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Preface

Given its non-invasive nature, images and image computing form the basis for
radiation therapy. Examples range from pre-treatment delineation of the tar-
get region to intra-treatment tracking of tissue motion and deformation. Hence,
applications in radiation therapy have frequently been a driving force in the de-
velopment of new image computing algorithms. The workshop 'Image-Guidance
and Multimodal Dose Planning in Radiation Therapy’ summarizes novel and
state-of-the-art approaches reflecting different challenges in the radiation ther-
apy workflow. First, a number of papers address specific issues in image segmen-
tation when taking multiple modalities into account. Second, image registration
is discussed, particularly in the context of organ motion. Third, the use of image
data to guide the treatment, e.g., when selecting the position of beams or needles
is considered. Finally, recent software toolkits are presented.

It is a privilege to hold this workshop in the context of MICCAI, and we
appreciate that the organizers provide this exciting venue. We would like to
thank all authors and reviewers for helping to compile a set of highly interesting
papers and we also like to acknowledge the use of EasyChair (www.easychair.org)
when preparing the proceedings.

August 16, 2012 Wolfgang Birkfellner
Jamie Mcclelland

Simon Rit

Alexander Schlaefer
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Investigating mediastinal lymph node stations
segmentation on thoracic CT following experts
guidelines

D. Sarrut’?, L. Claude?, S. Rit!2, R. Pinho!2, G. Pitson?3, R. Lynch?

(1) Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044 ; France
(2) Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
(3) Department of Radiation Oncology, Andrew Love Cancer Centre, Barwon Health,
Geelong, Australia.

Abstract. In radiation therapy, accurate delineation of mediastinal
lymph node stations on thoracic CT is essential for both prognostication
and treatment delivery. We propose an original approach based purely
on geometrical considerations, without using grey levels, that follow the
reference guidelines and attempt to replicate the delineation undertaken
manually by the experts. The proposed method is a greedy process based
on fuzzy relative position constraints. It progressively refines an initial
region towards the target by using a set of predefined anatomical struc-
tures. Experiments were conducted with two CT images that were man-
ually segmented by experts. Average Dice Similarly Coefficient between
segmented and references stations was close to 77%. This fast method
(30 sec) could potentially assist the expert, for example in detecting sit-
uations where the guidelines are not strictly followed. To our knowledge,
this is the first time such an approach has been proposed for this problem.

1 Introduction

Mediastinal and hilar lymph node involvement often occurs in lung cancer. A
reference definition of lymph node station anatomy was recently updated by the
TASLC Lung Cancer Staging Project. Such a definition is intended to be an
internationally agreed framework that would allow precise and uniform deter-
mination of lymph node status by centres around the globe. This new map [13]
contains important changes to the previously used Mountain-Dresler [11] and
Naruke maps [12].

In radiation therapy, lymph node stations are sometimes included in the tar-
get volume, but there is currently no consensus on whether to electively irradiate
uninvolved mediastinal nodal regions [4,6]. However, the accurate delineation of
node regions on thoracic CT is essential for both prognostication and treatment
delivery. In 2005, Chapet et al [2] published an atlas from the University of
Michigan which defined the mediastinal nodal stations for lung cancer on CT
images. This atlas has been superseded by the new IASLC lymph node. Lynch
et al [9] have recently published a CT atlas, based on the new IASLC lymph
node map.



The descriptors for the nodal map are based on anatomical structures within
the mediastinum. The mediastinal nodal stations are numbered from their supe-
rior to inferior (SI) location, starting with the supraclavicular stations 1R and
1L (R for Right and L for Left), superior mediastinal : 2R, 2L, 3A, 3P, 4R, 4L
(A for Anterior, P for Posterior), aortic: 5 and 6, inferior mediastinal : 7-9, hilar,
lobar and (sub)segmental : 10-14 (figure 1). Each station is described according
to the surrounding anatomical structures, such as aorta, carina, trachea, vari-
ous vessels, etc. The limits and boundaries between the stations are indicated.
Some geometrical constructions are defined to assist in delineating some nodal
stations : for example, the boundary between 2R and 2L is defined by a vertical
line passing tangentially along the left lateral tracheal border.

Station 3A

Station 6 .

Fig. 1. Examples of mediastinal stations delineated on a thoracic CT.

The delineation of nodal stations is performed manually, on an intravenous
(IV) contrasted thoracic CT, on a slice by slice basis. The guidelines make use
of natural orientations, referring to AP, SI and LR axis. Manual delineation of
all the normal anatomical structures and lymph node stations within the me-
diastinum is a time consuming process. The inter-patient anatomical variability
and the inter-experts variability are high [7].

Several articles have described segmentation methods for nodal delineation,
e.g. [5,10], but not for stations. Lu et al. [8] described a method to determine



cuboid (parallelepiped) regions that encompass stations. Other works proposed
head and neck lymph node station segmentation for radiation therapy planning.
Commowick et al. [3] proposed an atlas-based method that used deformable
image registration to deform reference lymph station contours against current
patient image. Good results were obtained but due to the high variability of the
stations and the presence of low-contrast regions, this process can be further
improved.

To our knowledge, no published work has been designed for the automated
delineation of mediastinal lymph node stations. We propose an original approach,
different from atlas-based and grey-level-based segmentation methods, based
purely on geometrical considerations that follow the reference guidelines and
attempt to replicate the delineation of nodal stations undertaken manually by
the experts.

2 Method

Principles. We investigated the feasibility of segmenting the stations by following
their geometrical description in the guidelines [13,9], e.g. their relative positions
to surrounding anatomical structures. We tried to reproduce this description and
thus made no use of the grey levels of the CT image. The proposed process was
the same for all stations. It started from an initial 3D binary image .S, called the
support. Then, a greedy and subtraction based process was applied: at each step
i some pixels were removed from the current support S; according to anatomical
and geometrical constraints. The result formed the new current support S;41; no
pixels were added from step to step. After all the constraints had been applied,
the last support S;—;.s¢ was the resulting station. Geometrical constraints were
defined according to identified anatomical structures that were considered to be
available in the form of 3D binary images.

Relative Position (RP) constraints. We define an RP operator that considered
the current support S, an object A, an angular relationship « (such as “at left of
A”) and a threshold ¢. The operator removed from S all pixels that did not fulfill
the orientation relation a according to a tolerance threshold t. Following the
framework of [1], the orientation relation was determined by a fuzzy map fiq, (),
with © € S a pixel position, that gives at = the degree of validity of the relation.
We chose the same functions to that in [1] : the fuzzy value at a given point
2Bmin () )
™

x was a linear function pin a(z) = max (0, 1- of the minimal value

Bmin(x) = mingec aB(x, y) among all the angles between the considered direction
— —

d, and each point y in the object S(x,y) = arccos ﬁ'dﬁ and S(z,x) = 0. The
fuzzy landscape was computed with the proposed fast propagation algorithm, in
two passes with a neighborhood of radius 2. Once the fuzzy map was obtained,
the threshold ¢ was used to create a binary image RPg(A, «,t) in which the

pixel value 1 indicated at which pixel position the relationship was acceptable.
If a RP contained “Not to”, 1 — o, 4(z) was considered instead. The last step



performed the boolean intersection between this binary image and the support:
Sit1 =S; N RPs(A,a,t). RP can be used in 3D (with two angles a = (a1, @)
or in 2D, slice by slice. We used 3D or 2D approaches according to what was
indicated in the guidelines.

As we wanted to stay as close as possible to the human readable description
used in the guidelines, we consider natural orientations such as “Left to” or “Not
Anterior to”. This lead to 12 different orientations, combined or not with the
“Not To” operator. For example, if the nodal station was indicated to be “at
Left to the Aorta”, all of the pixels that were not to the left of the Aorta were
removed. To further illustrate this point, if the nodal station was “Not Anterior
to the Brachiocephalic Vein”, the voxels that were anterior to this structure were
discarded from the current support. Figure 2 illustrates this process.

Fuzzy map
"Posterior to Aorta"

Threshold (0.5)

Fig. 2. Illustration of one RP operation. Initial support S; of station 4R is shown in
red contour top/left. RP is “Posterior to Aorta”. The corresponding fuzzy map is shown
top/right, with the threshold ¢ = 0.5. Next resulting support S;+1 is bottom/left. Final
station after other RP is bottom/right. In all images, the reference contour of target
station 4R is drawn in yellow and black.

When considering several successive RP operations, fuzzy maps could be
merged and a single threshold value could be used. However, we decided not
to combine fuzzy maps but rather consider successive operations, like in the



guidelines. It requires one threshold by operation, but allows a better control and
potential visual feedback to the user. Moreover, as the support size decreased
after each RP operation, it decreased the computation time because the fuzzy
maps should only be computed on the current support .5;.

Geometrical constraints. In the guidelines, in addition to the RP constraints,
other geometrical descriptions were also given, such as “The boundary between
stations 2R and 2L is defined by a vertical line passing tangentially along the
left lateral tracheal border”. We translated this description into algorithms that
will not be described here. Table 1 describes the anatomical structures used in
the process. Some of them were obtained automatically according to methods
already available by our team. The others have been delineated manually by the
experts. It should be noted that the majority of structures do not need to be
delineated entirely on all slices because they are only used as references within
selected regions. The accuracy in the segmentation is also not a critical point
because only some parts of the structures are used. For example only the anterior
part of the vertebral body is use required to be delineated accurately whereas
the posterior aspect can be demarcated roughly.

Initial mediastinum and stations supports. The first step consists of determin-
ing the initial support Sy for all stations. This is done by determining a common
mediastinal support automatically computed by considering areas to the left of
the right lung and to the right of the left lung with the RP operator. Then we de-
termined cuboid regions corresponding to LR, AP and SI limits of each stations,
similarly to [8]. Stations were then segmented starting from superior (1R 1L), to
inferior (S6), in the guidelines order. Each station description contains around
4 to 8 RP operators and geometrical limits. The different threshold values, t,
were manually defined. The total process was composed of about 130 different
operations (including RP).

3 Experiments and results

We tested the approach with the delineated atlases of two patients, performed
by radiation oncologists in a consensus framework [9], with the new IASLC
stations definition [13]. CT were acquired with IV contrast with a resolution of
0.66 x 0.66 x 1.5 mm. Each atlas contains the delineation of stations (1R, 1L, 2R,
2L, 3A, 3P, 4R, 4L, 5, 6) and the anatomical structures. Delineations for other
patients are in progress. We used the Dice Similarity Coefficient DSC(A, B) =
2;?2? to quantify the overlap between two 3D structures A and B. We depict
in table 2 the evolution of DSC between the reference station and 1) the initial
whole mediastinal region Sg, 2) the initial station’s parallelepiped supports S;
and 3) the final result Sfinai.

Globally, we observed an overlap greater than 70%. There was an exception
for stations 1L, p1: in that specific case we observed that the reference delineation
proposed by the expert did not perfectly follow the guidelines. On some slices
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Bony structures
Rib Cage

Sternum
CricoidCartilag (P)
ClavicleRight
ClavicleLeft X
FirstRibRight X
FirstRibLeft X
Artery & Veins
Aorta X X X X X X
AorticArch X
AscendingAorta
DescendingAorta
Vertebral Artery X X
SubclavianArteryRight X
SubclavianArteryLeft X
CommonCarotidArteryLeft
CommonCarotidArteryRight
LeftPulmonaryArtery X | X
MainPulmonaryArtery X
BrachioCephalicArtery
BrachioCephalicVein
AzygousVein X
SVC (Superior Vena Cava) X
LowerBorderAzygousVein
Others

ScaleneMuscleAnt X
Esophagus X
Trachea X X X X X
Thyroid X X X X X

Table 1. List of anatomical structures used by station. Cricoid cartilage is marked
with a P, because only a point corresponding to the inferior limit of this structure is
needed, not the entire contour. In addition to these structures, the patient contour,
and the right and left lungs are also used.
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(4 slices for 1L), posterior borders of the stations should be delimited with the
most anterior point in the right and left lung. This was not the case in the expert
contour, but well described by the proposed algorithm. After correction of the
reference delineation for 1R and 1L, DSC rose to greater than 80%. We decided
to keep this situation in order to illustrate the interest in trying to strictly follow
guidelines.

4 Discussion and conclusion

The results, although limited, show that interesting segmentation can be ob-
tained, with a mean overlap almost equal to 77%. The proposed methodology
has the advantage of following guidelines in a natural way and is fast because it
only considers binary images with decreasing support sizes from step to step :
about 30 sec using a conventional workstation (2.6 Gz). One limitation is the
need to have one threshold value for each RP (but the same for all patients).
These parameters do not appear to be very sensitive due to the limited dataset



pl p2
Med. Init. Final Med. Init. Final
Station 1R 28.2%  42.1%  73.0% | 24.1%  37.3% 70.4%
Station 1L 35.8% 50.1%  67.3% | 27.9%  44.4% 70.3%
Station 2R 27.1%  433%  75.0% | 25.8%  42.7% 75.8%
Station 2L 24.1% 35.6% 74.0% 25.8% 40.3% 70.5%
Station 3A 42.8%  48.6%  85.3% | 33.5%  39.4% 79.8%
Station 3P 29.1% 52.2% 80.0% 33.6% 63.1% 79.2%
Station 4R 28.6% 50.0% 86.1% | 30.6% 56.1%  83.1%
Station 4L 13.0% 20.1%  73.5% 9.1% 26.8% 74.0%
Station 5 20.7% 29.1%  84.5% | 446%  63.6% 77.4%
Station 6 16.0% 22.8%  84.9% 17.8%  23.3% 73.5%

Stations

Table 2. For each station, Dice Similarity Coefficients between reference station and
mediastinal support So (“Med.”), cuboid initial support Si (“Init”), and final result
Sfinal (“Final”).

but may become more accurate if the dataset was larger. Another limitation
is that the guidelines are sometimes hard to translate into algorithmic opera-
tors. However, this could be view as an advantage because the proposed method
could potentially point out ambiguities or gaps in the guidelines. If there was
demonstrated uncertainty in the guidelines, this could be investigated. A further
limitation of this method is the requirement to have several anatomical struc-
tures delineated prior to segmentation. However, we argue that such structures
are only needed in part and segmentation could be performed automatically with
conventional methods, for example with atlas or region-growing. The description
of the exact part of all structures that should be delineated is also an important
work that can help experts.

Our aim with this technique is not to fully replace manual delineation, but
rather provide tools that can help delineations and potentially improve con-
sistency. Several applications can be imagined. First, the resulting automated
regions can be proposed to the expert as a starting point to the manual pro-
cess. It is still to be determined if this could result in efficiency gains. A second
application could be to compare manual delineations with the automated one
in order to assist the experts in following all the guidelines. If a database of
cases were available, differences between manually versus automated segmented
regions could reveal potential ambiguities or deficiencies of the descriptions in
the guidelines. Segmented stations could also be useful for node segmentation,
to automatically label found nodes.

Regarding the proposed method, we only considered orientation relations
(RP), but other topological or distance relations could be used. If a larger dataset
was available, threshold values could be learnt from the delineations performed
by the experts, instead of being manually defined. Future works will study such
a learning approach.

