumed to be bounded.
gradients, which constitute the largest part of actoiecritThe actionu; taken in a stater;, is drawn from a stochastic
algorithms. A distinction is made between algorithms thet upolicy 7 : X x U +~ [0, c0).
a standard (sometimes also called vanilla) gradient and the The goal of the reinforcement learning agent is to find the
natural gradient that became more popular in the course pélicy = which maximizes the expected value of a certain
the last decade. The remaining part of actor-critic algonig function g of the immediate rewards received while following
consists mainly of algorithms that choose to update the dbe policy . This expected value is the cost-to-go function
tor by ‘moving it towgrds the greedy policy under[ymg an J(7) = E{g(r1,ra,.. ) |7}
approximate state-action value function [10]. In this pape
these algorithms are regarded as critic-only algorithmthas In most case's the functiong is either the discounted sum of
policy is implemented implicitly by the critic. Algorithms rewards or the average reward received, as explained next.
are only categorized as actor-critic here if they implement
two separately parameterized representations for the antb A. Discounted Reward

the critic. Furthermore, all algorithms make use of funttio | the discounted reward setting [18], the cost functibis
approximation, which in real-life applications such asatts equal to the expected value of the discounted sum of rewards
is necessary in order to deal with continuous state andractignen starting from an initial state, € X drawn from an
spaces. . . . . initial state distributionzq ~ do(-), also called the discounted
This paper is organized as follows. Section Il introducggtyrn
the basic concepts of a Markov decision process, which is the -
cornerstone of reinforcement learning. Section Il ddssi k
" . . J(m)=E d
critic-only, actor-only and actor-critic RL algorithms dthe (m) {;7 Tkt O’W}
important policy gradient theorem, after which Section IV
surveys actor-critic algorithms that use a standard gradie = / d;r(l‘)/ W(w,U)/ f(x,u,2")p(x,u, 2")ds’dudz,
Section V describes the natural gradient and its applicatio 7~ v X (1)
to actor-critic methods, and also surveys several natatal-a . _
critic algorithms. Section VI briefly reviews the applicati Where dZ(x) = Y7 *p(zx = z|do, ) is the discounted

areas of these methods. A discussion and future outlookstéte distribution under the policy [16], [19] and~y < [0,1)
provided in Section VII. denotes the reward discount factor. Note that, = ) is a

probability density function here.

During learning, the agent will have to estimate the cost-to
go functionJ for a given policyr. This procedure is called
This section introduces the concepts of discrete-time ngelicy evaluation The resulting estimate of is called the
inforcement learning, based on [7], but extended to the ugalue functionand two definitions exist for it. The state value

of continuous state and action spaces and also assuminfyraction
stochastic setting, as covered more extensively in [19].[1 oo

A reinforcement learning algorithm can be used to solve Vi(z) =E { kamﬂ
problems modelled as Markov decision processes (MDPs). An k=0
MDP is a tuple(X, U, f, p), whereX denotes the state spacepnly depends on the state and assumes that the poliay
U the action spacef, : X xU x X — [0, 0c0) the state transition is followed starting from this state. The state-action ealu
probability density function and : X xU x X +— R the reward function
function. In this paper, only stationary MDP’s are consatkr
i.e., the elements of the tupleX, U, f, p) do not change over Q™ (x,u) =E { Zy"’rkﬂ
time. k=0

The stochastic process to be controlled is described by #ieo depends on the state but makes the actiom chosen
state transition probability density functigh It is important in this state a free variable instead of having it generated
to note that since state space is continuous, it is only plessiby the policy 7. Once the first transition onto a next state
to define a probability of reaching a certain steggion since has been madey governs the rest of the action selection.
the probability of reaching a particular state is zero. Thehe relationship between these two definitions for the value
probability of reaching a statey,; in the regionX;,1 € X function is given by
from statex; after applying actionu is V() = E{Q™(a,u)| u ~ 7, )}

Il. MARKOV DECISION PROCESSES

x x,ﬂ'} (2)

oo

a:ozx,u():u,ﬂ}. 3)

P(zry1 € Xgt1|zr, ug) :/ g, ug, 2" )da’. With some manipulation, Equations (2) and (3) can be put
Xt into a recursive form [18]. For the state value function tikis
After each transition to a state, ., the controller receives V™ (z) = E {p(z,u, ') + V7 (z')} (4)

an immediate reward

10ther cost functionals do exist and can be used for acttic-afgorithms,
Tkyl = p(xk, Ul $k+1)7 such as the risk-sensitive cost in [17].
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with « drawn from the probability distribution function(z,-) way. Bellman optimality equations, describing an optimum f
andz’ drawn from f(x, u, ). For the state-action value func-the average reward case, are

tion the recursive form is V*(2) + J* = maxE {p(z, u,2') + V*(2')} (10a)
Q" (z,u) = E{p(z,u,2") + Q" (2', ")}, ©)

with 2/ drawn from the probability distribution function
f(z,u,-) andu’ drawn from the distributionr(z’, ). These WhereJ* is the optimal average reward as defined by (7) when
recursive relationships are called Bellman equations [7]. an optimal policyr* is used.

Optimality for both the state value functioW™ and the
state-action value functio®” is governed by the Bellman [11. ACTOR-CRITIC IN THE CONTEXT OFRL
optimality equation. Denoting the optimal state value function As discussed in the introduction, the vast majority of
with V*(z) and the optimal state-action value wif¥ (z,u), reinforcement learning methods can be divided into three
the corresponding Bellman optimality equations for the digroups [1]: critic-only, actor-only and actor-critic metis.
counted reward setting are This section will give an explanation on all three groups,

N , v starting with critic-only methods. The part on actor-onl
Vie) = mlzLLXE{p(x,u,z ) +9V7(=)} (62) methogs introduces th{:- concept of a poplicy gradient, whi)c/h
Q*(z,u) =E {p(x’u’ 2') + ymax Q* (2, u/)} . (6b) prpvides_ the basi; for actor—.critic algorithms. The finqltpﬁ
! this section explains the policy gradient theorem, an irgwar
result that is now widely used in many implementations of
B. Average Reward actor-critic algorithms.

As an alternative to the discounted reward setting, there isin real-life applications, such as robotics, processesliysu
also the approach of using theveragereturn [18]. In this have continuous state and action spaces, making it impessib
setting a starting state, does not need to be chosen, unddp store exact value functions or policies for each separate
the assumption that the process is ergodic [7] and thus tig#te or state-action pair. Any RL algorithm used in practic
J does not depend on the starting state. Instead, the vaftid have to make use of function approximators for the value
functions for a policyr are defined relative to the averagdunction and/or the policy in order to cover the full range of
expected reward per time step under the policy, turning teétes and actions. Therefore, this section assumes thef use

Q*(w,u) + J* = E{plw,u,a) + max Q" («',)}  (10b)

cost-to-go function into such function approximators.
n—1 L.
1 _ -
J(r) = ILm 1k Zmﬂ - A C_n.tlc only Methods _
n—reon =0 Critic-only methods, such as Q-learning [21]-[23] and

~ , L SARSA [24], use a state-action value function and no explici
= / d” () / m(x,u) / f(@,u, ") p(a, u, 2')dz’dudz. fynction for the policy. For continuous state and actiorcesa
X JU JX . . . . .
(7) this will be an approximate state-action value functionedé
. . o . methods learn the optimal value function by finding online an
Equation (7) is very similar to Equation (1), except thaly,rgyimate solution to the Bellman equation (6b) or (10b).
the definition for the state distribution changedd®(z) = A geterministic policy, denoted by : X — U is calculated

limy, 00 p(2), = x,m). For a given policy, the state value  sing an optimization procedure over the value function
function V™ (z) and state-action value functiaB™ (z, u) are

then defined as m(x) = arg max Q(z,u). (11)
N - _ There is no reliable guarantee on the near-optimality of the
Viz) =E { Z (re41 = J(m)) | 20 =z, W} resulting policy for just any approximated value functionemh
k;o learning in an online setting. For example, Q-learning and
Q™ (z,u) = E Z (rpst — J(1)| 20 = 200 = u, 7 p . SARSA with specific function approximators have been shown
' ’ ' not to converge even for simple MDPs [25]-[27]. However,

the counterexamples used to show divergence were further
agﬁalyzed in [28] (with an extension to the stochastic sgttin
in [29]) and it was shown that convergence can be assured for
V™ () + J(7) = E{p(z,u,2’) + V" (z")}, (8) linear-in-parameters function approximators if trajeits are
sampled according to their on-policy distribution. The kvor
with « and 2’ drawn from the appropriate distributions asy [28] also provides a bound on the approximation error
before and between the true value function and the approximation ghrn
n _ / S by online temporal difference learning. An analysis of more
Q)+ J(r) = Ep(w,u,2’) + Q7)) (9) approximate policy evaluation methods is provided by [30],
again withz’ andw’ drawn from the appropriate distributions.mentioning conditions for convergence and bounds on the
Note that Equations (8) and (9) both require the valife), approximation error for each method. Nevertheless, fortmos
which is unknown and hence needs to be estimated in soofmices of basis functions an approximated value function

also called the Poisson equations [20] — are
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learned by temporal difference learning will be biased.sThi
is reflected by the state-of-the-art bounds on the leasirsgu
temporal difference (LSTD) solution quality [31], which-al
ways include a term depending on the distance between th
true value function and its projection on the approximation
space. For a particularly bad choice of basis functions thi
bias can grow very large.

Reward

Process

B. Actor-only Methods and the Policy Gradient . _ . . . .
Fig. 1. Schematic overview of an actor-critic algorithm. Theslded line

Policy gradient methods (see, for instance, the SRV [3Ricates that the critic is responsible for updating theaand itself.

and Williams’ REINFORCE algorithms [33]) are principally

actor-only and do not use any form of a stored value function.

Instead, the majority of actor-only algorithms work with @radient is calculated without using any knowledge of past

parameterized family of policies and optimize the cost aefin estimates [1], [44].

by (1) or (7) directly over the parameter space of the policy.

Although not explicitly considered here, work on nonparas  Actor-Critic Algorithms

metric policy gradients does exist, see e.g. [34], [35]. Aana . Actor-critic methods [45], [46] aim to combine the ad-

advantage of actor-only methods over critic-only methas 'antages of actor-only and critic-only methods. Like actor

that they allow the policy to generate actions in the coneple¥ -, .
they . policy 1o g only methods, actor-critic methods are capable of producin
continuous action space.

A policy gradient method is generally obtained by paramé:_ontmuous actions, while the large variance in the policy

. : . gradients of actor-only methods is countered by addingti cri
m P -
terizing the policyr by the parameter vectdr € R”. Consid ._The role of the critic is to evaluate the current policy présed

%y the actor. In principle, this evaluation can be done by any
policy evaluation method commonly used, such as N)[)],
[18], LSTD [3], [18], [47] or residual gradients [25]. Theitic
approximates and updates the value function using samples.
VyJ = ﬂ@ (12) The value function is then used to update the actor’s poléey p
dmy OV rameters in the direction of performance improvement. &hes
Then, by using standard optimization techniques, a locamethods usually preserve the desirable convergence piesper
optimal solution of the cost/ can be found. The gradientof policy gradient methods, in contrast to critic-only meds.
VyJ is estimated per time step and the parameters are tHerctor-critic methods, the policy is not directly infedréeom
updated in the direction of this gradient. For example, gogm the value function by using (11). Instead, the policy is upda
gradient ascent method would yield the policy gradient tgdan the policy gradient direction using only a small step size
equation meaning that a change in the value function will only result i
It1 = O + @01 Vo, (13) asmall change in the policy, leading to less or no osciliator
_ _ behavior in the policy as described in [48].
wherea,, > 0 is @ small enough learing rate for the actor, i 1 shows the schematic structure of an actor-critic
by which it is obtained th&tJ(dx.41) > J (V). _ algorithm. The learning agent has been split into two sépara
Several methods exists to estimate the gradient, €.9. fifities: the actor (policy) and the critic (value funcliofihe

usi.ng infinitesimal perturbation analysis (IPA) or likedibd- o1 is only responsible for generating a control inpugiven
ratio methods [36], [37]. For a broader discussion on thegg, ¢ rent state. The critic is responsible for processing the

methods, see [4], [38]. Approaches to model-based gradi¢gfyards it receives, i.e. evaluating the quality of the entr

methods are given in [39]-[41] and in the more recent WOtk,ioy by adapting the value function estimate. After a nemb

of Deisenroth [42]. , , of policy evaluation steps by the critic, the actor is update
The main advantage of actor-only methods is their stroqng, using information from the critic.

convergence property, which is naturally inherited fromdit  “ A nified notation for the actor-critic algorithms descrdbe

ent d_escent metht_)ds. Convergence i‘c’_ obtained if t_he eetiime}];] this paper allows for an easier comparison between them.
gradients are unbiased and the learning raigs satisty [7],  ai5o, most algorithms can be fitted to a genetahplateof

[38] standard update rules. Therefore, two actor-critic atgori
>0 =, templates are introduced: one for the discounted rewatithget
Zaaxk = Z Xak < 0 and one for the average reward setting. Once these templates
k=0 k=0 are established, specific actor-critic algorithms can k& di
A drawback of the actor-only approach is that the estimatedssed by only looking at how they fit into the general teneplat
gradient may have a large variance [19], [43]. Also, everyr in what way they differ from it.
) _ _ - For both reward settings, the value function is paramesdriz
One could also define the cagtsuch that it should be minimized. In that

case, the plus sign in Equation (13) is replaced with a mingss, siesulting bY the parameter vectof € R?. Thi§ W!” b_e qenOted
in J(Wpi1) < J(O). with Vy(z) or Qg(x,u). If the parameterization is linear, the

policy my, they are in fact functions off. Assuming that
the parameterization is differentiable with respecttothe
gradient of the cost function with respectids described by
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features (basis functions) will be denoted withi.e. Although not commonly seen, eligibility traces may be in-
troduced for the actor as well. As with actor-only methods
S _ T ;
Vo(z) =0 ¢(x) or Qo(z,u) = 0" ¢(z,u).  (14)  goyerg ways exist to estima¥éy.Jj.

The stochastic policy is parameterized by € R? and will be For the average reward case, the critic can be updatgd using

denoted withmy (2, u). If the policy is denoted withry (), it the average-cost TD method [49]. Then, Bellman equation (8)

is deterministic and no longer represents a probabilitysitgn is considered, turning the TD error into

fun(ct)|on, but the direct mapping from states to actiens- Sk = That — Ji + Vo, (Trg1) — Vo, (zr),

Ty (). s . . .