We investigated here an automated method that follows the expert’s guide-
lines for delineating mediastinal nodes stations on CT images. To our knowledge,
this is the first time such an approach has been proposed for this problem. The



preliminary results are promising and will hopefully lead to further developments
with a larger dataset.
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Glioblastoma growth modeling for radiotherapy
target delineation

Jan Unkelbach!, Bjoern H. Menze?, Ali R. Motamedi!, Florian Dittmann®,
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! Massachusetts General Hospital, 30 Fruit Street, Boston, MA 02114, USA
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4 Asclepios Project, INRIA Sophia Antipolis, France

Abstract. Radiotherapy treatment planning requires a localization of
the tumor within the patient. This is challenging to accomplish for micro-
scopic infiltrative spread of disease that is not visible on current imaging
modalities. Prime examples for infiltrative tumors are gliomas. With the
help of mathematical models, common growth characteristics of gliomas,
which are known from histopathological studies, can be incorporated in
radiotherapy target delineation. This requires an imaging based personal-
ization of the model to the individual patient. We demonstrate use cases
of the Fisher-Kolmogorov glioma growth model in radiotherapy planning
of a clinical case. We further analyze the crucial input parameters to the
model, in particular, the need for reliable segmentation of anatomical
boundaries such as the falx cerebri and the tentorium cerebelli.

Keywords: glioblastoma, radiotherapy planning, target delineation, tu-
mor modeling

1 Introduction

Glioma differ from many solid tumors in the sense that they grow infiltratively.
Instead of forming a solid tumor mass with a defined boundary, glioma cells in-
filtrate the adjacent brain parenchyma. It is well known that tumor cells can be
found several centimeters beyond the tumor mass that is visible MRI. Currently,
radiotherapy planning is mostly based on the enhancing tumor mass visible on
post contrast T1 weighted imaging, as well as the peritumoral edema region
visible on T2 weighted images. To account for the infiltrative growth, a 2-3 cen-
timeter wide margin is added to the visible tumor mass to form the clinical
target volume (CTV), which is irradiated to a homogeneous dose of 60 Gray.
The current treatment planning procedure can potentially be improved by ac-
counting for anisotropic growth patterns of gliomas that are currently not or not
consistently incorporated in target delineation. The spatial growth of glioma is
influenced by three factors:

1. Anatomical boundaries: The dura, including its extensions falx cerebri and
tentorium ceribelli, represents a boundary for migrating tumor cells. Also,
except for rare cases of CSF seeding, gliomas do not infiltrate the ventricles.
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2. Tumor cells infiltrate gray matter much less than white matter.
3. Tumor cells seem to migrate primarily along white matter fiber tracts.

These macroscopic growth characteristics are partly known from histopatholog-
ical analysis after autopsy or resection. In parts, these growth patterns are also
observed from MR imaging. A comprehensive review can be found in [1].

Incorporating these growth patterns in radiotherapy target volume delin-
eation requires a combination of both mathematical tumor growth modeling
and analysis of clinical imaging data. In this work, we use a phenomenological
model of tumor growth based on the Fisher-Kolmogorov equation [2-4]. The
patient’s MRI imaging data is used to personalize the model for application in
treatment planning [5-8]. The tumor growth model yields a spatial distribution
of infiltrating tumor cells in the brain. This can be used in radiotherapy plan-
ning by defining the target volume as an isoline of the tumor cell density [9,
10]. For an application of the model in clinical practice, additional challenges
need to be addressed. This includes a characterization of the situations in which
the model based target volumes lead to differences compared to manually drawn
target volumes. In addition, a sensitivity analysis is needed. The crucial inputs
to the model need to be understood and the implications of uncertainty in model
inputs and parameters need to be investigated.

In section 2, we briefly summarize the underlying tumor growth model. In
section 3 we discuss brain segmentation which turns out to be the most crucial
model input. In section 4 we present results and illustrate the use of the model
for target delineation. The impact of model parameter choices is discussed.

2 Tumor growth model

2.1 Parameterization of tumor infiltration

It is assumed that two processes describe tumor growth: local proliferation of
tumor cells and diffusion of cells into neighboring brain tissue. Mathematically,
this is formalized via the Fisher-Kolmogorov equation, a partial differential equa-
tion of reaction-diffusion type for the tumor cell density ¢(r,t) as a function of
location r and time ¢:

D ot 1) = - (D)Velr,0) + per 1) (1 — el 1) (1)
where p is the proliferation rate which is assumed to be spatially constant, and
D(r) is the 3 x 3 diffusion tensor which depends on location r. The first term
on the right hand side of equation 1 is the diffusion term that models tumor
cell migration into neighboring tissue. The second term is a logistic growth term
that describes tumor cell proliferation. In this paper, the diffusion tensor is
constructed as

D, -1 r € white matter
D,-I  r c gray matter

D(r) = { (2)
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where I is the 3 x 3 identity matrix, and D, and D,, are scaling coeflicients for
gray and white matter, respectively. At the boundary of brain tissue consisting
of white and gray matter we impose no-flux boundary conditions. In summary,
the three growth characteristics described in the introduction are reflected in
the model as follows:

1. Anatomical boundaries: Are handled through no-flux boundary condi-
tions at the boundary to CSF. It is assumed that infiltrating tumor cells are
restricted to white and gray matter and do not infiltrate the ventricles or
penetrate the dura.

2. Reduced gray matter infiltration: Is described via a larger diffusion
coefficient in white matter versus gray matter (D,,/Dg > 1).

3. Preferential spread along white matter fiber tracts: Can be described
via an anisotropic diffusion tensor D. Within white matter, the identity ma-
trix I in equation 2 is replaced by a tensor proportional to the water diffusion
tensor that is reconstructed from diffusion tensor MR imaging (DTT) [11, 12].
This is however not considered in this paper.

In this paper, we utilize the model to infer the tumor cell density at the time of
diagnostic imaging. A naive integration of the model equation 1 is problematic
because the initial condition that corresponds to the current tumor appearance
on MRI is unknown. We therefore apply a method previously published in [9]

that is based on the traveling wave approximation®.

2.2 Image based model personalization

In order to apply this model for target delineation, the model equation (1) has to
be personalized to the individual patient. This process involves two steps: first,
a segmentation of the brain, and second, the choice of model parameters.

Segmentation A segmentation of the brain into the three classes white matter,
gray matter, and cerebrospinal fluid (CSF) © is required in order to solve the
model equation based on the individual patient geometry. The brain segmenta-
tion is obtained from the structural MR images, including T1, T2, FLAIR and
T1 post contrast. Figure 3 shows an example patient discussed in this paper.
Figure 3a shows the coronal T1 weighted post contrast image, revealing a con-
trast enhancing glioblastoma in the right parietal lobe next to the falx. Also the
tentorium cerebelli, representing a boundary for migrating tumor cells, is clearly
visible. Figure 3b shows the peritumoral edema visible in the axial FLAIR image.
The brain segmentation is shown in 3c. The segmentation methods are discussed
in more detail in section 3.

5 For details see [9]. For the results shown in this paper, it is assumed that the bound-
ary of the enhancing tumor mass on the T1 post contrast image corresponds to a
tumor cell density of 70%.

6 Here, we refer to all tissue that is neither white nor gray matter as CSF, ever though
more classes for non-brain tissue can be used in the segmentation.
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Model parameters In addition, model parameters need to be determined. For
this work, the main model parameter is the ratio D,,/D, of the diffusion coeffi-
cients in white and gray matter”. Ideally, model parameters are also estimated for
an individual patient. For the parameter D,,/D, this is difficult to accomplish.
Hints on reduced gray matter infiltration mainly comes from histopathological
analysis [1], which is not available for an individual patient. To a limited de-
gree, the shape of the edematous region visible on the FLAIR image contains
information about the microscopic spread of tumor cells. However, the edema
is only a surrogate for infiltrative disease. In many cases, the edema region is
mostly confined to white matter. It is, however, unclear to what extent this
can be seen as evidence for reduced tumor cell infiltration in gray matter, as
this may be due to other physiological reasons [1]. In summary, it is commonly
believed that D,,/Dg > 1, but quantification remains difficult. It is therefore
important to discuss the implications of parameter uncertainty for radiotherapy
target delineation (as addressed in section 4).

(a) (b) (c)

Fig. 1. (a) EM based brain segmentation into white matter (light gray), gray matter
(dark gray), and CSF (black). (b) Segmentation of the cerebral hemispheres and the
cerebellum. (c) final segmentation after using the hemisphere segmentation in (b) to
remove the cerebellum and separate the hemispheres.

3 Brain segmentation

Modeling the spatial growth of the tumor requires a segmentation of gray mat-
ter, white matter, CSF, and non-brain tissue. The normal brain segmentation
is primarily based on an Expectation-Maximization (EM) algorithm [13]. The
basic component of an EM brain segmentation algorithm can be thought of as

7 The proliferation rate p influences the velocity of tumor growth and how fast the cell
density drops with distance from the core [8,9]. It has however minimal influence on
the shape of the tumor, i.e. the spatial shape of the isolines of the tumor cell density
(which is the only relevant property in this work).
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a gaussian mixture model of the image data. It is assumed that each of white
matter, gray matter, and CSF has a characteristic mean image intensity. The ac-
tual pixel intensities in the image are assumed to be gaussian distributed around
the mean. For segmentation, the class mean values and the class affiliations for
every pixel are estimated by maximizing the data likelihood using EM. To fa-
vor smooth segmentation boundaries, the basic gaussian mixture model can be
augmented by a markov random field regularization term. Here, we adapt out
previously published EM based segmentation algorithm, which simultaneously
estimates the normal brain segmentation as well as the tumor segmentation on
the available sequences [13].

The EM based segmentation algorithm is almost entirely based on gray value
information in the image and does not incorporate anatomical information. It
yields adequate results for the discrimination of white matter and gray matter.
However, it often fails to reliably segment certain anatomical boundaries. This
applies in particular to the tentorium cerebelli, an extension of the dura that
separates the cerebellum from the cerebral hemispheres. The membrane is thin
and consists of only one or two image pixels. In addition, the EM based seg-
mentation may insufficiently separate the cerebral hemispheres through a layer
of CSF. This may in particular occur if a tumor mass close to the falx pushes
against the membrane. This is illustrated in figure 1, which shows results of the
brain segmentation on the coronal slice shown in figure 3a. Figure 1a shows the
EM based segmentation. Typically, gray matter and white matter are sufficiently
differentiated. However, the algorithm fails to separate the two hemispheres near
the tumor mass, and fails to identify the tentorium cerebelli. For a reliable ap-
plication of the tumor growth model for target delineation, the result of the EM
based segmentation has to be enhanced via anatomical information.

Here, we adapt the adaptive disconnection algorithm published by Zhao [14],
a method to segment the cerebellum as well as the two cerebral hemispheres.
A result of the adaptive disconnection algorithm is shown in figure 1b. This
anatomical information is used to amend the EM based segmentation. First, the
cerebellum is removed. This is motivated by the fact that supratentorial gliomas
almost never infiltrate the cerebellum. In addition, a two pixel thick layer in
between the two hemispheres is identified. These pixels are marked as CSF in
the final brain segmentation if those pixels were gray matter in the original EM
based segmentation. White matter pixels in the EM segmentation are unchanged
in order to leave the corpus callosum in tact, which connects the two hemispheres
via white matter fiber tracts. The corrected segmentation is shown in figure 1c.

4 Model based target delineation

4.1 Spatial distribution of tumor cells

Figure 2 shows the simulated tumor cell density for three different values of
the parameter D,,/Dy on the axial slice shown in figure 3b. For D,,/D, = 1
(figure 2a), the anisotropy in tumor growth is only dependent on anatomical
boundaries. In the example shown here, the tumor growth model can be used
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(a) Du/Dy =1 (b) Dy /Dy =10 (¢c) Dw/Dy = 100

Fig. 2. Simulated tumor cell density on a logarithmic scale for three different values of
the parameter D.,/Dy.

to consistently model the complex anatomical conditions created by the falx
(representing a boundary) and the corpus callosum (representing a route for
tumor cells to spread to the contralateral hemisphere). This is difficult to take
into account for in manual target delineation. For D,,/Dy = 100 (figure 2c), the
tumor cell density follows closely the white matter structure, which can be seen
from the comparison to the segmentation in figure 3c. For D,,/D, = 10 (figure
2b) an intermediate result is obtained.

4.2 Target volume definition

For radiotherapy planning, the tumor growth model is used to define the target
volume as an isoline of the tumor cell density. This is illustrated in figures 3a and
3b. Shown are the model derived target volumes for the tumor cell densities in
figure 2. The contours correspond to the same isoline of the tumor cell density.
This isoline was chosen based on the tumor cell density for D,,/D, = 1 such that
the size of the model derived target volume matches the size of the manually
drawn target volume that was used in the clinically applied treatment plan.

It is apparent that the target volumes for different values of the parameter
D,,/D, are not substantially different, even though the simulated tumor cell den-
sities in figure 2 appear very distinct. The reason for that is the limited thickness
of the cortex, i.e. gray matter represents a layer on top of the white matter struc-
ture that is only a few millimeters thick. Therefore, reduced infiltration of gray
matter has limited influence in the global shape of the target volume. It mainly
leads to local changes around the sulci. For large D,,/D, values, a thin layer of
gray matter surrounding the sulci is excluded from the target volume. However,
for this patient, this has little impact on radiotherapy planning, because such
small volumes cannot be spared from with available irradiation techniques.

Reduced gray matter infiltration may lead to more substantial changes in the
target volumes near large accumulations of gray matter. This is, for example, the
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case for tumors located closer to the lateral sulcus (Sylvian fissure). In that case,
large areas of gray matter are excluded from the target volume for D,,/D, = 100
(results not shown).

(b) (©)

Fig. 3. Radiographic appearance of a glioblastoma: (a) coronal T1 weighted post con-
trast image, (b) axial FLAIR image. The three contours show the model derived tar-
get volumes discussed in section 4 (red, D.,/Dy = 1; yellow, D,,/Dy; = 10; green,
D, /Dy = 100). Figure (c) shows the brain segmentation into CSF, gray matter, white
matter, edema, and enhancing core (from black to white).

5 Conclusion

Gliomas show complex spatial growth patterns, which are influenced by anatom-
ical boundaries and the distribution of white and gray matter. These growth
characteristics can be formalized using a reaction-diffusion equation. A brain
segmentation based on MRI images is used to personalize the tumor growth
model. In our work, we aim at bringing this tumor growth model to an appli-
cation in radiotherapy target delineation. In the first stage, the model can be
used to consistently incorporate anatomical boundaries into target delineation.
This is in particular useful for tumors located close to the falx and the corpus
callosum. This approach only requires a reliable segmentation of the brain. In
this paper, this has been achieved via a hybrid approach where an EM based
brain segmentation is enhanced by a segmentation of the cerebral hemisphere
and the cerebellum. In the next stage, reduced gray matter infiltration can be
incorporated. For most parts of the target volume, this has little impact on
radiotherapy planning because the cortical thickness is only a few millimeters.
However, in regions of major sulci with large accumulations of gray matter, the
model can suggest regions where the target volume can be trimmed.
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Abstract. Cervical cancer is one of the most common cancer to affect women
worldwide. Despite the efficiency of radiotherapy treatment, some patients present
recurrency. Early unfavorable outcomes prediction could help oncologist to adapt
the treatment. Several studies suggest that tumor characteristics visible with 8F-
FDG PET imaging before and during the treatment could be used to predict
post-treatment recurrency. We present a framework for segmentation and char-
acterization of metabolic tumor activity aimed at exploring the predictive value
of pre-treatment and per-treatment ‘®*F-FDG PET images. Thirty-five patients
with locally advanced cervix cancer treated by chemoradiotherapy were consid-
ered in our study. For each patient, a coregistered PET/CT scan was acquired
before and during the treatment and was segmented and characterized with our
semi-automated framework. A segmentation process was applied on the baseline
acquisition in order to find the metabolic tumor region (MTR). This MTR was
propagated to the follow-up acquisition using a rigid registration step. For every
patient, 40 features from the two MTRs were extracted to characterize the tumor
changes between the two observation points. We identified explanatory character-
istics by exploring the threshold which minimizes the p-value computed from the
Kaplan-Meier free-disease survival curves. Seven features were identified as po-
tentially correlated with cancer recurrency (p-value<0.05). Results suggest that
our method can compute early meaningful features that are related with tumor
recurrence.