The goal in actor-critic algorithms — or any other RLW|_th Iy an estimate of the average cost at tlhjewaously,
algorithm for that matter — is to find the best policy possibldNiS requires an update equation for the estimatas well,
given some stationary MDP. A prerequisite for this is tha¥hich usually is [1]
the critic is able to accurately_ _ev_aluate_ a given polic_:y. In Jp = Jp1 + agp(rrsr — jkq),
other words, the goal of the critic is to find an apprommateh 0 her | . Th itic il
solution to the Bellman equation for that policy. The diiece W€ @k € (©, ].'S another learning rate. The critic st
between the right-hand and left-hand side of the BeIImaH“Pdates with Equathn (18). The update of thg eligibiligce
equation, whether it is the one for the discounted rewa?thso needs to be adjusted, as the discountyateno longer

setting (4) or the average reward setting (8), is called tfpgesent. The templa_1te for actor-critic algorithms in therage
temporal difference (TD) error and is used to update théccrit €U setting then is

Using the function approximation for the critic and a traiosi Jp = Jp_1 + gk (Tre1 — jk,l) (20a)

sample(zk, ug, re+1, Tk+1), the TD error is estimated as 8 = o1 — i+ Vo (2re1) — Vi, (%) (20b)

Ok = k41 + Vo, (k41) — Vo, (z). (15) 2 = Azi—1 + VoV, (1) (20c)

Perhaps the most standard way of updating the critic, is to Ori1 = Ok + ac rdrzk (20d)

exploit this TD error for use in a gradient descent update [7] V1 = Vi + gk Vo k. (20e)
Okt1 = O + e k01 VoV, (T1), (16)

For the actor-critic algorithm to converge, it is necesshayt
where o, > 0 is the learning rate of the critic. Forhe critic’'s estimate is at least asymptotically accurdtes is
the linearly parameterized function approximator (14)s ththe case if the step sizes, , anda, are deterministic, non-
reduces to increasing and satisfy [1]

B = O+ e Oid () (17 Zaa,k =00 Zac,k =00 (21)
This temporal difference method is also known as TD(0) &
learning, as no eligibility traces are used. The extens@mn t g r )\
the use of eligibility traces, resulting in TRY methods, is Zaiﬁk < o0 Zaak < oo Z <“) <o (22)
straightforward and is explained next. k k NGk
Using (16) to update the critic results in a one-step backupy somed > 0. The learning ratev s, is usually set equal to
whereas the reward received is often the result of a seriesogf;,. Note that such assumptions on learning rates are typical
steps. Eligibility traces offer a better way of assigningdit for all RL algorithms. They ensure that learning will slow
to states or state-action pairs visited several stepseaflie down, but never stops and also that the update of the actor
eligibility trace vector for allg features at time instarit is operates on a slower time-scale than the critic, to ensate th
denoted withz;, € R? and its update equation is [1], [7] the critic has enough time to evaluate the current policy.
Although TD(@\) learning is used quite commonly, other
2 = Myze-1 + Vo Vo, (2k). ways of determining the critic parameteido exist and some
It decays with time by a factoky, with A € [0,1) the trace are even known to be superior in terms of convergence rate
decay rate. This makes the recently used features morbleligin both discounted and average reward settings [50], such as
for receiving credit. The use of eligibility traces speegstie least-squares temporal difference learning (LSTD) [3F][4
learning considerably. Using the eligibility trace vectgr the LSTD uses samples collected along a trajectory generated by

update (16) of the critic becomes a policy 7 to set up a system of temporal difference equations
derived from or similar to (19a) or (20b). As LSTD requires
Ori1 = Ok + e 1Ok 2. (18)  an approximation of the value function which is linear in its

parameters, i.6/(z) = 07 ¢(x), this system is linear and can
easily be solved fof by a least-squares method. Regardless
of how the critic approximates the value function, the actor

With the use of eligibility traces, the actor-critic temiga
for the discounted return setting becomes

Ok = rry1 + Vo, (Trg1) — Vo, (zr) (19a) update is always centered around Equation (13), using some
2k = Myze_1 + VaVa, (1) (19pb) way to estima_tc_aVngk. _ _ _ N
Ot = 01 + ez (19¢) For actor-critic algorithms, the question arises how tliggccr

influences the gradient update of the actor. This is expthine
V1 = Vg + @ak Vo (19d) in the next subsection about the policy gradient theorem.
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D. Policy Gradient Theorem

Many actor-critic algorithms now rely on the policy gradien
theorem, a result obtained simultaneously in [1] and [1€
proving that an unbiased estimate of the gradient (12) can= 0
obtained from experience using an approximate value foncti

satisfying certain properties. The basic idea, given by id] 5

that since the number of parameters that the actor has taeupc =5 0

is relatively small compared to the (usually infinite) numbg r z

states, it is not useful to have the critic attempting to cotap (2) Value functionQ™ (z, u) (b) Advantage functiomd” (z, u)

the exact value function, which is also a high-dimension&ld. 2. _The optimal value and advantage function for the exaniiDP
object. Instead, it should compute a projection of the valdbfic] e Syer 1 - &t o e opmal sy (o)
function onto a low-dimensional subspace spanned by a S@® — 0.1u}. The advantage function nicely shows the zero contour line o
of basis functions, which are completely determined by tHee optimal action: = —Kz.

parameterization of the actor.

In the case of an approximated stochastic policy, but exact . ) ]
state-action value functio@™, the policy gradient theorem is Where m(z, u) denotes the stochastic policy, parameterized
as follows. by «J, then

Theorem 1 (Policy Gradient)For any MDP, in either the -
average reward or discounted reward setting, the policgigra Vo J = /X d”(z) /U Vor(z, u)h (2, u)dudz. (26)
ent is given by

~ . Proof: See [19]. [ ]
Vo J = /Xd (.T)/UV197T($7U)Q (2, u)dudz, An extra assumption in [1] is that in (25); actually
needs to be an approximator that is linear with respect to

with d™(«) defined for the appropriate reward setting. some parameters and featuresy, i.e. hy, = w9 (z,u)

_ Proof: See [19]. , _ ~_ ® ransforming condition (25) into
This clearly shows the relationship between the policy igrad
V¢J and the critic functionQ™(x,u) and ties together the Y(z,u) = Vylnmy(x, u). (27)
update equations of the actor and critic in the template¥ (

and (20). ch’eaturesp that satisfy Equation (2_7) are known asmpatiple
For most applications, the state-action space is Contﬂhe_atures [1], [19], [51]. In the remamderofthe Paper, thell
uous and thus infinite, which means that it is necessa\ir‘%}af be denoted by and their corresponding parameters
to approximate the state(-action) value function. The Itesu '
in [1], [19] shows thatQ™ (z,u) can be approximated with
he : X x U — R, parameterized by, without affecting the
unbiasedness of the policy gradient estimate.
In order to find the closest approximation@f by h,,, one /
U

can try to find thew that minimizes the quadratic error

A technical issue, discussed in detail in [16], [19], is
that using the compatible function approximation, =
w'! Vylnmy(z,u) gives

(@, u)hy (2, u)du = wTVﬁ/ o (x, u)du = 0.
U

=1

£ ) = 5 1Q () — (o, w)] |
This shows that the expected value fof,(x,u) under the
The gradient of this quadratic error with respectutas policy wy is zero for each state, from which can be concluded
. - thath,, is generally better thought of as tadvantage function
Vuly(@,u) = [Q7(w,4) = hu(z, )] Vihw(z,u) - (23) A™(z,u) = Q™(x,u) — V™(x). In essence, this means that
and this can be used in a gradient descent algorithm to fiH@ing only compatible features for the value function ressul
the optimalw. If the estimator ofQ™(z, ) is unbiased, the in an approximator that can only represent the relativeevafu
expected Value Of Equation (23) is Zero for the Optimal.e. an actionu in some state: Correctly, but not the absolute value
Q(z,u). An example showing how different the value function
/ dﬂ(x)/ (2, u) V& (2, u)dudz = 0. (24) Q(z,u) and the corresponding advantage functid(r, u)
X U can look is shown in Figure 2. Because of this difference,
The policy gradient theorem with function approximation ighe policy gradient estimate produced by just the compatibl

based on the equality in (24). approximation will still have a high variance. To lower the
Theorem 2 (Policy Gradient with Function Approximationyariance, extra features have to be added on top of the com-
If h, satisfies Equation (24) and patible features, which take the role of modeling the déffere
between the advantage functieff (x, u) and the state-action
Vwhy(z,u) = Vylnmy(x,u), (25)  value functionQ™ (z, ), i.e. the value functio’ ™ (z). These