Keywords:PET/CT, cervical cancer, radiotherapy, tumor recurrence prediction, im-
age characterization

1 Introduction

Nowadays, cervical cancer is the third most common cancer and the fourth cause of
cancer death in females worlwide with 529,800 cases diagnosed and 275,000 can-
cer deaths in 2008 [1]. The standard treatment of locally advanced cervical cancer is
based on chemoradiotherapy and brachytherapy, inducing a risk of acute and late irre-
versible toxicity[2]. Because recurrence in cervical cancer significantly increase the risk
of death [3], prediction of such events is crucial. Medical imaging can provide different
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markers not only to plan the therapy but also to help oncologist to adapt the incourse
treatment thereby increasing the chance of patients survival. During the last decade,
severals studies have shown that coregistered PET/CT improve the diagnostic accuracy
in several cancers [4][S]. As opposed to anatomic imaging such as CT or MRI, PET
provides metabolic information of the tumor. Since metabolic changes of the tumor pre-
cede the morphologic modifications, PET-based studies could provide early prediction
outcomes. Several studies have demonstrated that metabolic tumor changes occuring
between PET scans allow to quantitatively assess tumor response [6][7]. Further, some
studies have shown the predictive value of the informations extracted in PET [8][9].

In this study, we present a semi-automated framework for segmentation and char-
acterization of metabolic tumor activity in cervical cancer from pre and per-treatment
PET/CT acquisitions. We demonstrate the utility of our framework in predicting re-
currency on a cohort of 35 patients treated for locally advanced cervix cancer. In the
proposed framework the pre-treatment PET/CT fused information is exploited to first
isolate the tumoral region from the rest of the image, then several characteristics are
extracted from the PET at two time points during the treatment to find features that
may explain recurrency. The identification of the recurrency correlated features was
performed using Kaplan-Meier survival curves and the log-rank test.

2 Materials & Methods

2.1 Data and Clinical Protocol

Thirty-five patients (median age 52.44 years [32.15 - 84.62]) with locally advanced
cervix cancer treated at the Centre Eugene Marquis (CEM), Rennes, France, were con-
sidered. The patients were treated with external beam radiation therapy (EBRT) with
concurrent chemotherapy (CDDPcc) followed by brachytherapy (BT). With median
follow-up of 29.21 months [7.44 - 52.64], eight patients developed tumor recurrence
and three patients died. As shown in Fig. 1, each patient underwent three **F-FDG
PET/CT scans performed with a DISCOVER ST scanner each observing the same time
between injection and acquisition. In our study, we will only consider the pre and per-
treatment acquisitions. The two pre-treatment images are denoted PET1 and CT1. At
40 Gy of the EBRT, the acquisitions were denoted PET2 and CT2. In order to have
the images comparables, each PET image was converted into standardized uptake value
(SUV) which is a standardized decay-corrected value of ®F-FDG activity per unit vol-
ume of body weigth (MBg/kg)[11].

2.2 Segmentation & Characterization of the metabolic tumor region

The framework of the proposed method is illustrated in Fig. 2. The first step aims to iso-
late the tumoral area in PET1, avoiding the bladder hyperfixation. Because the tumor
uptake in PET?2 is less visible in responder patients due to the treatment, a rigid regis-
tration is carried out to map the region found in PET1 on PET2 thereby accessing to the
same tumoral region. In step three, the two regions found in the previous stages are used
to characterize the tumor before and during the treatment through features computation.
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Fig. 1: Acquisitions during the treatment protocol: A baseline exam, PET/CT1, is ac-

quired before the treatment. A second acquisition, PET/CT2, is performed at 40 Gy of
the chemoradiotherapy. The last acquisition, PET/CT3, is performed 4-6 weeks after
the brachytherapy
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Fig.2: Overall framework for the characterization study.

I. Metabolic tumor region segmentation in PET1: The metabolic tumor region
(MTR) is denoted as the region where the acquired '®F-FDG uptake corresponds to
the tumor activity. The purpose of this step is to determine the metabolic tumor region
in PET1 (MTR1). We considered here that the '8F-FDG hyperfixation of the tumor
before the treatment is topologically compact (one connected object). In that case, a
region-growing threshold allows to select the voxels belonging to the MTR1. Region-
growing was used to limited the inclusion of adjacent intense structures, such as the
bladder, lymph nodes, and bowel [20].

La - Region-growing adaptative threshold (RGAT): Let’s denote likely tumoral re-
gion (LTR) the region wherein the '®F-FDG hyperfixation is high enough to be consid-
ered as tumor metabolism. In order to extract the LTR, an adaptative threshold as the one
proposed by Daisne [10] was implemented. This method aimed to adapt the threshold
needed to segment the LTR according to the signal-to-background (S/B) measured in
the image. The relationship between S/B and the threshold required was set up through
a physical phantom study. Thus, because of the compactness hypothesis, the threshold
was applied using a region-growing in order to keep a compact LTR.

Lb - Fusion and gaussian mixture based classification (FGMC): Due to natural
filling and emptying of the bladder, **F-FDG can be fixed in an extremely variable way
leading to part of the bladder having intensities comparable to tumoral metabolism. It
was necessary to visually determine if voxels in the bladder were selected in the LTR.
In such case, a second step of classification was required to separate bladder and tumor.
Firstly, the CT images were downsampled to the PET resolution so that each voxel in
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PET correspond to only one voxel in CT. A voxel seed was selected as being likely
within the tumor. From each voxel selected in the LTR, three features were considered:
the standard uptake value on PET (SUV), the Hounsfield unity value on CT (HU) and
a tumor membership probability (TMP). The group of voxels in LTR was thus denoted
as X = {x;|t € I'}. With x;, a three feature vector [SUV HU T M P] at the voxel i
and I, the 3D coordinates in the image. We computed the TMP as:

d(z;, s)

TMP(x;))=1— ———
(:) max d(z;, s)

; ey

where d(z;, s) is the Euclidean distance of the voxel z; from the seed s, and max d(x;, s)

denote the Euclidean distance of the furthest voxel in the LTR from the seed.zlt was as-
sumed that the further the voxel is from the reference the lower is the probability to
belong to the tumor. SUV and HU were normalized between 0 and 1. The three normal-
ized features were then projected in the tri-parametric space represented in Fig. 3. Vox-
els belonging to the tumor were identified by fitting a gaussian mixture model (GMM).
In general terms, the GMM expresses that the distribution of points in this tri-parametric
space is a sum of gaussian functions. Two clusters were considered: a cluster 1" repre-
senting voxels in the MTR and a cluster B for voxels in the bladder(eq 2).

9(x3,0) = pr. fr(zi, pr, X7) + pB.fB(Ti)H 1B, XB), 2)

where g denotes the mixture density of each LTR-voxel z;. The constants pr and pp
are the mixing proportions of the two gaussian distributions f7 and fp respectively
characterized by the means pr and pp and variance matrix X' and X'g. © represents
the model parameters of the gaussians mix © = [pr, pp, ur, ug, X1, 25| need to be
estimated.

An expectation-maximization algorithm (EM) was used to calculate the maximum
likehood estimates of @. Given these estimates, each voxel was assigned a label stat-
ing if it belongs to the cluster 7" or B. Fig. 3 gives an example of clustering in the
classification space.

 Cluster Tumor
* Cluster Bladder

T
08 * ///o.s !
HU o4 S 08
0.2 S~ 0.4

0 o2 Suv

Fig. 3: Fusion and gaussian mixture based classification. (left) Tri-parametric classifi-
cation space : SUV value, Hounsfield value and Tumor Membership Probability. (right)
resulting EM estimation.

20



The largest connected component in the cluster "Tumor" was selected to be the
MTR. Fig. 4 summarizes an example of metabolic tumor region segmentation in the
pre-treatment PET.

Fig. 4: Example of metabolic tumor region segmentation in PET1. (left) PET/CT1 with
a high bladder uptake. (middle) LTR after RGAT. (right) MTR1 after the FGMC.

II. MTR1 to MTR2 registration: This step aims to propagate the MTR extracted in
the PET1 to PET2. The propagated MTR was denoted MTR2. Since PET are coregis-
tered with CT, these CT images were used to determine the transformation between PET
images. A two-step registration using a block-matching algorithm [12] was adopted.
Firstly, CT1 to CT2 were registered in order to match the whole body. Secondly, a rigid
registration was applied locally to align the cervix. In practice, this is obtained by regis-
tering a VOI around the cervix. Note that local rigid registration was assumed because
of the restricted VOI considered. This allows to keep the same shape between MTR in
PET1 and PET2 and thus keep the same tumor area.

III. Characterization: Fourteen features were extracted from the two PET MTR to
characterize patient’s tumor before and during the treatment. In addition to SUVmax,
metabolic tumor volume (MTV) and total lesion glycolysis (TLG) often reported in
literature [13][14][8], we explored intensity and texture features[15][16]. The features
are summarized in tables 1 and 2.

Note that, in PET1, the total activity by voxel volume (TAVV), is equivalent to the
total lesion glycolysis (TLG) calculated as SUV,cqn X MTV when MTV is well
defined. Since we estimated the MTR2 by registration, the TAVV can not be denoted
as TLG because MT'V in PET2 is roughly delineated. However, for a good responder,
it was expected that if the activity outside the true MTV was neglected, the TAVV will
give a good approximation of the TLG.

Texture features, originally proposed by Haralick[18], are based on the co-occurence
matrix @, reflecting spatial grey-level dependencies. The intensity range into the MTR
was quantified with 16 bins. The texture features calculated shown in Tab. 2 were com-
puted for every direction covering the 26-connected neighborhood and were averaged
to keep a restricted number of characteristics. Finally, to characterize the changes be-
tween PET1 and PET?2, the difference (DIFF) was calculated between features evaluated
in MTR1 and MTR2.

2.3 Tumor recurrence prediction

A total of 40 features were extracted from 35 patients. Fourteen features were extracted
from PET1, 13 features from PET2 and 13 from DIFF. The Kaplan-Meier method was

21



Features Formula Definition
SUVmax maz(X) Maximal uptake in the MTR
K
SUVpeak % > xk, k € MaZneighvor SUVmax averaged by its 26
k neighbors
SUVmean u = E[X] Average of SUV in the MTR
SUVvariance Y=E[(X - ,u )?] Variance of SUV in the MTR
SUVskewness Y1 = [ 3] Asymmetry measure of the
MTR activity distribution
SUVKkurtosis v =E [( Xon)y } Peakedness measure of the
MTR activity distribution
MTV Volumeyozer X Nbvogel Metabolic Tumor Volume of
the MTR
N
TAVV Volumeyoger X Y Tn Total Activity by Voxel Volume
n of the MTR
Table 1: Evaluated intensity features
Features Formula
Energy Z@(z 3)?
Entropy Z P(i, j) x loga(2(i, 7))
Inertia Z(z —5)% x &(4, 5)
InverseDifferentMoment (IDM) Z(z N2 x ®(i, )
4,3
Cluster Shade S+ — pj — i) x (i, 5)
i,
Cluster Prominence Z(z wi+ 73— p)t x D4, 5)

Table 2: evaluated texture features

used to evaluate the disease-free survival curves of the group splitted by a threshold. The
feature assessment was perfomed following this method: for each feature, a threshold
was found in order to minimize the p-value of the log-rank test from the comparison
of the two survival curves generated when splitting the group using this threshold. The
level of significance for the log-rank test was fixed to p-value<0.05.

3 Results
3.1 FGMC evaluation

Among the 35 PET1 segmented in step l.a, 12 visually presented high bladder uptake
and were clustered in step L.b. In order to evaluate the deletion of bladder voxels per-
formed by the FGMC, we used expert manual cervix and bladder CT-segmentation
available for six patients. After I.b, the number of voxels remained in the cervix mask
was considered as true positive (TP) whereas false positive (FP) was the number of
those in the bladder mask. For the six clusterization evaluated, the averaged results
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were 0.80 £ 0.17 sensitivity, 0.97 &£ 0.08 specificity and 0.85 £ 0.11 accuracy. We can
observe a lower sensitivity due to the worst patient which presented a classification with
0.53 sensitivity, 1.00 specificity and 0.63 accuracy. In this case, the patient presented a
small tumor and as the number of voxels in the cervix mask in LTR was limited, any
suppressed voxel during the FGMC had an important impact on the resulting sensitivity.

3.2 Explanatory features identification

Tab. 3 summarizes the significant features extracted in step III. Results show that the
explanatory features found are mainly based on SUV intensity. The four characteristics
found from PET1 might suggest that tumor recurrence could be predicted before the
treatment. Moreover, the TAVV evolution between the two exams(DIFF) might be a
recurrency correlated feature that could be used by oncologists to adapt the ongoing
treatment. An example of a Kaplan-Meier curve with the TAVV feature in PET1 and
DIFF is diplayed in Fig. 5.

exam feature p-value threshold
SUVmax 0.0335 10.52
SUVpeak 0.0478 7.27
PETI SUVmean 0.0335 6.30
TAVV or TLG 0.0114 155.62
SUVmax 0.0307 6.26
PET2 IDM 0.0419 0.16
DIFF (PET1-PET2) TAVV 0.0171 -266.15

Table 3: Assessed features by the Kaplan-Meier method with p-value<0.05 and the

corresponding threshold.