3 o , _ _extra features are therefore only state-dependent, asdepe
This approximation of9™ (z, ) is not denoted with an accentégl as it d h . Idi d bi . h di
is not actually the value functiof that it is approximating, as shown later ence on the action would introduce a 'a_S into the gradient
in this section. estimate. The state-dependent offset that is created Isg the
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TABLE |

additional features is often referred to as a (reinforcenenacror critic METHODS, CATEGORIZED ALONG TWO AXES GRADIENT
baseline. The policy gradient theorem actually generslipe TYPE AND REWARD SETTING
the case where a state-dependent baseline function is taken : :
into account. Equation (26) would then read | Standard gradient | Natural gradient
. Discounted Barto et al. [46], (e)NAC [16], [52], Park et
return FACRLN [53], [54], al. [60], Girgin and
Vo = / d"(x) / Vo (@, ) [ (@, u) + b(w)] duds. each e B4 e 1]

X U (28) Bhatnagar [5_6], Chun-Gui | Kimura [_62] ,Richter et
yvhereb(x) is the baseline function that can be chosen arbitrar- th ?58[]5 7F]gaﬁn;$r:,_e[gg] ﬂé&i]r’nﬁ?;t;_l'[?ﬁ]”
ily. Adding a baseline will not affect the unbiasedness & th El-Fakdi et al. [65]
gradient estimate, but can improve the accuracy of thectsriti| Average | Konda and Tsitsiklis [1], | Bhatnagar et al.
approximation and prevent an ill-conditioned projectidrnhe return i%sggad'dés etezj' (501, -1V [20], gNAC [68]
vglue function on the compatible featurg$l]. In that respect, Bhamag[ar]’e[t a}_’ I [20],
this paper treats as a subset df, and« as a subset ab. In ACSMDP [67]

practice, the optimal baseline, i.e. the baseline thatmizes
the variance in the gradient estimate for the policyis the
value functionV™(z) [19], [20]. In [52], it is noted that, in most. Therefore, the discussion on standard actor-ciigo-a
light of the policy gradient theorem that was only publishedthms starts with this work, after which other algorithmsthe
many years later, Gullapalli's earlier idea in [32] of usingliscounted return setting are discussed. As many algosithm
the temporal differencé in the gradient used to update theébased on the average return also exist, they are dealt with in
policy weights can be shown to yield the true policy gradierat separate section.
V¢J(¢), and hence corresponds to the policy gradient theorem
with respect to Equation (28).

Theorem 2 yields a major benefit. Once a good paran®- Discounted return setting
terization for a policy has been found, a parameterizat@n f Barto et al. [46] use simple parameterizations
the value function automatically follows and also guaraste
convergence. Further on in this paper, many actor-critjo-al Vo(z) =07 ¢(x) mo(x) =0 ¢(x)

rithms make use of this theorem. with the same features(z) for the actor and critic. They

Part of this paper is dedicated to giving some examples @tose binary features, i.e. for some statenly one feature
relevant actor-critic algorithms in both the standard ggatl ¢i(z) has a non-zero value, in this caggz) = 1. For ease
and natural gradient setting. As it is not possible to descriof notation, the state was taken to be a vector of zeros with
all existing actor-critic algorithms in this survey in distahe only one element equal tb, indicating the activated feature.
algorithms addressed in this paper are chosen based on théis allowed the parameterization to be written as
originality: e|ther.th'ey were the flrst FQ use a certain teqhej ' Vi(z) = 0 o) = 0z,
extended an existing method significantly or the containing
paper provided an essential analysis. In Section Il a distin  Then, they were able to learn a solution to the well-known
between the discounted and average reward setting waslalregart-pole problem using the update equations
made. The reward setting is the first major axis along which

the algorithms in this paper are organized. The second major Ok = Thr1 + Vo (wh+1) = Vo, (21) (292)
axis is the gradient type, which will be either the standard Zek = AeZek—1 1 (1= Ao)wg, (29b)
gradient or the natural gradient. This results in a totalooir f Zak = MaZak-1 + (1 — A)ugpzp (29c¢)

categories to which the algorithms can (uniquely) beloeg, s o
Table |. References in bold are discussed from an algorith- Or1 = Ok + ez (29d)
mic perspective. Section IV describes actor-critic algpons Vp1 = Ok + @adkzak (29€)
that use a standard gradient. Section V first introduces thgn
concept of a natural gradient, after which natural actarecr
algorithms are discussed. References in italic are disduiss
the Section VI on applications. wherer is a threshold, sigmoid or identity functiony is noise
which accounts for exploration and, z, are eligibility traces
for the critic and actor, respectively. Note that these tpda
equations are similar to the ones in template (19), corisiger
Many papers refer to Barto et al. [46] as the startinthe representation in binary features. The prodiget, . in
point of actor-critic algorithms, although there the acémd Equation (29e) can then be interpreted as the gradient of the
critic were called the associative search element and dapperformance with respect to the policy parameter.
critic element, respectively. That paper itself mentidrst the  Although no use was made of advanced function approxima-
implemented strategy is closely related to [45], [69]. Eith tion techniques, good results were obtained. A mere disio
way, it is true that [46] defined the actor-critic structubatt of the state space into boxes meant that there was no gen-
resembles the recently proposed actor-critic algorithhes teralization among the states, indicating that learningedpe

U =T (7191« (‘rk) + nk) ;

IV. STANDARD GRADIENT ACTOR-CRITIC ALGORITHMS
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could definitely be improved upon. Nevertheless, the actor-The algorithm generates an estimate of the policy gradi-

critic structure itself remained and later work largelydsed ent using simultaneous perturbation stochastic apprdioma

on better representations for the actor and the calculatfon(SPSA) [71], which has been found to be efficient even

the critic. in high-dimensional parameter spaces. The SPSA gradient
Based on earlier work in [53], Wang et al. [54], intro+equires the introduction of two critics instead of one. The

duced the Fuzzy Actor-Critic Reinforcement Learning Nefirst critic, parameterized by ' ¢(x), evaluates a policy

work (FACRLN), which uses only one fuzzy neural networlparameterized by,. The second critic, parameterized by

based on radial basis functions for both the actor and thie.cri¢’" ¢(x) evaluates a slightly perturbed policy parameterized

That is, they both use the same input and hidden layers, byt, + ¢A, with a smalle > 0. The element-wise policy

differ in their output by using different weights. This isdeal parameter update is then given*by

on the idea that both actor and critic have the same input and o g\

also depend on the same system dynamics. Apart from the, , .\ — T, 9, + a, Z do () <(k_k)¢(m)) (30)

regular updates to the actor and critic based on the temporal’ rex eAi(k)

difference error, the algorithm not only updates the patarse whereT), is a truncation operator. The Lagrange parameters

OL thf. ra}dlaldtéass gunctlons "]1 the nelural C\;akt‘work, bl::‘ alg o have an update rule of their own (further details in)56]
adaptively adds and merges tuzzy ruies. enever the ich introduces a third learning rate, . into the algorithm

error or the squared TD error is too high and the so-called : .
completeness property [70] is violated, a new rule, esthbtl for which the regular conditions
by a new radial basis function, is added to the network. Y apk = Y ai<oo
A closeness measure of the radial basis functions decides k k
whether two (or more) rules should be merged into one. FRfyst be satisfied and another constraint relating. to the
example, when using Gaussian functions in the network,of tWctor step sizev,
rules have their centers and their widths close enough to eac oL
other, they will be merged into one. FACRLN is benchmarked lim = =0

. .. . .. k—oo Qg k
against several other (fuzzy) actor-critic algorithmsluding :
the original work in [46], and turns out to outperform theninust also hold, indicating that the learning rate for the
all in terms of the number of trials needed, without incregsi Lagrange multipliers should decrease quicker than ther'acto
the number of basis functions significantly. learning rate. Under these conditions, the authors proee th

At about the same time, Niedzwiedz et al. [55] also claimeémost sure convergence to a locally optimal policy.

like with FACRLN, that there is redundancy in learning
separate networks for the actor and critic and developed the, Average reward setting
Consolidated Actor-Critic Model (CACM) based on that same In [
principle. They too set up a single neural network, usir:ig

sigmoid functions instead of fuzzy rules, and use it for bo itic algorithms were introduced, differing only in the ya

the actor and the critic. The plggest Q|ﬁerence IS that hibwe _they update the critic. The general update equations faethe
size of the neural network is fixed, i.e. there is no adapt"éﬁgorithms are

insertion/removal of sigmoid functions. L N
More recently, work by Bhatnagar on the use of actor-critic I = Je—1 + e (ris1 — Jo—1) (31a)
algorithms using function approximation for discountecdtco O = rpp1 — T+ Qor (i1, wier1) — Qor (e, up)
MDP’s under multiple inequality constraints appeared i6][5 g ’ A (31b)
The constraints considered are bounds on the expectedsvalue

1], together with the presentation of the novel ideas
compatible features, discussed in Section IlI-D, twagact

of discounted sums of single-stage cost functippsi.e. Oi1 = Ok + ackOn2r (31c)
Sn(w) _ Z do(x)W;;(x) <. nm=1...N ﬁk-ﬁ-l =9 + a%kl“(ek)ng (l‘k, uk)¢(xk, uk), (31d)
reX wherey is the vector of compatible features as defined in (27),
with and the parameterizatio also contains these compatible
oo features. The first and the second equation depict the standa
W (z) ZE{Z’Y’“M(%J%) To :x,ﬁ} update rules for the estimate of the average cost and the
=0 temporal difference error. The third equation is the upadte

andd, a given initial distribution over the states. The approactﬁ'e critic. Here, the vector; represents an eligibility trace (71

is, as in usual constrained optimization problems, to ektae and it is exactly this what distinguishes the two different

discounted cost functior (r) to a Lagrangian cost function 2/90rithms described in the paper. The first algorithm uses
a TD(1) critic, basically taking an eligibility trace witheday

N
_ rate A\ = 1. The eligibility trace is updated as
L(m, i) = J(m) + 3 1 Go(r) gRiy P

n=1 Zk—1+ qﬁk(azk,uk) if # x°
whereji = (u1,...,un) " is the vector of Lagrange multipli- k= br(xh, up) otherwise

ers andG,, () = S,(m) — s, the functions representing the

inequality constraints. 4This requires two simultaneous simulations of the consttaM®P.
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where z° is a special reset state for which it is assumechoosingx(L, K) = 0 gave good results in the simulations
that the probability of reaching it from any initial state in [50]. These step size schedules for the actor and critic
within a finite number of transitions is bounded away fromallow the critic to converge to the policy gradient, despite
zero for any sequence of randomized stationary policiese Hethe intermediate actor updates, while constantly revivimg
the eligibility trace is reset when encountering a statd thigarning rate of the actor such that the policy updates do not
meets this assumption. The second algorithm is aX)B(itic, stop prematurely. The actor step size schedule does not meet
simply updating the eligibility trace as the requiremen®", (ka,)? < oo for somed > 0, meaning
that convergence of the critic for the entire horizon cartet
2k = A2kt + Ok (Th, Uk)- directly established. Whas proven by the authors is that the

The update of the actor in Equation (31d) uses the poligyitic converges before every time instant= J K, at which
gradient estimate from Theorem 2. It leaves out the stgieint a new epoch staftsFor the actor, the optimum is not
distribution d™ () earlier seen in Equation (26) of the policyreached during each epoch, but in the long run it will move to
gradient theorem, as the expected valueVof(1;) is equal an optimal policy. A detailed proof of this is provided in [50
to that of Vyr(z,u)Q7 (z,u) and puts the critic's current Berenji & Vengerov [5] used the actor-critic algorithm of [1
estimate in place o7 (x,u). Finally, I'(f;) is a truncation to provide a proof of convergence for an actor-critic fuzzy
term to control the step size of the actor, taking into actoureinforcement learning (ACFRL) algorithm. The fuzzy elethe
the current estimate of the critic. For this particular aipon, of the algorithm is the actor, which uses a parameterizeryfuz
some further assumptions on the truncation operBtonust Takagi-Sugeno rulebase. The authors show that this parame-
hold, which are not listed here. terization adheres to the assumptions needed for conwagen

It is known that using least-squares TD methods for policstated in [1], hence providing the convergence proof. The
evaluation is superior to using regular TD methods in termgpdate equations for the average cost and the critic are the
of convergence rate as they are more data efficient [3], [48ame as Equations (31a) and (31c), but the actor update is
Inevitably, this resulted in work on actor-critic methodsing slightly changed into
an LSTD critic [52], [72]. However, Paschalidis et al. [50]
showed that it is not straightforward to use LSTD without V1 =T (g + a1y O (@, we) e (zr, ur))
modification, as it undermines the assumptions on the step
sizes (21)-(22). As a result of the basics of LSTD, the step sii.e. the truncation operatdr is now acting on the complete

schedule for the critic should be chosemag, = % Plugging update expression, instead of limiting the step size based o
this demand into Equations (21) and (22) two conditions dhe critic's parameter. While applying ACFRL to a power
the step size of the actor conflict, i.e. management control problem, it was acknowledged that the

highly stochastic nature of the problem and the presence of
delayed rewards necessitated a slight adaptation to tgmaki
framework in [1]. The solution was to split the updating
They conflict because the first requires to decay at a rate g|gorithm into three phases. Each phase consists of running
slower thanl/k, while the second demands a rate faster tha{ finite number of simulation traces. The first phase only
1/]{3 This means there is a trade-off between the actor haVi@gtimates the average Cos@?t keeping the actor and critic
too much influence on the critic and the actor decreasifged. The second phase only updates the critic, based of the
its learning rate too fast. The approach presented in [50] ¢@tained in the previous phase. This phase consists of a finit
address this problem is to use the following step size sdbedqumper of traces during which a fixgubsitive exploration

for the actor. For som& >> 1, let L = |k/K | and term is used on top of the actor's output and an equal number
of traces during which a fixedhegativeexploration term is

Y agr=00 Y (kag)? < oo for somed > 0.
k k

QXak = L+ 15“1(k+ 1- LK), used. The claim is that this systematic way of exploring is
. d . very beneficial in problems with delayed rewards, as it atlow
where >, (kda (k) < oo for somed > 0. As a possible the critic to better establish the effects of a certain diogc

example, of exploration. The third and final phase keeps the criticdfixe

~ o . —C
Gk () := 0(C) - b and lets the actor learn the new policy. Using this algorjthm
is provided, wherg” > 1 ando(C) > 0. The critic's step size ACFRL consistently converged to the same neighborhood of

schedule is redefined as policy parameters for a given initial parameterizationtdra
1 the authors extended the algorithm to ACFRL-2 in [66], which
Qe,k i= m took _the idea of system_a_tic exploration one step fur_ther by
learning two separate critics: one for positive explomatimd
Two extreme cases ofi(L,K) are x(L,K) = 0 and one for negative exploration.

#(L,K) = LK —1. The first alternative corresponds t0 Bhatnagar et al. [20] introduced four algorithms. The first
the unmodified version of LSTD and the latter correspon@e uses a regular gradient and will therefore be discussed i
to “restarting” the LSTD procedure wheh is an integer

multlple of . The reason for addlng the term to the 5The authors use the term “episode”, but this might cause swriuwith

critic update is the(_)reticalj as it may be used to increase e commonly seen concept of episodic tasks in RL, which is metcase
accuracy of the critic estimates fdr — oo. Nevertheless, here.
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this section. The update equations for this algorithm are A steepest descent direction is then defined by minimizing
J (¥ + Av) while keeping||AJ||z equal to a small constant.