TAVV in PET1 TAVV in DIFF
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Fig. 5: Example of feature evaluation with Kaplan-Meier method. (left) TAVV in PET1
(p-value=0.0114). (right) TAVV in DIFF (p-value=0.0171).
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4 Discussion & Conclusion

In this study, we presented a whole framework to characterize cervical cancer tumor
from ®F-FDG PET imaging and to predict its response to radiotherapy. One of the
challenges was to isolate the tumor region from the bladder in PET1. With the use of
CT information, we proposed a semi-automated method to segment and characterize
PET imaging based on a RGAT followed by a FGMC approach. Since metabolic infor-
mations can be hidden in lower uptake than the applied threshold, an intensity-based
segmentation can lead to an underestimation of the true LTR extracted. Also, an adap-
tative threshold suffers from poor reproducibility[19] and a more evolved segmentation
method could enhance this. The FGMC has demonstrated the ability to classifying vox-
els between tumor and bladder with good specificity, sensitivity and accuracy (respec-
tively 0.80, 0.97 and 0.85). Nonetheless, for one given patient, we visually decided if
the classification step was necessary. An integration of the FGMC into the segmenta-
tion step is in progress in order to reduce user dependency. The characterization step
was perfomed by evaluating intensity and texture features on MTR1 and MTR2. Also,
we characterized the tumor changes by computing the difference between the features
in MTR1 and MTR2. In future work, shape metrics could be extracted to describe the
tumor thereby providing complimentary information. We identified seven features that
might be correlated with cervical cancer recurrency by assessing free-disease survival
curves. This is an exploratory study so, in future work, the predictive capabilities of the
found thresholds will be assessed through a larger cohort of patients.
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Segmentation of pelvic structures from planning CT
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Abstract. Accurate segmentation of the prostate and the organs at risk in CT
images is a crucial step in prostate cancer radiotherapy planning. Because of
the poor soft tissue CT contrast (prostate, bladder), an appropriate segmentation
is challenging, even when this is manually performed by an expert. This paper
introduces a Bayesian automatic segmentation method for prostate, rectum and
bladder in planning CT. Firstly, a prior shape space for the organs is built with
PCA decomposition from a population of manually delineated CT images. Then,
for a given CT to be segmented, the most similar shape is selected by the asso-
ciated probability which is set by a likelihood function. Finally, the local shape
is deformed to adjust the particular local edges of each organ such that the most
likely segmentation is produced. Experiments with real data from 30 patients
treated for prostate cancer radiotherapy were performed under a leave-one out
cross validation scheme. Results show that the method produces reliable segmen-
tations (Averaged Dice = 0.91 for prostate, 0.94 for bladder, 0.89 for Rectum) and
outperforms the best majority-vote multi-atlas based approach.

1 Introduction

Prostate cancer (PC) is one of the most commonly diagnosed male cancer, with 190.000
new cases diagnosed in USA in 2010 (American Cancer Society) and 71.000 new cases
in France in 2011 (INCa 2011). Radiation therapy is a commonly prescribed treatment
for PC which has proven to be efficient for tumor control [1]. Modern prostate cancer
radiotherapy involves an extensive use of X-ray imaging modalities: a computed to-
mography (CT) acquisition in the treatment planning and daily cone beam CT (CBCT)
in image-guided radiotherapy procedures (IGRT). During the planning, CT images are
manually processed to segment not only the clinical target (prostate and seminal vesi-
cles) but also the neighboring organs at risks (OARs), namely the bladder, rectum, etc.
These segmentations are crucial inputs for the treatment planning in order to compute
the parameters for the accelerators following dose constraints to the target and OARs,
and, considering IGRT, for the patient setup correction. Moreover, these segmentations

26



are up the most importance for other applications like the cumulated dose computation
or toxicity studies on population [3].

Nowadays, the segmentations are manually carried out by medical experts. They are
very time consuming and are prone to errors due to intra- and inter-experts variability.
Thus, the need for automatic segmentation methods appears crucial for IGRT develop-
ment. However, several difficulties arise and hamper automatic segmentation methods.
The poor contrast appearing in similar soft tissues, has limited application of classical
intensity-based methods, while the very high intra- and inter-individual variability has
led model-based methods to fail. Some examples of previous methods to segment pelvic
structures include deformable models [5,6]. Atlas-based segmentations [7] have also
been used, but they have mainly been tested for segmenting CT scans in other applica-
tions such as head and neck [8] and cardiac aortic CT [9]. In atlas based approaches,
precomputed segmentations in a template space are mapped to an individual CT using
non-rigid registration. Although atlas-based approaches may provide prior structural
information, the inter-individual variability and registration errors can mislead these
methods. Multi-atlas approaches can partly overcome some of these difficulties by se-
lecting the most similar atlases among a large database but the definition of a proper
similarity measure between the available atlases and the query individual has still to be
addressed [10].

We propose in this paper a method to segment pelvic structures from CT scans to be
used in planning prostate cancer radiotherapy. The main contribution of this work is the
adaptation of a Bayesian statistical framework to match a prior 3D shape model, built
from a population, with the given CT through multi-scale edge observations. Regions of
Interest (Rol’s) are automatically extracted per slice to remove CT artifacts and compute
the multiscale edge descriptor. The likelihood function is based on a geometrical shape
characterization of edges using invariant Hu moments, allowing the selection of the
most likely prior 3D shape to the multi-scale detected edges. In a final step, the obtained
shape is locally warped to fit to the edges, yielding a 3D regular and compact organ
segmentation. We compared our method with majority-vote multi-atlas strategies in a
leave-one-out cross validation scheme.

2 Materials and Methods

The overall method is summarized in Figure 1. Let 3;, the estimated organ shape
(prostate, bladder or rectum), computed as the most likely shape that maximizes the
maximum a posteriori (MAP), following a Bayesian framework

o~

S, = maxarg[P(S,| S, Spee, ., S|

01 Moy
So

where {SP¢¢, SPe*, ... SP*} is a collection of shapes (shape space) of the organ o
precomputed with a Principal component analysis (PCA). The likelihood function aims
to match the most similar shape to the borders extracted from a region of interest
(Rol) automatically selected around the organ o. In order to remove CT artifacts, a
pre-processing procedure is applied over the Rol. Afterward, a local deformation func-
tion is introduced to modify the most probable estimated shapes 3;, according to the
local changes extracted from a multiscale edge descriptor. Each step is described in the

following sections.
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Fig. 1. Proposed method for 3D segmentation. First, a shape space organs is built (PCA). The
template is rigidly registered to the CT to be segmented followed by an automatic extraction of
Rols for preprocessing and multi-scale edge detection. A likelihood function matches the most
similar PCA shape with the detected edges to finally being locally adjusted.

2.1 Learning an organ shape model: the prior

A statistical shape organ model for segmentation is built from a collection of training
samples as described in [11]. Here, a dimensionality reduction was firstly accomplished
by applying the PCA method [12] to a population of manually delineated organs encod-
ing interindividual shape variability [13]. From this PCA was computed the collection
of shapes {SP¢*, SPee, ... SP}, for each considered organ. Each shape contour is
the parametric curve defined by the coordinates of the points lying on the contour. The
first step consisted then in computing the first two moments of the probability distri-
bution, i.e. the mean shape vector 5 € R3M and the covariance matrix pE R3Mz3M
as5 = &> 7" s;and p = A7 > (s; — 5)(s; — 5)T where the vector (s; — 3)
describes the organ deviation w.r.t. the mean shape. The covariance matrix captures the
organ variability. A conventional spectral analysis allows diagonalization of this covari-
ance matrix that determines the directional gains or eigenmodes. Each eigenmode de-
fines a 3D vector field of correlated organ inter patient-variability displacements. Thus,
prostate and OAR samples are generated by deforming the mean shape by a weighted
sum of the L dominating eigenmodes as:
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where the coefficients of ¢; follow a Gaussian distribution with the corresponding eigen-
values g; as variances. This methodology was independently used for each organ, ob-
taining a family of shape models that are related with a template CT global coordinates.
Examples of the different shapes obtained for each organ are shown in Figure 1.

2.2 Rol pre-processing

For a given CT, it is firstly rigidly registered with the template CT of the training
database using a “block matching” method [14]. Over CT test is then defined a set
of Rols with size {9, + ¢} associated to each organ, being S, the average shape and ¢ a
tolerance value. An theoretical ideal Rol,(z,y) should contain the foreground organ of
interest and a uniform background distribution, a particular configuration herein mod-
eled as a mixture of Gaussians ¢(i) = >, _; , wN (|, o2 ), where the two principal
distributions represent the foreground and babkground, weighted by wy,. Because very
often the selected Rols contain other structures near the organs, difficulting a proper
edge extraction of the organ and therefore biasing the statistical approximation, a more
appropriate representation is found by filtering out Rol with an adapted non local mean.
Thus, pixels ¢ that may represent artifacts {¢ < maxy=1,2(20%) < ¢} are replaced by a
weighted average of a neighborhood with foreground/background information, thereby,
satisfying a “non local property”: weights depend on the pixel similarity in the image

y)
space, o(z,y) = e~ »Z . The basic idea is to replace the pixels that represent arti-
facts by the nearest “foreground/background” pixel that represent the neighborhood.
dlz,y) = >, HRoIo(x, y) — Ni1 x2(p, 02)||, where ¢(o) is a neighborhood of  an
i€¢(0)
h is a decay parameter.

2.3 Multi-scale CT edge detector: the observations

To build a set of robust observations to be used within the likelihood function a mul-
tiscale description of Rol data was implemented. For doing so, each Rol,(z,y) was
convolved several times with a gaussian kernel and first partial derivatives were calcu-
lated at the different resolution scales as:

o))

Go,
0,0,

851w, y;0) = Y Rolo(w,y) +

where G, is the 2D Gaussian function with standard deviation o;. The Gaussian ker-
nel is the unique kernel with an equivalent scale-space representation (linearity and
shift-invariance in both frequency and space). Afterward, a non-maximum suppression
is applied, aiming to detect points at which the gradient magnitude takes a maximum
value in the gradient direction over all the scales [15]. This multi-scale edge detection
allows a compact description of the most relevant information which is usually pre-
served through multiple scales (the universal law of scale invariance) [16].
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2.4 Computing the likelihood
A likelihood function P(§§f“|5§d96) determines the best geometrical match between

the samples shapes §£;a obtained from the learned model and each multi scale edge

descriptor $¢49¢. For doing so, every shape from the shape space and the edges in
each Rol are characterized by a set of features based on the Hu moments [2], thereby
achieving an invariant shape representation. Thus the likelihood function measures the
shape similarity through an Euclidean metric among the computed features, written as:

> — |
PCA d . m;° —m.
P<Soi |S§i ge) = ISI}’ICIal Z - gedae *
i hay (i=1...7) m;
dge d .d pea pca pea
where mi:i * = sz'gn(hfg ge) -log \hf‘e’ ge|, and m; " = sign(h;” ) -log|h; ™ |

are the computed features for the edges and the PCA learned shapes respectively and

pca

edge | SE S . .
h;q ¢ , ;7 are the Hu moments. Then, the likelihood function should yield a max-
imal probability when a sample learned shape closely match the observations, i.e., the
multiscale edge descriptor.

2.5 Local Shape Deformation

A local deformation function was here introduced to improve the local correspondence
of the shape sample selected by the PCA model with respect to near shape edges de-
tected and allows to regularize the segmentation surface obtained. For doing this, the
nearest borders that may correspond to the edges of the multiscale descriptor or the
borders points of the shape sagittal estimation. Then the edges were warped toward the
nearest border, controlling the deformation by a A term, which works as a belief indica-
tor warping the shape either to the border descriptor or to the PCA shape selected.

itl

Soi(,y) = AL (,y) + (1 — ) (min(| S5 — {559, 52°¢ 1))

This local deformation allows to preserve a compact representation of the shape
given by the A term and the nearest edge criterion. In this work, the best performance
was obtained witha A = 0.6

3 Evaluation and Results

We carried out a study on 30 prostate cancer patients, treated with external radiother-
apy. Each individual underwent a planning CT. All acquired CT were 2 mm thickness
slice with a 512x512x1 mm-pixels resolution in the axial plan. For each individual,
the organs were manually delineated by the same expert, following the standard clini-
cal protocol in prostate cancer radiotherapy. The expert contoured the clinical targets -
namely the prostate and the seminal vesicles - and the organs at risk (OAR): the blad-
der and the rectum. In this study, only the CT and the delineated prostate, bladder and
rectum were considered.

We aimed to compare individual’s radiologist segmentations (ground truth) with
the obtained by the proposed approach and those obtained with multi-atlas vote meth-
ods, on a set of 30 individuals, following a leave-one-out cross validation scheme. The
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multi-atlas vote methods, used to evaluate the performance of the proposed approach,
may be summarized in three main step. Firstly, the atlases rigidly registered using a
“block matching” strategy were ranked according to the normalized cross-correlation
(NCCO) [14]. Secondly, the organs delineations were propagated into the individual’s
space, using a non-rigid registration, either the free-form deformation (FFD) [17], or
the demons algorithm [18]. Eventually, the majority vote decision rule was applied to
obtained a single segmentation for each considered organs.

Figure 2 illustrates a typical pelvic structures segmentation obtained by our ap-
proach (red contour) and the the radiologist reference represented by the green contour.
These results shows the effectiveness obtained by our approach to closely adjust each
organ structure. Likewise, it is shown a good local variability shape which preserve a
compact representation, which means that, there are no strong spikes around the contour

shapes.
(c)

Fig. 2. Axial segmentation examples of pelvic structures ((a) rectum, (b) bladder and (c) prostate).
The delineation obtained by our approach (red) and the expert reference (green).

(a) (b)

A quantitative comparison was performed between the individual’s organ delin-
eations (prostate, bladder, rectum) and the computed segmentation using two different
measures: a dice score (DSC) and the Hausdorff distance.

The DSC is an overlapping similarity measure defined as DSC(A, B) = %,
where | - | indicates the number of voxels of the considered A (gold standard) and B
(method evaluated) volumes. We carried out an exploratory analysis of DSC obtained
with the different segmentation strategies. Figure 3 illustrates the results comparing our
approach with the atlas based methods. Results suggest that our method provide more
accurate segmentations (t-test,p<0.001 for the prostate and the rectum) with an average
score of 0.91 for prostate, 0.94 for bladder, 0.89 for Rectum

A second quantitative comparison was performed by computing the Hausdorff Dis-
tance. This metric identifies the segmentation voxel that is farthest from any voxel of
the ground truth. Table 1 summarizes the performance obtained by the evaluated ap-
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Fig. 3. Dice scores comparison for vote vs proposed approach (SAMED)

Table 1. The Hausdorff distances obtained with the multi-atlas majority-vote method using rigid,
FFD or a demons registration and with the proposed approach (SAMED)

Hausdorff Distance (mm)
Prostate Bladder Rectum
Vote(Rigid) [16.61£5.6/102.024+26 |66.871+10.3
Vote(FFD) 14.27+4.2|78.63420.1|65.2246.1
Vote(Demons)|9.334+3.2 [79.42+18.2|61.44+5.8
SAMED 5.98+2.2 {19.09+£3.1 |7.5242.3

proaches. The results shows that our approach obtain compact shape segmentations,
with average distances of 5.98 for the prostate, 19.09 for the bladder and 7.52 for the
rectum. The large distance of the multi-atlas based methods may be attributed to iso-
lated voxels labeled as organ structure.

4 Conclusions

The proposed method introduces a new methodology to segment pelvic structures in
CT scans used in prostate cancer radiotherapy. The Bayesian method combines a de-
formable prostate model, learned by examples, and a geometrical likelihood strategy
that maps this model into a particular CT image, adequately described by a multiscale
edge detector. The results summarized in this paper pointed out that our segmentation
technique segment the prostate and rectum shape suitably in relation to radiologists’ ref-
erence. This approach also may be extended to other structures over CT images. Future
work includes validation with a large data set.
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Abstract. The use of DTI tractography in radiosurgery and hypofraction-
ated radiotherapy is still limited to visual inspection before planning to
avoid tracts direct involvement. We propose to use the envelope of tractog-
raphy fiber bundles as organs at risk, whose average dose shall be opti-
mized during inverse planning. We show the benefit in terms of dose re-
duction, distribution homogeneity and target coverage in a feasibility study
onto two glioma patients. The average dose at arcuate, corticospinal tract
and corpus callosus was reduced respectively by 29%, 18% and 20% for
patient 1 and 21%, 19% and 42% for patient 2. These promising prelimi-
nary results suggest that fiber bundles may be considered and preserved
efficiently in radiation therapy treatment planning, allowing a potential in-
crease of the total dose delivered to the target. The promising results
prompt at integration also for benign and malignant small lesions treat-
ment, where functional preservation is further critical.