Je=Je1 Of']vk(r’“*l = Ji-1) (322) \when ¢ is transformed to other coordinates in a non-
Ok = Thr1 — Jk + Vo, (wry1) — Vo, (w1) (32b) Euclidean space, the squared norm of a small incremeht
Opr1 = O + o rOrd(xy,) (32c) Wwith respect to thaRiemanniarspace is given by the product

Ors1 = D0 + o ki (zy, ur)). (32d) 1AD|% = AITG(9)AD

The critic update is simply an update in the direction of theh G(3) is the Ri . ic t ii
gradientV, V. The actor update uses the fact that (zy, ux) \(/jv fgrg (v) IS eh lemannian mﬁ fic tensor, alrxnlp05| Ve
is an unbiased estimate &, under conditions mentioned %€ Inite matrix _characterizing the intrinsic local curvetu

in [20]. The operatorl" is a projection operator, ensuringOf a particular manifold in_ann-dimensional space. The

boundedness of the actor update. Three more algorithms '§#|8”f'a“”ri]"?‘” 2136'?”0 tensar(J) can be determined from the
discussed in [20], but these make use of a natural gradient tglationship [73]:
the updates and hence are discussed in Section V-C2. ADIZ = [IAJ]2

1A% = [|AD][R-

V. NATURAL GRADIENT ACTOR-CRITIC ALGORITHMS Clearly, for Euclidean spaces(1) is the identity matrix.

The previous section introduced actor-critic algorithms Standard gradient descent for the new parametesuld
which use standard gradients. The use of standard gradie#tfine the steepest descent with respect to the iaxa|* =
comes with drawbacks. Standard gradient descent is més{' Av. However, this would result in a different gradient
useful for cost functions that have a single minimum an@rection, despite keeping the same cost function and only
whose gradients are isotropic in magnitude with respect §9anging the coordinates. Theatural gradient avoids this
any direction away from its minimum [73]. In practice, thes@roblem, and always points in the “right” direction, by tai
two properties are almost never true. The existence of pielti into account the Riemannian structure of the parameterized
local minima of the cost function, for example, is a knowgPace over which the cost function is defined. So now,
problem in reinforcement learning, usually overcome by ex:(¥ +Ad) is minimized while keeping AvJ||r small (J here
ploration strategies. Furthermore, the performance ohout IS just the original cosy/, but written as a function of the new
that use standard gradients relies heavily on the choice of@prdinates). This results in the natural gradi®hy./(J) of
coordinate system over which the cost function is definegs THhe cost function, which is just a linear transformation tog t
“non-covariance” is one of the most important drawbacks §tandard gradien?;.J(J) by the inverse of&(J):
standard gradients [51], [74]. An example for this will beegi ~ o~ ~ ~ -~
later in this section. V5 (0) = GTHI) V5 (9).

In robotics, it is common to have a “curved” state space N . .
(manifold), e.g. because of the presence of angles in the. sta As an example of pptlmlzatpn with a standgrd gradient
A cost function will then usually be defined in that curvedc'sus @ ne_ltural gradient, consider a cost function based on
space too, possibly causing inefficient policy gradientaips bolar coordinates
to occur. This is exactly what makes tmatural gradient 1 9 9 ..o
interesting, as it incorporates knowledge about the cureat Jp(rp) = 5[(7” cos p — 1) 47 sin” ¢l.
of the space into the gradient. It is a metric based not on o ]
the choice of coordinates, but on the manifold that thodd!S cost function is equivalent tdp(z,y) = (v — 1)? +_3/2' _
coordinates parameterize [51]. wherex andy are Euclld.ean. coordinates, i.e. the relationship

This section is divided into two parts. The first part exptainP@tween(r, o) and (z,y) is given by
what the concept of a natural gradient is and what its effects
are in a simple optimization problem, i.e. not considering a
Iearn?ng setting. The second part is devoted_to actorecriti Fig. 3a shows the contours and antigradients/pfr, ¢)
algorithms that make use of this type of_ gradient to upt_jafgr 0 <r<3and|p| <, where
the actor. As these policy updates are using natural gresdien

(33)

T =TCOoSp Yy = rsinp.

these algorithms are also referred to as natural policyigmad v 7 _ 7 —Cos
algorithms. ~Virg)Jp(r,¢) = = rsing |

L o The magnitude of the gradient clearly varies widely over
A. Natural Gradient in Optimization the (r, ¢)-plane. When performing a steepest descent search

To introduce the notion of a natural gradient, this sectioon this cost function, the trajectories from any pointy)
summarizes work presented in [73]-[75]. Suppose a functitm an optimal one will be far from straight paths. For the
J(9) is parameterized by. When ¢ lives in a Euclidean transformation of Euclidean coordinates into polar cauats,
space, the squared Euclidean norm of a small incremeht the Riemannian metric tensor is [73]
is given by the inner product

10
1AD||% = A9 AY. Gr,e) = { 0 12 }
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(a) Standard (b) Natural Fig. 5. Trajectories for standard gradient (dashed) angrabgradient (solid)

Fig. 3. Standard and natural gradients of the cost funcfiptr, ¢) in polar algorithms for minimizingJp (r, ¢), transformed to Euclidean coordinates.
coordinates.

gradient ofJp(r, p) always points straight to the optimum and
follows the same path that the standard gradientyofz, y)
would do.

When J(¢) is a quadratic function ofy (like in many
optimization problems, including for example those solugd
supervised learning), the Hessi&h+)) is equal toG(¥) for
the underlying parameter space, and there is no difference
between using Newton’s method and natural gradient opti-
mization. In general however, natural gradient optimati
differs from Newton’s method, e.gG(¢) is always positive
definite by construction, whereas the Hesstafy) may not
be [73]. The general intuition developed in this section is
essential before moving on to the natural policy gradient in
MDPs, explained next.

Fig. 4. Trajectories for standard gradient (dashed) angrabgradient (solid)

algorithms for minimizingJp (r, ¢) in polar coordinates. B. Natural Policy Gradient

The possibility of using natural gradients in online leami
so that the natural gradient of the cost function in (33) is was first appreciated in [75]. As shown above, the crucial
property of the natural gradient is that it takes into ac¢oun

V. _ —1
VeI 9) = =G, 0)" Vi) Jp(r, @) the structure of the manifold over which the cost function is
r—cosp defined, locally characterized by the Riemannian metrisden
= sme : To apply this insight in the context ghlicy gradient methods,
,

the main question is then what is an appropriate manifold, an
Fig. 3b shows the natural gradients &f(r, ¢). Clearly, the once that is known, what is its Riemannian metric tensor.
magnitude of the gradient is now more uniform across the Consider first just the parameterized stochastic policy
space and the angles of the gradients also do not greatly vagyz,u) at a single stater; a probability distribution over
away from the optimal point1, 0). the actionsu. This policy is a point on a manifold of
Fig. 4 shows the difference between a steepest decenth probability distributions, found at coordinatésFor a
method using a standard gradient and a natural gradienteon tttanifold of distributions, the Riemannian tensor is the so-
cost Jp(r, ) using a number of different initial conditions.called Fisher information matrix (FIM) [75], which for the
The natural gradient clearly performs better as it alwaydsfinpolicy above is [51]
the optimal point, whereas the standard gradient generates -
paths that are leading to points in the space which are nat eve F'(¢,2) = E {Vﬁhl my (2, u) Vylnmy (2, u) }

feasible, because of the radius which needs to be positive. -
To get an intuitive understanding of what the effect of a = /UW(f”vU)Vﬂlnw(%u)vﬂhlm(l‘»U) du.
natural gradient is, Fig. 5 shows trajectories for the shatd (34)

and natural gradient that have been transformed onto the

Euclidean space. Whatever the initial condifidgs, the natural The single-state policy is directly related with the expect
immediate reward, over a single step framHowever, it does