Keywords: DTI, tractography, inverse planning, glioma

1 Introduction

Besides traditional anatomical Magnetic Resonance Imaging (MRI) sequences, func-
tional MRI and Diffusion Tensor Imaging (DTI) offer a great potential to explore
more complex functional and microscopic organization in the brain. DTI in particular
allows the in-vivo visualization of the axonal organization of the white matter, ex-
ploiting the diffusion properties of water molecules [1-3]. Parameters like mean diffu-
sivity and Fractional Anisotropy (FA) are commonly used as quantitative tools for
differentiating the highly organized white matter from gray matter, as well as normal
from pathological tissues [1,2] and for non-invasive pre-operative evaluation of tumor
grade [4].

Based on the analysis of FA maps, water diffusion can be processed to reconstruct
three-dimensional curves representing subcortical fiber tracts. This procedure, called
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tractography, is based on mathematical algorithms that can be coarsely classified into
deterministic and probabilistic approaches. Deterministic tractography methods rely
on the assumption that, within a voxel, the orientation of the fibers is determined by
the orientation of the main eigenvalue of the diffusion tensor [1,2,5]. This leads to
anatomical reconstruction of the major white matter fibers, but its reliability is limited
by image noise, distortions and fiber crossing [6]. To overcome deterministic ap-
proach limitations, probabilistic approaches have been proposed, in which a level of
confidence is associated to each trajectory, starting from a set of seed points [1].

The largest field, where tractography is applied, is radiosurgery, in which a high radi-
ation dose is delivered to the pathological tissue in one single treatment session. Koga
et al [7] recently reported the outcomes of a prospective study on arteriovenous mal-
formations in the brain in which DTI tractography was directly integrated into the
Gamma-knife treatment planning workstation, with the long term goal of reducing
radiation induced secondarisms and damages at cognitive areas, such as optic radia-
tion, arcuate fasciculus and pyramidal and corticospinal tract. In [8-10], the authors
estimated that the total dose tolerable by corticospinal tract is 2000cGy in a single
Gamma-Knife radiosurgery session, while this value is reduced to 800cGy for the
temporal fibers of arcuate fasciculus. The risk of steady sensory-motion decline is
even higher if the selected treatment is radiotherapy and appears to be directly corre-
lated with the field dimension. A preliminary study about the use of DTI in high-
grade gliomas, conducted by Jena et al. [11], demonstrates the potentiality of using
tractography in the personalization of treatment volumes according to tumor growth
and infiltration grade. A major issue in all tractography works is represented by quan-
titative validation, since a real ground truth can be derived only from post-mortem
histological slices. Anyway, some attempts have been made towards the objective
evaluation of the tracts [12].

In the presented work, our goal is to use DTI deterministic tractography to define
critical fiber bundles as organs at risk (OAR) in the inverse plan optimization of a
Volumetric Modulated Arc Therapy (VMAT). We implemented a proof of concept
study on two grade Il glioma patients treated at the Fondazione IRCCS IstitutoNeu-
rologico C. Besta (Milan, Italy) and demonstrated the feasibility of treatment arcs
optimization in terms of total and mean dose at OARs, target coverage and homoge-
neity of dose distribution.

2 Materials and Methods

2.1 Dataset

Our retrospective study involves two grade Il glioma patients (GS, m, 36 y, anaplas-
tic oligoastrocytoma; SK, f, 38 y, anaplastic astrocytoma) who underwent anatomical
MRI sequences (T1) for gross tumor volume (GTV) outline (with gadolinium contrast
injection), DTI study for the surgical planning for tumor resection, and afterwards CT
scan for the radiotherapy treatment planning and dose calculations. MRI sequences
were acquired using a 1.5T SIEMENS Avanto scanner (SIEMENS HEALTHCARE,
Erlangen, Germany). The MRI sequences were a morphological mprage T1 weighted

35



with resolution of 1x1x1mm, a DTI with 12 gradient directions EPI (echo Planar Im-
aging). DTI acquisition parameters were as follows: TE=92ms, TR=8.6s, voxel size
=1x1x2 mm, 64 slices and b-value = 1000 s/mm?. CT volumes were acquired using a
Philips Brilliance scanner (Philips Healthcare, Eindhoven, the Netherlands) with 56
slices and a resolution of 0.9x0.9x3mm. Total planned dose for these patients was
5400 cGy, delivered in 200 cGy per fraction. For the purpose of this study, we simu-
lated a VMAT hypofractionated treatment, for a total of 3000 cGy in 5 fractions.

2.2 Image pre-processing

For patient 1, DTI acquisition was performed 8 times, after which a mean volume was
generated to enhance Signal to Noise Ratio (SNR). For patient 2, SNR was instead
augmented by means of joint Rician filtering of each single diffusion direction.

Due to the different resolutions and reference frames of the acquired datasets, these
were registered taking as reference the CT scan, as this is the core dataset for radia-
tion therapy treatment planning and dose calculation. The registration of the DTI im-
ages on the CT was obtained by means of a three steps process. First of all the DTI
gradients were registered on the b=0 DTI volume (i.e. the images acquired with min-
imal diffusion weighting), to compensate for residual eddy currents and head motion.
The obtained dataset was aligned to the corresponding anatomical MRI by means of
an affine registration method based on normalized mutual information, using Slicer3D
[13] routines. At the same time, we estimated the rigid transformation between ana-
tomical MRI and CT, which we also applied to the aligned DTI volume.

2.3 Tractography algorithm

The corpus callosus, the corticospinal tract and the arcuate fasciculus ipsilateral to the
neoplastic lesion were reconstructed using Slicer3D [13]. The chosen algorithm relies
on a least-squares estimation of the diffusion tensor and on deterministic tracing of
the fibers. The streamline path-integral deterministic algorithm at the basis of Slic-
er3D implementation was firstly described in [5] and solves the Frenet’s equations
using Runge-Kutta’s numerical approximation.

To reconstruct the tracts of interest, we used a single ROl approach [14,15] based on
existing anatomic knowledge about fiber bundles. This involved the help of expert
neuro-radiologist and required the superimposition of T1 MRI and DTI tensor, whose
dimensionality was reduced to a 3D volume condensing its information using a color
map encoding for first eigenvector direction. The corpus callosus ROI was defined by
contouring the fiber bundle on three sagittal slices into the hemisphere ipsilateral to
the lesion. The corticospinal tract ROI seeding volumes were localized in three slices
on the coronal view, where we contoured from the cerebral peduncle up to precentral
gyrus. Arcuate fasciculus fibers originate in prefrontal and premotor gyri (part of the
Broca’s area) and project posteriorly to Wernicke’s area, arching around the insula
and putamen to run antero-inferiorly toward the temporal lobe. Arcuate ROl was in-
dividuated by successive approximation in axial and sagittal views at Wernicke’s area
level.
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We used FA equal to 0.15 as stopping criteria for the estimation and 0.7°/mm as cur-
vature escape condition, in an attempt of allowing a better estimation of fibers with
large curvatures. We rejected fibers shorter than 10 mm and used voxel space for all
calculations.

2.4 Post-processing and integration of tracts in the inverse treatment planning

The integration of reconstructed fibers in a radiation therapy treatment plan required
the generation of appropriate 3D structures saved following the DICOM RT protocol.
We designed and implemented a dedicated Qt- and VTK-based application, called
fiberSlicer, to create the fiber bundles structure from the curves generated by Slicer3D
and to extract their envelope contours, in order to create the required structures.

First of all, fiberSlicer approximates the single fiber with a tube of radius 0.75 times
the CT pixel and central axis defined by the curve that identifies the fiber. The ren-
dered bundle is cut according to each CT slice plane and the extracted object is trian-
gulated using 2D Delaunay algorithm. The external contour on the cutting plane is
than extracted and saved in DICOM RT format. The envelope contours may be saved
separately or added to a previous DICOM RT file, to be easily imported by commer-
cial workstations.

For the purpose of this preliminary study, we chose a commercial version of Elekta
ERGO++(Elekta AB, Stockholm, Sweden), which supports Arc Modulation Optimi-
zation Algorithm (AMOA) inverse planning for VMAT treatments. With our ap-
proach, the fiber bundles can directly be assimilated to OARs and their minimum and
maximum dose are used as constraints in AMOA fluence optimization. Besides fiber

(O] 2) 3)

Fig.1. View of reconstructed fibers for patient 1 (a) and 2 (b) in fiberSlicer. Note the posi-
tion of the fiber bundles with respect to the GTV (in solid blue). Panels (a.3) and (b.3) show the
envelope of the reconstructed fascicles, which are used as OARs for dose inverse planning.
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bundles, the attending physician contoured also other OARs, including brain, eyes,
optical nerves, crystalline lenses, optical chiasm, and brainstem. As these structures
were reasonably distant from the target, in this preliminary study, we did not intro-
duce constraints on these OARs.

To quantify the potential benefits of including DTI tractography in radiation therapy
planning, we performed an initial plan consisting of 94 beams divided into 5 arcs
without any constraint on the fibers and subsequently an inverse planning including
fiber bundles as OARs. The plans were compared in terms of Dose Volume Histo-
gram (DVH) of both target and OARs, as well as in terms of cumulated dose at the
fibers. Dose matrices calculations were performed on a 3mm grid for patient 1 and
2mm grid for patient 2.

2.5  Optimization procedure

Under the advice of the attending physicists, we decided to ignore corpus callosus
in VMAT arcs optimization, under the hypothesis this structure being less critical. For
both patients, the maximum dose at corticospinal tract and arcuate fasciculus was set
at 800 cGy, applied to 70% and 60% volumes respectively (i.e. the constraint is ap-
plied to the volume fraction, while there is no control on the remaining part of the
OAR structure). The penalty for the violation of these constraints was 10°. For the
chosen hypofractionated treatment, minimum and maximum dose constraints on the
Gross Tumor Volume (GTV) were set at 95% (2850cGy) and 105%(3150cGy) of the
total dose delivered. The penalties for these constraints were set respectively to 10*
and 1.5-10%, and the condition was restricted to the 98% of the GTV volume.

3 Results

3.1  Fiber bundles reconstruction and slicing

From the selected ROIs we were able to reconstruct anatomically reliable tracts.

Tablel. Minimum, Maximum and Average Cumulative Dose before (rVMAT) and after
(0VMAT) AMOA inverse planning for Gross Tumor Volume (GTV), Corpus Callosum
(CC), Arcuate Fasciculus (AF) and CorticoSpinal Tract (CST).

Organ Minimum [cGy] Maximum [cGy] Average [cGy]
AtRisk  rVMAT oVMAT rVMAT oVMAT [VMAT oVMAT

- GTV 2400 2370 3060 3030 2924 2922

s - Cc 240 210 1200 870 502 395

§ AF 300 180 2970 3000 1014 720

CST 090 060 2910 2880 1000 819

- GTV 2010 1680 3060 3120 2913 2900

& ~ CC 330 180 2880 2880 906 527

§ AF 120 90 2970 2970 1551 1223

CST 120 120 2970 2880 1480 1203
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Figure 1 shows the obtained bundles for patient 1 and 2 in panels a and b respectively.
In patient 1, corticospinal tract was entering directly into lesion volume and, as such,
this tract is very likely to be compromised by radiation. Corpus callosus and arcuate
fasciculus are also located in the immediate proximity to the tumor. Patient 2 tracts
were reconstructed less accurately (Figure 1b). In particular, arcuate fasciculus integ-
rity was compromised by the massive lesion and therefore lost the typical arch. In
figure 1 (Panels a.3 and b.3), note also the color envelope superimposed onto the tube
dilation of the fiber axes and that the different fiber bundles were kept separated in the
attempt of differentiating tracts involvement in the treatment.

3.2 Dosimetric evaluation

DVHs of cumulative dose obtained from VMAT without any dose optimization
(rVMAT) are presented in Figure 2a and 2c for patient 1 and 2 respectively. In panels
b and d, we show the distribution obtained after inverse planning (0VMAT) with
constraints on GTV, arcuate and corticospinal tracts only. We note that the coverage
of the GTV is maintained also in b and d, whilst a better sparing of both arcuate fasci-
culus and corticospinal tract is possible. Despite not setting any constraint on corpus
callosus, its final dose distribution is improved after optimization.

Cumulative average, maximum and minimum dose at GTV, corpus callosus, arcuate
fasciculus and corticospinal tract is also reported in Table 1. For patient 2, the opti-
mized distribution loses in conformity in particular at lower dose grades, while for
patient 1 the 95% isodose distribution is very similar to pre-inverse planning one.

We were able to further optimize patient 1 distribution, changing dose constraint on
the fiber bundles. The new maximum dose was chosen as the one at 50% volume after
first optimization, but it was applied to the volume used in the first optimization run
(600 cGy on 60% of the volume and 500 cGy on 70% of the volume for arcuate and
corticospinal tracts respectively). Average dose dropped in this case to 571 cGy, 716
cGy and 264 cGy for arcuate, corticospinal and corpus callosus respectively, while
GTV mean dose remains at 2914 cGy. The GTV distribution was still homogeneous
enough to consider this further optimization suitable for the clinic.

4 Discussion and conclusion

In this feasibility study, we propose to directly incorporate DTI tractography re-
constructed fiber bundles into AMOA inverse planning for VMAT hypofractionated
treatment. We performed tractography of corticospinal tract, arcuate fasciculus and
corpus callosum in the hemisphere ipsilateral to grade I1I glioma lesion. Tractography
quality was visually inspected by the attending physicians and physicists, but more
quantitative validation shall be performed in future studies. The error induced by tu-
mor proximity to the tracts as well as by the edema surrounding the neoplastic lesion
reflected on tractography quality, as previously shown in terms of FA values by [16].
In particular, patient 2 lesion severely dislocated and interrupted the arcuate fascicu-
lus in the medial region.
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Despite the need for further refinement and quantitative validation of fiber bundles,
we were able to integrate all tracts into the treatment planning after calculating their
envelope with an adhoc developed software called fiberSlicer. The smoothness and
continuity of the contours was guaranteed by Delaunay triangulation of the sliced
surfaces. Therefore, the treatment planning system handled the fiber bundles exactly
as all other manually contoured structures.

Considering the fiber bundles in the plan optimization, we were able to strongly
reduce the dose delivered to the corticospinal and arcuate tracts, while the optimized
target DVH remain mostly unchanged. On the other side, the non-significant differ-
ence in the maximum total dose at fibers is due to the fact that the fiber bundles pro-
jected inside the GTV, but the shape of their DVH curves after optimization tends to
be similar to the typical OAR ones. Further forcing of the maximum dose constraint
might prevent optimization convergence and/or escalate dose distribution inhomoge-
neity. The average dose at arcuate, corticospinal tract and corpus callosus was re-
duced respectively by 29%, 18% and 20% for patient 1 and 21%, 19% and 42% for
patient 2, confirming that this method has the potential to be applicable for planning,
enhancing fiber bundles sparing and possibly enhancing functionality preservation.

Future work will be dedicated to enlarge patient database and adding specific dose
constraints for all the organs at risk and running a more complex inverse planning. In
addition, the promising results underlined by our feasibility study will be extended to
high precision treatments (e.g. Cyberknife) of small lesions (benign and malignant) in
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Abstract. Respiratory motion a is major source of uncertainty in radio-
therapy. Current approaches to cope with it — like gating or tracking tech-
niques — usually make use of external breathing signals, interpreted as
surrogates of internal motion patterns. Due to the complex nature of in-
ternal motion, a trend exists toward the application of multi-dimensional
surrogates. This requires the development and evaluation of appropriate
correspondence models between the surrogate data and internal motion
patterns. We suggest using a multi-linear regression (MLR) and exploit
the Log-Euclidean Framework to embed the MLR within a correspon-
dence model yielding diffeomorphic estimates of motion fields of internal
structures. The framework is evaluated using 4D CT data of lung tu-
mor patients and different surrogates (spirometry, diaphragm tracking,
monitoring chest wall motion). Further, the application of the framework
for incorporating surrogate-based information about breathing variations
into the process of dose accumulation is illustrated.

Keywords: radiation therapy, breathing signals, motion estimation, mul-
tivariate statistics, diffeomorphic registration, Log-Euclidean framework

1 Introduction

Respiratory motion is a major source of error in conventional radiation therapy
(RT) of thoracic and abdominal tumors. Current approaches to cope with it
usually rely on the use of external breathing signals that are easy and fast to
acquire. This holds on the one hand for 4D CT imaging, during which image
or projection data are sorted (“binned”) to different breathing states based on
breathing signals like spirometry records or abdominal belt measurements; for
dose delivery, on the other hand, analogue technical devices are reported to be
used to steer gated dose delivery or tumor tracking techniques [1,2].

These breathing signals usually provide only a surrogate of the object of inter-
est, which is the respiratory motion of internal structures (tumor/clinical target,
organs at risk); they are therefore also referred to as surrogates (of the internal
motion). Due to the three-dimensional nature of internal motion patterns, intra-
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and inter-cycle motion variability like, e.g., phase shifts between movements of
different structures, the reliability of simple one-dimensional breathing signals
is, however, more and more considered to be problematic, and a trend toward
the use of multi-dimensional surrogates can be observed [3]. This requires the
development and evaluation of correspondence models between the breathing
signals and internal motion patterns that especially take advantage of the multi-
dimensional structure of the surrogates.

The use of multi-dimensional signals and the complexity of motion patterns of
internal structures, usually described by non-linear transformations or displace-
ment fields, naturally suggests the use of multi-variate statistics. A straight-
forward approach for defining a correspondence model would therefore be a
multi-linear regression (MLR); a patient-specific correspondence between surro-
gate data and internal motion patterns could then be trained using, e.g., a 4D CT
image sequence of the patient and information about internal motion extracted
from them on the one hand and surrogate measurements corresponding to the in-
dividual image frames on the other hand. In this case, the needed representation
of the internal motion information would usually be given by transformations or
displacement fields estimated by non-linear registration of the image frames of
the 4D CT data [4].

In the context of motion estimation of internal structures it is, however, consid-
ered to be a natural choice to restrict the transformations to diffeomorphisms, as
these ensure that “connected sets remain connected, disjoint sets remain disjoint,
smoothness of anatomical features [...] is preserved, and coordinates are trans-
formed consistently” [5]. This cannot be guaranteed when applying a standard
MLR correspondence model — neither for interpolating internal motion fields
from a surrogate measurement being in the range of the surrogate data available
for the MLR training phase, nor for extrapolation purposes. Now, being placed in
that context, the motivation of our contribution is three-fold. First, we propose to
exploit the Log-Euclidean framework, which in the last years has been proven to
be an efficient way for performing statistics on diffeomorphic transformation [6,
7], for definition of a diffeomorphic MLR-based correspondence model. Second,
we present a first evaluation of the diffeomorphic MLR framework, including a
comparison of the capabilities of three different but typical types of breathing
signals when applied as regressors/surrogates: spirometry, tracking the motion of
the diaphragm, and tracking chest wall motion. Third, we demonstrate the use
of such a framework in the context of 4D dose calculation. The last part aims at
incorporation of information about motion variations as provided by breathing
signals into the process of dose accumulation during RT treatment planning.

2 Theoretical Background

During definition of the MLR-based correspondence model we assume the pa-
tient’s anatomy to be represented by a 4D CT image sequence (Ij)je{l.... i} I;:
2 ¢ R? — R, with j denoting the breathing states. Designating w.l.o.g. the state

j =1 as a reference breathing state, the motion of the anatomical and patholog-
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ical structures will then be described by transformations ¢; = id +u; : 2 = 2,
which — in the sense of image registration — maximize similarity /minimize dissim-
ilarity of I and (I; o ¢;) with respect to additional smoothness requirements for
the transformations. Being interested in a general diffeomorphic motion estima-
tion framework, we choose a diffeomorphic registration scheme to compute the
transformations ¢;; the scheme is described in Section 2.1. Following, the theory
behind the MLR framework is explained in Section 2.2. Finally, in Section 2.3,
the integration of the MLR-based correspondence model into the process of dose
accumulation is detailed.

2.1 Diffeomorphic Registration and the Log-Euclidean Framework

Diffeomorphic transformations can be modeled as endpoints of the evolution
equation over unit time ¢ € [0, 1],

0
ot
with v : £2 x [0, 1] — R? being sufficiently smooth velocity fields parameterizing

the flow ¢ : £2 x [0,1] — 2. Thus, a diffeomorphic transformation ¢ : 2 — 2
can be computed by

Gi(x) = v (e (x),t) with ¢ (z) ==, (1)

-1

o (x) = 61 () = do (,0) + / 0 (60 (2) 1) dt 2)

[8]. The time-dependence of the velocity fields leads, however, to time and mem-
ory consuming algorithms in the context of image registration [5]. To avoid these
problems, stationary velocity fields can be considered instead. Then, as part of
the Log-Euclidean Framework, it can be exploited that the set of diffeomor-
phisms Diff (£2), together with the function composition, exhibits a Lie group
structure. For a diffeomorphism parameterized by a stationary velocity field v, v
is part of the tangential space TigDiff (£2) at the neutral element of Diff (£2) [6].
Further, TigDiff (£2) and Diff (£2) are connected by the so-called group exponen-
tial exp : T Diff (£2) — Diff (£2), with the paths ¢; = exp (tv) being one param-
eter subgroups of Diff (£2). Based thereon, Arsigny et al. proposed to rephrase
the transformation of (2) by

¢ (z) = ¢1 (z) = exp (v (2)), 3)

with the group exponential being efficiently computed using the scaling-and-
squaring algorithm [6].

The parameterization (3) also states the basis of the PDE-driven non-linear reg-
istration framework applied in the work at hand to compute the sought trans-
formations ¢; describing the respiratory motion of internal structures in the 4D
image sequences. Let therefore I; serve as reference image and I; with j be-
ing an arbitrary breathing state denoting the target image, we search for the
transformation ¢; = exp (v;) that minimizes the energy functional

J [vj] =D, L o ;] + aS [v;]; (4)
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D represents a dissimilarity measure and S a smoothness term/regularizer. The
Euler Lagrange equations can then be formulated as

f (05 (@) + aAly;] (2) =0, z € 2, ()

with f being a force-term corresponding to the dissimilarity measure and A as
a linear differential operator associated to S. Here, a diffusion regularization
approach (i.e. A = A) and the so-called active Thirion forces, also referred to as
normalized SSD forces, are applied; for details see, e.g., [9].

2.2  Multi-linear Regression for Surrogate-based Motion Estimation
With the transformations (@j)je{l,.“,nph} and velocity fields (Uj)je{l,..,nph} be-
ing computed by diffeomorphic registration, we further assume that surrogate
measurements (gj)je{l,...,nph}v &; € R™r have been acquired simultaneously to
the CT image data (or subsequently simulated). Then, the idea of the diffeomor-
phic MLR-based correspondence model is to apply a regression to estimate the
relationship between the surrogate-signals &; (regressors) and the velocity fields
v;j (regressands) instead of the motion fields u; or transformations ¢;. Interpret
the velocity fields v; and the surrogate data &; as random variables V; and Z;,
for which the motion information is written in a single column. Let the individual
random variables further be combined within the matrices V := (V§,... 7V$u,,h)
and Z := (Z5,...,Z;, ) with V§ = V; — V and Z; =17, — Z as the centered
versions of V; and Z;. The multi-variate multi-linear regression can then be
phrased as the estimation of the relationship

V = BZ (6)

by
—1
B = argmin tr [(V _B'Z)(V - B’Z)T} = vz” (ZZT) . (7)
Thus, B represents an ordinary least squares (OLS) estimator between the sur-
rogate data & = Z; and the velocity fields v; and V, respectively.
With the OLS estimator B computed, for any measurement £ = Z a correspond-
ing velocity field © can be derived by V=V+B (Z - Z) and resorting the

entries of V wrt. the structure of 9. Exploiting the Log-Euclidean framework, the
sought diffeomorphic transformation is finally to be calculated by ¢ = exp (9;).

2.3 Application of the MLR-based Correspondence Model to
Situation-adapted Dose Accumulation

In the context of 4D dose calculation, dose accumulation aims at assessing dosi-
metric effects of respiratory motion for a generated (3D) treatment plan. Given a
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4D image sequence (I;) of the patient, a standard dose accumulation

JE{1,...,npn}
for voxels & € 2 of the reference i image reads

Nph

D' (z Zw] (Dj o p;) () (8)

with D*P : 2 — R, being the sought accumulated dose; in that, the dose con-
tributions D; : £2 — Ry (3D dose calculated as resulting for the given treatment
plan and the CT image I;) are often equally weighted, i.e. w; = 1/ny.

It is obvious that neither motion variations nor effects due to the interplay of or-
gan motion and short delivery times of single irradiation fields can be assessed by
(8) [10]. Thus, going one step further toward accurate dose accumulation, in this
contribution we propose to start the dose accumulation process with a patient-
specific surrogate signal measurement and the corresponding OLS estimator B
as computed by (7). Additionally, we assume the beginning time and the dura-
tion of each irradiation field of the treatment plan to be known and denoted by
tr,0 and tgeng (K =1,...,Nfic1ds). Then, instead of a weighted summation over
the dose distributions D;, we now sample the surrogate signal equidistantly in
time and rephrase the dose accumulation problem as follows:

nfields oty opa
DY (z)= > / Dy, (z(t),t) dt

k=1 Ytko
Nfields .

~ Y Di(éi(x) 1) At
k=1 1
Nfields

~ D 9
; tkcnd_tkoz e (8r(@), 1) ®)

Dy (p1 (), ;) is the dose rate for field k at time #; belonging to the sampling
point [, which is evaluated at the position of voxel x € §2 of the reference CT at
time t;; Dy, (¢1 () ,t;) is the corresponding dose with ¢; being estimated based
on the surrogate measurement at ¢; and the OLS estimator B (cf. Section 2.2).

3 Experiments and Results

Our experiments were based on 4D CT images of 10 lung tumor patients (10-14
breathing states, spatial resolution 320x320x270 voxels with an isotropic spac-
ing of 1.5 mm). The image binning was grounded on spirometry records, which
were also considered as a first example of a (one-dimensional) breathing surrogate
during evaluation of the MLR correspondence model. For evaluation purposes we
further identified the domes of the left and the right hemi-diaphragm and inter-
preted the corresponding displacements {u1 (xdia) yeees Unpy, (x‘“a)} as a second
type of surrogate measurements (ng,, = 2-3). As a third type of breathing signal
we simulated a laser-based tracking of lifting/raising of chest wall points within
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Table 1. Landmark-based target registration errors and tumor propagation errors
(evaluated based on the tumors’ centers of mass, COM), obtained for the diffeomorphic
MLR-based estimation of inner lung motion as part of the leave-out tests and listed for
the different surrogate types (mean+ standard deviation for the ten patients considered;
EE/ME = end-/mid-expiration, EI/MI = end-/mid-inspiration).

Landmark-based Tumor COM

Target-Registration-Error [mm] distance [mm)]
Motion Estimation EI - EE EI - MI EI - ME EI — EE
No motion estimation 6.8+1.8 49+1.2 2.5+0.6 6.9+6.1
Intra-patient registration 1.6+£0.2 1.6 +0.1 1.5+£0.2 0.94+0.5
Diffeomorphic MLR framework; surrogate = ...
spirometry 2.0+0.3 2.0+0.3 1.8+0.3 1.5+0.9
diaphragm motion 21+04 1.8+ 0.2 1.7+0.3 1.7+ 0.9
chest wall motion, sternum 4.7+ 1.4 2.64+0.9 2.44+0.7 4.7+4.3
chest wall motion, line 21404 1.9+0.2 1.8+0.2 1.4+1.0

the 4D CT images by a ray tracing approach (ray direction: anterior-posterior).
In a first run, a point laser was simulated with the laser origin placed over the
sternum; in the second run, we used several (= 150) points lying on line (di-
rection: superior-inferior), aiming at simulating the use of a line laser. For each
surrogate and the state of end-inspiration (EI) as reference state, we evaluated
the accuracy of the MLR correspondence models in leave-out tests. For eval-
uating “extrapolation” capabilities, all breathing states but the states of and
around end-expiration (EE), i.e. in total (n,, — 3) states, are used for training
the OLS estimators; the surrogate values £gp were then applied to estimate the
transformation ¢pg. The accuracy of the motion estimation was evaluated by
determining a target registration error based on manually defined corresponding
landmarks (70 landmarks per patient and breathing phase). Additionally, the
accuracy of a model-based tumor segmentation propagation between EI and EE
was quantified considering manual tumor segmentations as ground truth data.
Interpolation capabilities were analogously analyzed for motion estimation be-
tween EI and mid-inspiration (MI) and mid-expiration (ME).

The corresponding results are listed in Table 1. Referring to the accuracy of the
breathing surrogates, no significant differences can be observed between spirom-
etry, tracking diaphragm motion, and combining motion information of several
chest wall points (i.e. simulating the line laser). In comparison thereto, the accu-
racy is significantly decreased when tracking the raising/lifting of only a single
chest wall point (here: the sternum); this demonstrates the potential of combin-
ing motion information at least for tracking chest wall motion. The values listed
in Table 1 were further compared with analogous results obtained by a standard
non-diffeomorphic MLR framework (i.e. modeling correspondences directly be-
tween the motion fields u; and the surrogate data ;). It turned out that no
significant differences were apparent wrt. the accuracy of the motion estima-
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Fig. 1. Illustration of differences between the MLR-based situation-adapted and stan-
dard dose accumulation results. Left: spirometry record, acquired during 4D CT im-
age acquisition. The interval III denotes the spirometry values represented by the 4D
CT data. The periods I and II are the intervals considered for demonstration of the
situation-adapted dose accumulation. Right: dose-volume-histograms for the dose ac-
cumulation approaches and the clinical target volume CTV.

tion. However, especially in the case of extrapolation, the motion fields obtained
by non-diffeomorphic correspondence models featured a series of singularities —
which were not existing for the diffeomorphic framework.