5The exemplified initial conditions are not the same as in Fig. 4. not tell much about the overall expected retuifr), which is
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defined over entire state trajectories. To obtain an apfaapr related to natural actor-critic algorithms. Furthermotiee
overall FIM, in the average reward case, Kakade [51] magaper presents the successful application of an episodanta
the intuitive choice of taking the expectation B{¢, «) with  of Natural Actor-Critic (eNAC) on an anthropomorphic robot

respect to the stationary state distributidn(z) arm. For another example of a natural-actor critic algamith
with a regression-based critic, see [76].
F(0) = /X d™ () F (0, z)dz. (35) Park et al. [60] extend the original work in [52] by using

, ) _a recursive least-squares method in the critic, making the
He was, however, unsure whether this was the right choice, ;s meter estimation of the critic more efficient. They then

Later on, the authors of [52] and [74] independently showed,.cessfully apply it to the control of a two-link robot arm.

that Equation (35) is indeed a true FIM, for the manifold of _. . .
o . . Girgin and Preux [61] improve the performance of natural
probability distributions over trajectoriegn the MDP. When . ) .
. ) . actor-critic algorithms, by using a neural network for ttegoa,
used to control the MDP with stochastic dynamjgsry (x, u) L . . :
. . . . . . . which includes a mechanism to automatically add hidden
gives rise to different controlled trajectories with diffat : : o
layers to the neural network if the accuracy is not sufficient

propapllmgs, SO each valu_e of the parameteyields SUCh Enhancing the eNAC method in [16] with this basis expansion
a distribution over trajectories. To understand how thirdi . : . .
method clearly showed its benefits on a cart-pole simulation

bution is relevant to the valué(r) of the policy, observe that - i
this value can be written as the expected value of the infinite Though a lot of (natural) actor-critic algorithms use so-
horizon return over all possible paths, where the expmtatipmsncated function approximators, Kimura showed in [62]

is taken with respect to precisely the trajectory distimut that @ simple policy parameterization using rectangulars®
Furthermore, [52] and [74] show that this idea also exten§§ding can still outperform conventional Q-learning in fivig
to the discounted reward case, where the FIM is still givefimensional problems. In the simulations, however, Qriiay
by Equation (35), only withi™ (z) replaced by the discountedd!d out.perform the natural actor-critic algorithm in low-
state distributioni” (z), as defined in Section II-A. dimensional problems.

Examples of the difference in performance between regular2) Average reward settingBhatnagar et al. [20] intro-
policy gradients and natural policy gradients are providetliced four algorithms, three of which are natural-gradient
in [51], [52], [74]. algorithms. They extend the results of [1] by using temporal
difference learning for the actor and by incorporating reitu
C. Natural Actor-Critic Algorithms gradients. They also extend the vv_ork of [1_6] by providing the

, . . ) . first convergence proofs and the first fully incremental redtu

This section describes several representative actot-Crifoio . critic algorithms. The contribution of convergerreofs
algorithms that employ a natural policy gradient. Again, g, natyral-actor critic algorithms is important, espégia
distinction is made between algorithms using the discalintg;cq the algorithms utilized both function approximatiomd
return and the average return. a bootstrapping critic, a combination which is essential to

1) Discounted return settingAfter the acknowledgement large-scale applications of reinforcement learning. Téwpad
by [75] that using the natural gradient could be beneficialgorithm only differs from the first algorithm, described a
for learning, the aptly called Natural Actor-Critic algdmin the end of Section IV-B with Equation (32), in the actor
in Peters et al. [52] was, to the best of our knowledgépdate (32d). It directly substitutes the standard gradigtfn
the first actor-critic algorithm that successfully empldya the natural gradient.
natural gradient for the policy updates. Together with [51]
they gave a proof that the natural gradiWJ(q?) is in fact D1 = DOk + o By H(0)0r1) (2, ur)), (37)
the compatible feature parameterof the approximated value

function, i.e. where F' is the Fisher Information Matrix. This requires the

actual calculation of the FIM. Since the FIM can be written
Consequently, they were able to use a natural gradient uitheising the compatible features as

explicitly calculating the Fisher Information Matrix. Thturns
the policy update step into

Vo (0) = w.

F(19):/Xd”(x)/Uﬂ(x,u)w(m,u)z/i—r(a:,u)dudx

V1 = Vg + aq Vo J (V) (36a)
= Uk + Qa1 (36b) sample averages can be used to compute it:
For the policy evaluation step of the algorithm, i.e. the
calculation of the critic parameter, LSTD-Q(\) was used, 1k
which was their own extension to LSTBY from [3]. The Fr(9) = ﬁz¢(azl,ul)w—r(xl,ul).
Natural Actor-Critic outperformed standard gradient ppli 1=

gradient methods on a cart-pole balancing setup. Later, the

work was extended in [16], where it was shown that severafter converting this equation to a recursive update rule,
well-known reinforcement algorithms (e.g. Sutton and 8art and putting the critic’s learning rate in place, the Sherman
actor-critic [7] and Bradtke's Q-learning [23]) are stréyng Morrison matrix inversion lemma is used to obtain an itewati
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update rule for the inverse of the FIM Actor-Critic (gNAC) algorithm in [68] does not. Instead, a
generalizednatural gradient (gNG) is used, which combines

F7l'9) = b properties of the Fisher Information Matrix and natural-gra
L= ack dient as defined before with the properties of a differently

ol (F,;_llwk)(F,;_llzbk)T defined Figher Information Mgtrix and natural gradient from

k—1 ek over(1— ] Flbe) | the work in [78]. They consider the fact that the average

reward J(¢) is not only affected by the policyr, but also
where the initial valuegs, ! is chosen to be a scalar multiple ofby the resulting state distributiaii™ () and define the Fisher
the identity matrix. This update rule, together with theustid Information Matrix of the state-action joint distributicas
update of the actor then form the second algorithm.
The third algorithm in [20] uses the fact that the compatible Fsa(V) = Fs(0) + Fa(9), (41)

approximationw ' ¢ (z, u) is better thought of as an advantag@yhere F5(¥) is the FIM of the stationary state distribution
function approximator instead of a state-action value tionc d™(z) and Fa () the FIM as defined in Equation (35). In [78],
approximator, as mentioned in Section 1ll-D. Hence, th@e use offsa(¥) as the FIM is considered better for learning
algorithm tunes the weights), such that the squared errorhan ysing the original FIM because of three reasons: (ijni-ea
EM(w) = E[(w'(z,u) — A™(z,u))?] is minimized. The ing with Fsa(¥) still benefits from the concepts of natural

gradient of this error is gradient, since it necessarily and sufficiently accounts fo
the probability distributions that the average reward delge
Vi€ (w) = QZdﬂ(z)ZW(I u) on. (i) Fsa(¥) is analogous to the Hessian matrix of the
X g average reward. (iii) Numerical experiments have shown a
[w'P(z,u) — A™ (2, u)] (=, u). strong tendency of avoiding plateaus in learning.
As 6, is an unbiased estimate of" (1, us) (see [77]), the .N(.aver.theless, the .or_ig.inal FIMFA () accounts for the
gradient is estimated with distribution over an infinite ampu_nt qf time steps_,, whe.reas
o Fsa(®¥) only accounts for the distribution over a single time
Vwl™(w) = 2(brpibg w — 6, (38) step. This might increase the mixing time of the Markov

chain drastically, making it hard for the RL learning agemt t

estimate a gradient with a few samples. Therefore, the aatho
suggest to use a weighted average, using a weighting factor
Wri1 = Wk — Qe g (YrPp Wi — Sxtr). (39) of both FIM's defined in Equations (34) and (41). The gNG is

) ) o then calculated by using the inverse of this weighted awgrag
Furthermore, the natural gradient estimate is giverubyas leading to the policy gradient

shown by Peters and Schaal [16]), and an explicit calculatio _

for the FIM is no longer necessary. Therefore, the third VoJ(9) = (LFs+ Fa) ' Vg J(9).
algorithm is obtained by using Equation (39) and replaci
the actor in Equation (37) with

and the gradient descent update rule for(using the same
learning rate as the critic) is