To further demonstrate the application of the diffeomorphic MLR-based corre-
spondence model for dose accumulation purposes, a 3D IMRT treatment plan
was generated for a patient with a clinically relevant tumor motion amplitude
of 12 mm (10 mm isotropic margin between clinical and planning target vol-
ume CTV and PTV; planning phase: MI; treatment planning system: CMS XiO
v.4.3.3). Accumulated dose distributions were computed using standard dose
accumulation according to (8) and applying the surrogate-based accumulation
scheme as derived in (9). The surrogate-based dose accumulation was based on
the spirometry data recorded during the 4D CT image acquisition, see Figure 1
(left); we selected both a period of the record with little variance of the distribu-
tion of the local maxima (dose accumulation for a “regular breathing situation”;
period I in the figure) and a period of high variance of the local maxima (“ir-
regular breathing situation”, period II).

The dose-volume-histograms for the CTV and the different dose distributions are
shown in Figure 1 (right). It becomes obvious that standard dose accumulation
based on only the 4D CT image information underestimates the risk of CTV un-
derdosages due to respiratory motion when compared with the surrogate-based
dose accumulation and especially the “irregular breathing situation”. It should,
however, be noted that for the case at hand the irregularities in the spirometry
records are very pronounced compared to other patients. Further, the discrep-
ancies between standard and situation-adapted dose accumulation are conse-
quences of both breathing signal variations and the interplay effects mentioned
in Section 2.3. The example case gives, nevertheless, an intuitive illustration of
the principle and the idea behind the situation-adapted dose accumulation.
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4 Conclusions

Current RT techniques to cope with respiratory motion usually rely on the use
of breathing signals, also referred to as surrogates (of internal motion patterns).
Taking into account a trend toward multi-dimensional surrogates, we applied
the Log-Euclidean framework for defining a diffeomorphic MLR-based corre-
spondence model and, considering different types of breathing signals, presented
a first evaluation of its accuracy. Further, its use for incorporating surrogate-
based information about breathing motion variations into 4D dose calculation
has been illustrated. At this, the focus of the contribution lay on the theoreti-
cal concept of both the diffeomorphic MLR-based correspondence modeling and
the surrogate-based dose accumulation with the results presented being a first
proof-of-concept, which has to be approved in following evaluation studies. This
addresses — as potential future work — the generation of suitable ground-truth
data, perhaps by acquiring repeatedly 4D CT data of the patients or designing
appropriate motion phantom studies.

Acknowledgments. Funded by German Research Foundation (HA 2355/9-2).
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Abstract. Presented is a method to build a surrogate-driven motion
model of a lung tumour from cone-beam CT (CBCT) projection data.
The method is markerless and can utilise a standard CBCT scan from
radiotherapy treatments. A motion compensated reconstruction of the
tumour region also results from calculation of the tumour motion model.
It is envisaged that this technique be used to better assess tumour shape
and motion prior to dose delivery and over the course of treatment. The
method could also be used to guide gated and tracked treatments. The
two-step method involves enhancing the tumour region in the projec-
tions, and then fitting the surrogate-driven motion model. Preliminary
results on a patient dataset using a surrogate extracted directly from the
CBCT projections are presented.

1 Introduction

State of the art radiotherapy treatments rely on the accurate iden-
tification of cancerous regions and successful exposure of them to
lethal doses of radiation [14]. With the advent of stereotactic body
radiotherapy (SBRT), involving fewer treatment fractions and higher
dose per fraction, it is important that tumour respiratory motion is
taken into account. An increasing body of evidence shows that there
are indeed changes between planning and treatment fractions [9,7,
10,11, 5], which would invalidate motion models built from 4DCT
planning data.

4D-CBCT reconstructions [12] are able to provide an indication
of tumour motion on the day of treatment, but produces poor qual-
ity reconstructions and could underestimate [1] the true extent of
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tumour motion. Presented in this work is a method of building a
motion model of the tumour, without markers, utilising a standard
CBCT scan during treatment. Briefly introduced in [4], preliminary
results on clinical patient data are given.

2 Methods and materials

The method involves enhancing the tumour in each projection and
then iteratively determining the motion compensated reconstruction
(MCR) and surrogate-driven motion model, using an SSD-driven
cost function.

2.1 Tumour enhancement

Prior to fitting a motion model to the data, the projections are first
pre-processed to enhance the tumour. A standard FDK reconstruc-
tion [3] is performed, from which the tumour region is delineated. A
simple program to import the target volume from planning was con-
structed in MatLab (MathWorks, Massachusetts, USA), which also
allows the volume to be stretched in superior-inferior (SI), anterior-
posterior (AP) and left-right (LR) directions. This target volume
should encompass the tumour and the extent of its motion over the
entire scan. A mask is created of the tumour region and used to
create two volumes. One is of the tumour region with voxels out-
side set to the intensity of air. The other is of non-tumour region
with the tumour region voxels set to the intensity of air. A CBCT is
simulated of the non-tumour region volume and the projections sub-
tracted from the original projections. Given a stationary patient, the
resulting enhanced projections would be of just the tumour region.
In practice these enhanced projections are corrupted with artefacts,
of which the effect is minimised by masking the projections accord-
ing to the projected tumour region volume, giving the tumour region
projections. Figure 1 shows an example projection at various stages
of the tumour enhancement process.

2.2 Motion models

A motion model is used to constrain the estimated patient motion
to physically realistic variation. A realistic parameterisation of the
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Fig. 1. (a) Illustration of tumour enhancement process. The tumour enhanced projec-
tions are the original projections (P) minus non tumour region projections (Q); which
are then masked by the tumour region projections (R). (b) Using labels from (a), part
of an example projection shown at various stages of tumour enhancement: P, (P-Q)
and (P-Q) masked by R, from left to right respectively.

motion of just the tumour region is desired, but one that requires a
minimal number of parameters. Assuming that the tumour motion
can be approximated as movement of a solid, non-deforming mass, a
rigid, translation-only motion model should provide physically real-
istic motion estimates, whilst providing a low number of parameters
to optimise. A simple, linear motion model only requiring the breath-
ing trace current value is used for this work. Surrogate traces were
extracted directly from the projections with a method based on [15].
The raw surrogates were then normalised (mean subtracted; divided
by standard deviation). The motion model used is:

Vi, (®) = Vi, (® + 51,m) , (1)

where x is an artibrary point in the patient volume. V; is the
patient volume at the time ¢, of the n'® projection, with the first
projection taken at time ¢y. V;, is the reference volume. A projec-
tion at time ¢, has an associated scalar surrogate signal value s, .
m is a three element vector which determines the SI, AP and LR
motion dependence on the current value of the surrogate signal sy,
respectively.
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2.3 Iterative approach to calculate motion compensated
reconstruction (MCR) and motion model parameters

Using an approach first presented in [4], we attempt to jointly esti-
mate the MCR and motion model parameters iteratively. Beginning
with zero motion (i.e. m = 0), an MCR is calculated. An open-
source, FDK-based reconstruction algorithm was modified for the
reconstructions [8]. MCRs werecalculated by back-projecting each
projection through the inverse transformation of that that the mo-
tion model estimated, given the motion model parameters.

The MCR was used as the reference volume and the motion model
parameter updates calculated. An SSD-based cost function is com-
bined with an optical flow approach, to re-express the difference
between actual and simulated projections (residue) as motion model
parameter updates [6]. Because of the form of the motion model,
the cost function could be expressed in a manner which reduced the
optimisation time.

3
odm = argmin Z /\9/\¢Z Z CoCy | , (2)
om

0,$=0 tn pizels
where
=1, Cy=R,;
A =omy; Cy = —s5,, P, (0.V4,)
Ay = omy; Cy = —sy, Py, (0,V4,) 5 (3)
A3 = 0my; Cs = —s4, Py, (0,V4));

Ry, is the residue for the simulated and actual projections at
time t,, described earlier. P;, is the forward projection operator. 9,,
0, and 0, are the partial derivatives in SI, AP and LR directions,
respectively. The parameter space was searched for the minimum,
giving the motion model parameter updates dm. A BFGS Quasi-
Newton method with a cubic line search procedure [2] was used to
search the parameter space. The new motion model parameters 1m,,,,
can now be calculated:

My, = M + OM. (4)
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After recalculating the MCR with the new motion model param-
eters, the process is repeated until the convergence. The algorithm
was terminated if the motion model updates gave a maximum ad-
ditional shift of less than one voxel (i.e. the largest additional shift
over all seen surrogate values less than one voxel), or if a maximum
number of iterations was met (set at 10).

3 Results

Preliminary testing of the algorithm on patient data is given. Two
sequential CBCT scans (termed scan A and scan B) during a fraction
of SBRT treatment were used. Scans were taken on an Elekta Syn-
ergy (Elekta, Crawley, UK) at Guys and St. Thomas Hospital (Lon-
don, UK). For this dataset, circa 700 projections were taken at an
acquisition rate of 5.5Hz. Simulating the 3D trajectory of both scans
and motion model parameters, the average maximum variations were
11.9, 2.10 and 0.63mm in the superior-inferior (SI), anterior-posterior
(AP) and left-right (LR) directions, respectively. The mean (max)
RMS errors of using either extracted motion model parameters were
0.412mm (1.09) for the scan A estimated trajectory, and 0.425mm
(1.16) for scan B’s. Please see Table 1 for further information. Figure
2 shows the original and motion compensated reconstructions using
the original projections of scan B.

Table 1. Maximum tumour motion by surrogate source and extracted motion model
parameters.

Trajectory Motion model Max. motion (mm)

parameters (SLLAP,LR)
Scan A Scan A 12.5, 1.75, 1.23
Scan A Scan B 11.0, 2.42, 0.01
Scan B Scan A 12.7, 1.78, 1.25
Scan B Scan B 11.2, 2.46, 0.01
Mean 11.9, 2.10, 0.63
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Fig. 2. Slices of scan B reconstructions with (right) and without (left) motion com-
pensation.

4 Discussion

The authors have presented preliminary evidence that tumour mo-
tion can be extracted from a CBCT scan and used to build a motion
model and MCR. The simple motion model presented here is able to
improve the quality of the reconstruction and allow target volume
motion to be assessed prior to treatment. There is an improvement in
contrast of the surrounding structures, such as airways, which move
similarly to the tumour. Structures that do not move as the tumour
appear more blurred in the MCR. The method provides encourag-
ing results, even in the presence of scatter and limited field of view
(possible missing patient anatomy in the reconstruction) artefacts
affecting CBCT scans. By optimising the code and utilising a GPU,
the authors are confident convergence could be achieved within a
clinical timeframe; minutes as opposed to hours. The authors are
currently performing tests on further datasets and with other surro-
gates. Motion models which can account for hysteresis are also being
tested. Work on extending the motion model to include more com-
plex deformations, and modelling motion of the organs at risk are
also planned.
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Abstract. Patient motion during radiotherapy (intra-fractional motion),
is one of the major sources of uncertainty in dose application. 2D /3D
registration is an intensity based method used successfully to track tu-
mor motion with the potential to reduce uncertainty. Despite promis-
ing results, the direction perpendicular to the 2D imaging plane cannot
be accurately resolved leading to an incomplete, five-degrees-of freedom
tracking. In this paper, we propose the use of two 2D images to improve
registration results. Modern LINACs have the ability to acquire mega-
voltage images, with significantly different contrast, simultaneously to
the kilo-voltage image acquisition. Our results show that, when using
both images, registration accuracy in all six degrees of freedom dra-
matically improves. This means that accurate motion tracking can be
performed and it integrates easily with the clinical workflow.

Keywords: 2D/3D registration, motion tracking, radiation therapy, kilo-
Voltage/mega-Voltage

1 Introduction

One of the major sources of uncertainty in dose application during radiother-
apy is patient motion during the treatment or intra-fractional motion. Periodic
motion related to the breathing cycle or heartbeat and other forms of aperiodic
motion require the enlargement of the planned target volume (PTV) to make
sure the full tumor is correctly irradiated. The most important consequence is
that dose delivery is increased to healthy tissue.

Tumor motion tracking can help reduce the PTV by reducing the uncer-
tainty about tumor position and help deliver more precise therapy. In the case
of lung tumors, approaches to motion tracking include tracking of implanted
fiducial markers [10], magnetic transponders [11], external surrogate markers [2]
and correlation of external motion with lung motion models [9]. Recently, the
CyberKnife®) system has also the possibility of intensity based markerless tu-
mor tracking using two cameras [1] where the the tumor position is detected at
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certain points of the breathing cycle and correlated to external markers. Purely
intensity based 2D /3D registration [4] is an important approach as it does not
require markers or fiducials to be implanted and can deal well with aperiodic
motion. Despite promising results, an intrinsic problem with this approach is
the inability to accurately resolve displacement occurring in the direction per-
pendicular to the imaging plane [12].

Modern LINACs have not only the ability to acquire portal kiloVoltage (kV)
images during treatment but also the possibility to acquire a megaVoltage (MV)
image using the treatment beam. The two images are, at least in the case of
the Elekta™ treatment machines, perpendicular and they can both be used
for 2D/3D registration. In this paper, we present a comparison of registration
results when using only one kV image or when using different combinations of
kV and MV images. We evaluated the different combinations using a porcine
phantom data set and standard patient data. Our results on both data sets
show that when using both images registration accuracy increases, leading to
more accurate motion tracking in six degrees-of-freedom.

2 Materials and methods

2.1 2D/3D registration

2D/3D registration is a widely used approach in image guided interventions [6].
In a first step, a simulated x-ray image - a DRR - is generated from a 3D vol-
ume by a ray casting algorithm, simulating the attenuation of virtual x-rays.
The DRR image is then compared to the x-ray image acquired during treatment
by means of a merit function. An optimizer searches for the spatial transfor-
mation which generates the best match between the DRR and the x-ray. The
final translational and rotational parameters (ts,ty,t, ws, wy,w;) represent the
tumor displacement. In this work we used a mutual information (MI) [3] based
merit function and the optimization was performed using the Powel optimizer [8].

2.2 Image datasets and Image preprocessing

For the evaluation, we used a freely available porcine head dataset [7] and images
from a patient undergoing routine treatment in our clinic. From the porcine
dataset we used computed tomography (CT) 3D images and four 2D images:
two kV images taken from lateral (LAT) and anterior-posterior (AP) views and
two MV images taken from the same views. The gold-standard transformation
between all images is available. Because the porcine head features soft tissue
which can deform, registration was performed on a region of interest (ROI).
Figure 1 shows the 2D images for the LAT view and the ROI mask used.

The patient dataset consists of images from a patient suffering from non-small
cell lung cancer undergoing regular treatment in our clinic. We used a planning
CT volume where the tumor margins and organs at risk were delineated in a
standard planning procedure, a sequence of (151) kV x-ray images and a sequence
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of (52) MV x-ray images acquired simultaneously during treatment with rates
of approximately 5.4 Hz and 2 Hz respectively. The registration is done on a
region of interest (ROI) centered around the PTV for two reasons: (a) the PTV
is the region where we want to follow motion and where the assumption of a
rigid transformation is valid and (b) rendering a smaller area is also less time
consuming as there are less pixels to render. Figure 2 shows a CT slice with the
planning contoured structures (left) and one kV x-ray and one MV x-ray with
the structures projected on them (center and right).