Phe implementation of the algorithm is similar to that of NAC
with the slight difference that another algorithth$LSD [79],
U1 =0k + ag pwii1). (40) is used to estimat® yd" (x). If « = 0, gNAC is equivalent to
the original NAC algorithm of Peters et al. [52], but now epti

! . e . | emizing over the average return instead of the discountennet
second and third algorithm. The explicit calculation Bf * |, 3 numerical experiment with a randomly synthesized MDP

is now used for the update of the compatible parameter q¢ 3 gates and 2 actions, gNAC with> 0 outperformed the
The update ofw now also follows its natural gradient, byoriginal NAC algorithm.

premultiplying the result in Equation (38) Witﬁ,gl, ie.
%wé’”(w) _ 2F,;1<1/w,1w k), VI. APPLICATIONS
This section provides references to papers that have dpplie
actor-critic algorithms in several domains. Note that tis¢ |
Whi1 = Wi — e, B (Pd wr, — Oty of applications is not exhau_stive and that o'Fher applicatio
_ _ FlyT wy + 1o domains for actor-critic algorithms and more literaturetbe
=Wk T ek Tk VRV Wk T Qekly 0Pk applications mentioned below exists. '
I In the field of robotics, early successful results of using
= Wy — Qe g Wk + Qe Fy 05, actor-critic type methods on real hardware were shown on a
ball on a beam setup [80], a peg-in-hole insertion task [81]
and biped locomotion [82]. Peters and Schaal showed in [16]

SCIXT;L?Z/J i r;1r2§t ?]Zttorr;p;C?;er_::sr.?glglEgg?#;z (i?a).the rait that their natural actor-critic method was capable of ggtti
ug u tic algorl u U an anthropomorphic robot arm to learn certain motor skills

gradient as defined in Section V, the generalized Natur(%lee Fig. 6). Kim et al. [63] recently successfully applied

"For readability, (3, uy) is replaced by, for the remainder of this a quified VerSion of the algorithm in [60] to motor skill
section. learning. Locomotion of a two-link robot arm was learned

The fourth algorithm in [20] is obtained by combining th

turning the update ofv into

where clever use is made of the fact tiatis written as the
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electronic retail market.

VIl. DISCUSSION ANDOUTLOOK

When applying reinforcement learning to a certain problem,
knowing a priori whether a critic-only, actor-only or actor
critic algorithm will yield the best control policy is virally
impossible. However, a few rules of thumb should help in
selecting the most sensible class of algorithms to use. The
most important thing to consider first is the type of control
policy that should be learned. If it is necessary for the nt
policy to produce actions in a continuous space, critigronl
algorithms are no longer an option, as calculating a control
law would require solving the possibly non-convex optimiza
Fig. 6. The episodic Natural Actor-Critic method in [16] ajepl to an tion procedure of Equation (11) over the continuous action
anthropomorphic robot arm performing a baseball bat swinlg tas space. Conversely, when the controller only needs to genera

actions in a (small) countable, finite space, it makes semse t

use critic-only methods, as Equation (11) can be solved by
using a recursive least-squares natural actor-critic atethenumeration. Using a critic-only method also overcomes the
in [60]. Another successful application on a real four-kedg problem of high-variance gradients in actor-only methoad a
robot is given in [58]. Nakamura et al. devised an algorithiie introduction of more tuning parameters (e.g. extraniear
based on [16] which made a biped robot walk stably [64fates) in actor-critic methods.
Underwater cable tracking [65] was done using the NAC Choosing between actor-only and actor-critic methods is
method of [16], where it was used in both a simulatiomore straightforward. If the problem is modeled by a
and real-time setting: once the results from simulationewe{quasi-)stationary MDP, actor-critic methods should tev
satisfactory, the policy was moved to an actual underwateslicy gradients with lower variance than actor-only metho
vehicle, which continued learning during operation, inying  Actor-only methods are however more resilient to fast chang
the initial policy obtained from simulation. ing non-stationary environments, in which a critic would be

An example of a logistics problem solved by actor-critigncapable of keeping up with the time-varying nature of the
methods is given in [50], which successfully applies such grocess and would not provide useful information to the racto
method to the problem of dispatching forklifts in a warel@uscancelling the advantages of using actor-critic algorithin
This is a high-dimensional problem because of the number @fmmary, actor-critic algorithms are most sensibly used in
products, forklifts and depots involved. Even with over 20Qquasi-)stationary setting with a continuous state anibmact
million discrete states, the algorithm was able to conveoge space.

a solution that performed 20% better in terms of cost than aOnce the choice for actor-critic has been made, the issue of
heuristic solution obtained by taking the exact solutionaof choosing the right features for the actor and critic, retpely,
smaller problem and expanding this to a large state spaceremains. There is consensus, though, that the features for

Usaha & Barria [67] use the algorithm from [1] describe¢he actor and critic do not have to be chosen independently.
in Section IV-B, extended to handle semi-Markov decisiogeveral actor-critic algorithms use the exact same set of
processes for call admission control in lower earth orbit satelfeatures for both the actor and the critic, while the policy
lite networks. They compared the performance of this actqjradient theorem indicates that it is best to first choose a
critic semi-Markov decision algorithm (ACSMDP) togetheparameterization for the actor, after whicbmpatible features
with an optimistic policy iteration (OPI) method to an ekigt for the critic can be derived. In this sense, the use of compat
routing algorithm. While both ACSMDP and OPI outperformble features is beneficial asliéssenghe burden of choosing
the existing routing algorithm, ACSMDP has an advantage inseparate parameterization for the value function. Naté th
terms of computational time, although OPI reaches the be#impatible features do nefiminatethe burden of choosing
result. Based on the FACRLN from [54] in Section IV-Afeatures for the value function completely (see Sectiom)LI
Chun-Gui et al. [57] devised a way to control traffic signaladding state-dependent features to the value function pn to
at an intersection and showed in simulation that this metheg the compatible features remains an important task as this
outperformed the commonly seen time slice allocation metg- the only way to further reduce the variance in the policy
ods. Richter et al. [2] showed similar improvements in roagradient estimates. How to choose these additional feature
traffic optimization when using natural actor-critic metlSo  remains a difficult problem.

Finally, an application to the finance domain was describedChoosing a good parameterization for the policy in the first
in [59], where older work on actor-critic algorithms [83] /a place also remains an important issue as it highly influences
applied in the problem of determining dynamic prices in ajhe performance after learning. Choosing this parametioiz

e . _ does seem less difficult than for the value function, as in

Semi-Markov decision processes extend regular MDPs by dakito

account a (possibly stochastically) varying transitianetifrom one state to Practice it is easier to get an idea .What shape the policy has
another. than the corresponding value function.
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One of the conditions for successful application of reirji3]
forcement learning in practice is that learning should hielqu
Although this paper focuses on gradient-based algorithms a
how to estimate this gradient, it should be noted that it j$4]
not only the quality of the gradient estimate that influences
the speed of learning. Balancing the exploration and etgloi
tion of a policy and choosing good learning rate schedulgs;
also have a large effect on this, although more recently
expectation-maximization (EM) methods that work Witho‘iﬁe]
learning rates have been proposed [84], [85]. With respect
to gradient type, the natural gradient seems to be superion
to the standard gradient. However, an example of standard
Q-learning on low-dimensional problems in [62] and relativy, 4
entropy policy search (REPS) [44] showed better results tha
the natural gradient. Hence, even though the field of natuf&d]
gradient actor-critic methods is still a very promisingafer
future research, it does not always show superior perfocean
compared to other methods. A number of applications whi¢tp]
use natural gradients are mentioned in this paper. The use
of compatible features makes it straightforward to caleulag,q
approximations of natural gradients, which implies thay an
actor-critic algorithm developed in the future should mpe  [22]
to use this type of gradient, as it speeds up learning with%g]
any real additional computational effort.
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