00

Fig. 1. Pig 2D image data: The first column shows a kV images from lateral view, the
second column a correponding MV image, the third, the mask used for the ROI and
the last column shows the kV image after masking

Right lung Leftlung
¢ ;

2

\‘
("
P Y/
“PTV

Fig. 2. Patient image data: On the left a slice of the planning CT with the planning
structures is shown, on the center the structure were projected on an X-ray acquired
during treatment and on the right, only the PTV was projected on an EPID image
acqured during treatment.

The sequence of patient kV and MV images, was acquired with different rates.
The sample rate ratio was not accurately known and so, the time correspondence
between images was not defined. To find this correspondence, first the ground
truth motion was extracted from both sequences by segmenting visible features
on the images (e.g. the diaphragm). Then, the motion with lower sample rate
(MV) was iteratively re-sampled until a maximum of cross correlation between
both motion signals was found.
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2.3 Evaluation methodology

We followed slightly different evaluation approaches for each of the datasets as
they have different characteristics. In the case of the pig, only static images are
available but with a well known gold standard. In the case of the patients, there
is no gold standard but a fluoroscopic image sequence was available. The general
approach consisted in comparing the accuracy of the 2D /3D registration using
only one 2D image and 2D image pairs.

For the pig dataset, the accuracy evaluation was performed following the
methodology proposed by [5] where a mean target registration error (nTRE)
metric is used. The mTRE, consists of the mean of distances between target
points spread evenly on the volumes, transformed by the ground truth, and by
the transformation obtained with the registration method. We compared regis-
trations performed using only one 2D image (referred to as 1-kV), one kV and
one MV image (kV-MV) and two kV images (2-kV). For each of the combina-
tions we evaluated the registration results using 250 initial displacements, chosen
randomly, which are offsets of the gold standard. The total initial mTRE ranges
from 0 to 25 mm in steps of 1 mm with 10 points at each step.

For the patients, we performed different registration sequences attempting
to extract tumor motion as described in [4]. To compare performance, we ex-
tracted motion in 5 degrees-of-freedom (DOF) using only the kV sequence, in
6 DOF using only the MV sequence and in 6 DOF using a sequence of kV-MV
image pairs. In the latter case, we used a subset (52) of the kV images that
approximately corresponds to the MV image sequence in time.

Although there is no gold standard available, we also performed an evaluation
similar to the pig dataset, where we used a pair of 2D images (kV-MV) that
correspond well in time, and evaluated results using 150 initial displacements
from an initial point, evaluating the coherence of registration results. The total
initial mTRE ranges from 0 to 15 mm in steps of 1 mm.

3 Results

The results obtained for the pig dataset are shown in table 1 as mean and
standard deviation final mTRE for all the registrations. Figure 3 shows a plot of
individual registration results leaving out results that are above 25 mm. Table 2
shows the mean, standard deviation and rms of the error of the final translation
parameters in relation to the gold standard summarizing the error data for all
registrations.

Regarding the patient resuls, figure 4 shows the reconstructed tumor centroid
motion along the cranial-caudal (CC, blue line), left-right (LR green line) and
anterion-posterior (AP red line) directions in 5 DOF using only the kV image
sequence for registration. The black dashed line shows the extracted diaphragm
motion. The major contribution to the motion is in the CC direction as was
seen in our previous work [4]. Figure 5 shows a plot of the extracted tumor
centroid motion along the AP direction (the direction perpendicular to the kV
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mTRE: MEAN + STD (mm)

1-kV 49 £4.1
kV-MV 18+1.1
2-kV 1.7+ 13

Table 1. Mean (MEAN) and standard deviation (STD) of mTREs for the different
image combinations.
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Fig. 3. Plots of individual registration results for each of the image combinations: one
kV image (first row), one kV and one MV images (second row) and two kV images
calculated using a mutual information based merit function.

error t, (mm) error t, (mm) error t. (mm)
2D image MEAN + STD RMS MEAN 4+ STD RMS MEAN £+ STD RMS
1-kV 0.2+0.2 0.3 -0.3 £ 0.3 0.4 0.1 £5.7 5.7
1kV-IMV 0.3 £0.1 0.3 -0.2 £0.1 0.3 -1.0 £ 0.5 1.1
2-kV 04 +0.1 0.5 -0.5 £ 0.1 0.5 -0.2 £0.2 0.3

Table 2. Summary of the offset error in relation to the gold standard for the three
translation parameters, X, Y and Z. The offset errors are shown as the mean (MEAN)
=+ standard deviation (STD) and the root mean square (RMS) error.

imaging plane) for three registration combinations: 5 DOF with one 2D image
sequence, 6 DOF with one 2D image sequence and 6 DOF with a kV-MV image
pair sequence. The motion along the AP direction ranges from very little to
up to 25 mm in the case of registration in 6 DOF with only one 2D image
sequence. Table 3 summarizes these results as a mean, standard deviation and
RMS amplitute of the motion in the AP direction for the three registration
sequences.

Finally, figure 6 shows a comparison of the final registration translation pa-
rameter ¢, (shown as offset to the mean), for 150 starting positions with increas-
ing initial mMTRE when using only one kV image (left) and a kV-MV image pair
(right). Table 4 summarizes these results as mean and standard deviation of the
final translation parameters for both cases.
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Tumor motion tracking (SDOF)

Displacement (mm)
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Fig. 4. Reconstructed motion of the centroid of the tumor along CC (blue line), LR
(green line), AP (red line) directions for the patient dataset in 5 degrees of freedom
using only the kV image sequence. The diaphragm motion is also shown as a black
dotted line. Note that some outliers are omitted in the case of the AP direction.

Centroid displacement along the anterior-posterior direction

5 DOF (1 Cam)
—— 6 DOF (1 Cam)
6 DOF (2 Cams)

Displacement (mm)

X-ray number

Fig. 5. Reconstructed motion of the centroid of the tumor along the AP direction for
the patient dataset, in 5 DOF using one 2D image for registration (blue line) in 6 DOF
using one 2D image for registration and in 6 DOF using two 2D images for registration.

4 Discussion and Conclusions

Our results demonstrate the improvement on accuracy by using two 2D images
in the 2D /3D registration. For the pig dataset, it is easily seen in figure 3 that
when only one image is used, the mTRE increases as the initial displacement
also increases. The large errors stem from a random final ¢, parameter as this
translation cannot be accurately resolved with only one projection. The data
in table 1 and table 2 confirm this finding showing that the final mTRE and

Motion along AP direction (mm)

2D image MEAN + STD RMS
1-kV (5DOF) -0.37 £ 0.3 0.48
1-kV (6DOF) 461 + 4.52 6.45
2-kV (6DOF) -3.78 4+ 2.22 4.37

Table 3. Summary of the tumor centroid motion along the AP direction shown as the
mean (MEAN) =+ standard deviation (STD) and RMS of the amplitude of the set of
registrations over time.
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Fig. 6. Plots of the offset to the mean of the final translation parameter t, for the

individual registrations on the patient data shown for the two a image combinations,
1-kV and 1kV-1MV

te (mm) ty (mm) t. (mm)
2D image MEAN £ STD MEAN £ STD MEAN + STD
1-kV 4.94 £ 1.89 -7.55 £ 2 545.83 £ 7.4
1kV-1IMV 13.38 + 1.14 -3.84 £ 1.63 534.78 £ 1.07

Table 4. Summary of the offset error in relation to the gold standard for the three
translation parameters, X, Y and Z. The offset errors are shown as the mean (MEAN)
+ standard deviation (STD) and the root mean square (RMS) error of the offset of the
gold standard. The registration was calculated for the four different merit functions.

the parameter error is much lower when an image pair is used. The results are
slightly better when two kV images are used but typically, there is only the
possibility of acquiring a kV-MV image pair during treatment.

For the patient dataset, tumor motion could be tracked in 5 DOF with rea-
sonable accuracy. Figure 4 shows good correlation between extracted diaphragm
motion and tumor motion obtained by registration. It is evident from figure 5
that extracting tumor motion in 6 DOF using only a kV image sequence for
registration leads to high inaccuracy. It is known that there is almost no motion
in the AP direction so we can conclude that the extracted motion is incorrectly
resolved, as large displacements (red line) are shown. When using a sequence of
image pairs (green line) the motion is again much smaller. Table 3 also shows
that both the standard deviation and the RMS of the motion amplitude are
significantly smaller when an image pair sequence is used.

Finally, in figure 6 the displacement perpendicular to the imaging plane (here
Z direction) is not accurately resolved (left) in contrast with the case when using
image pairs (right) where much smaller offset to the mean is obtained. This is
also seen in table 4 where a dramatic decrease in standard deviation on the Z
translation parameter is shown when using two images for registration.

It is important to say that for the time being, these results are preliminary
as accuracy can improve. One of the main sources of uncertainty comes from
the fact that the kV and MV image pair sequences do not have a one to one
correspondence in the time domain. Further work has to be done to deal with
images pairs that are not taken at the same point in time or a synchronization
mechanism has to be implemented.
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Despite this, taking the presented results into account, we can say that using

a pair of images for registration is a good approach to improve accuracy. This
is also workflow efficient as acquiring extra MV imaging during treatment adds
no additional dose to the patient or burden to the physician.

Acknowledgments. The financial support by the Federal Ministry of Economy,
Family and Youth and the National Foundation for Research, Technology and
Development is gratefully acknowledged.
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Abstract. Preliminary tests and results are described to evaluate the
accuracy and robustness of a FFD voxel-based deformable registration
algorithm in registering planning CTs to CBCTs from head and neck
patients. Similarity measures, computation time and visual inspection
are used to assess the effect of different registration parameters in the
results and to find a promising interval of parameters’ values.

1 Motivation

Developments in radiotherapy techniques aim at delivering increasingly more
conformal doses to the target volumes while sparing the surrounding healthy
tissues. However, the steeper the dose gradients become the more important it is
to precisely set up the patient. This includes accurate positioning of the internal
organs [1]. Inaccuracy in positioning can cause underdosage of the target volume
and overdosage of normal tissues, which can result in increased risk of tumour
recurrence and complications [2].

The incorporation of daily setup images taken on the treatment site into the
radiotherapy process can facilitate adaptive radiation therapy (ART). In ART
the treatment is evaluated periodically using in-room imaging, such as cone-beam
computed tomography (CBCT), and the plan is adaptively modified to take in
consideration changes in dose due to changes in patient setup and anatomy [3].

ART could be particularly useful for head and neck (HN) patients due to
the complexity of the surrounding anatomy and the proximity to several ra-
diosensitive critical structures. Conventionally, it is assumed that the targets in
the HN region are quite rigidly attached to the bony anatomy [4] and so organ
motion is minimal. However, recent studies report progressive changes in the pa-
tient anatomy during the course of the treatment and relate them to dosimetric
changes from the original plan [2][5][6]. The reasons for anatomical changes are
multifactorial and can be related with the decrease of tumour and nodal vol-
umes, weight loss (due to difficulties in swallowing), alteration in muscle mass
and fat distribution, fluid shift within the body [7] and resolving posteoperative
changes/edema [2]. Studies done on mid-treatment re-planning of HN patients
show that there is benefit to some patients, but there is no method to identify
the ones that will benefit more from replanning and the optimal timeframe for
it to take place.
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For some HN patients at least one replanning is necessary. Currently replan-
ning is done in University College London Hospital (UCLH) in Intensity Mod-
ulated Radiation Therapy (IMRT) treatments only when absolutely necessary,
usually mid-way through the treatment when considerable anatomical changes
take place and the patient no longer fits in their personal immobilizing thermo-
plastic mask. The new plan is built from scratch by acquiring a new planning
CT and without accurately knowing the dosimetric consequences so far. It may
be more beneficial to replan the patients earlier in their treatment, but there is
no evaluation method to assess the necessity and timing for replanning.

UCLH and University College London (UCL) are currently developing a clin-
ical proton therapy facility, expecting to treat its first patients in 2017. In Proton
Therapy (PT) accounting for setup and anatomical changes becomes even more
important as more conformal doses are delivered and the dose distribution is
more sensitive to the patient’s anatomy. Therefore, the question of if and when
to replan is even more relevant in PT.

It is widely accepted in literature that the future of ART depends on the use
of accurate deformable registration algorithms [7][8][9]. A deformable registration
resolves the major challenges in ART: planning CT scans warped to match the
daily CBCT can be used for reliable dose calculations, regions of interest can be
propagated from the planning CT and daily dose distributions can be warped
back to the planning CT to calculate the accumulated delivered dose [6]. The
main challenge is in how to proper validate deformable registrations on clinical
data, so for now they must be used with care.

In this work we investigate a deformable registration algorithm to register
the planning CT and weekly CBCT images taken from HN patients. These find-
ings will be useful for developing and validating a future ART protocol for HN
patients.

2 Methods and Materials

NifTK software was developed by the Centre of Medical Image Computing
(CMIC), at the Department of Medical Physics and Bioengineering of UCL.
The software is in constant development and contains several tools for image
registration and visualization. It combines a set of different toolkilts, including
the open-source NiftyReg (http://cmic.cs.ucl.ac.uk/home/software) for rigid and
deformable image registration, and a viewer (NiftyView).

The rigid/affine registration code uses a Block Matching algorithm [10], while
the deformable registration code is a re-factoring of Rueckert et al. (1999) Free-
Form Deformation (FFD), based on B-Splines and a voxel-based similarity mea-
surement - Normalized Mutual Information (NMI) [11]. The major differences
from the original paper are in the calculation of the gradient and joint histogram,
introduction of other penalty terms, and a GPU implementation, which make
the code faster and more robust [12].

In this preliminary study we aim to evaluate the image registration algorithm
on a small set of data to find a set of promising parameters to use in further
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studies. This set of parameters should give good results for any HN registration
by minimizing the computation time and keeping acceptable values for the simi-
larity measures. Since high values of similarity measurements do not necessarily
mean a better registration the analysis is aided with visual assessment of the
registered images. The similariy measure used was the NMI,

H(A)+ H(B)

NMI(A, B) = A4 D)

(1)
where H(A) and H(B) are the entropy of the images A and B. NMI can take
any value between 0 and 2, where higher values correspond to higher similarity
and values of NMI> 1 typically represent a good agreement between images.
Initial tests using SSD as similarity measure showed that it did not perform well
due to the intensity differences between CT and CBCT images.

This study can then be divided in two parts based on the input parameters
of the registrations:

1. Optimization of the rigid transformation
— Effect of masking the reference image;
— Effect of ignoring the last level of resolution;
2. Optimization of the deformable transformation
— Effect of the bending energy weight (BE): the bending energy is a penalty
term introduced in the cost function to constrain the transformation to
be smooth.

2T\  (92T\*> [0°T\>
BE = il c - il
///g<ax2> +<ay2> +(322)
2T\  [92T\? [0°T\?
(c%cy) i (5562) " <3y2>
— Effect of the logarithm of the jacobian weight (JL): the logarithm of

the jacobian penalty penalizes large local volume changes and prevents
folding.

+2 2)

IL = % S log (det(V'T)] (3)

— Number of histogram bins used to calculate the joint histogram;

— Effect of thresholding the reference and floating images;

— Maximum number of iterations used;

— Control Point (CP) spacing;

— Effect of masking the reference image;

— Effect that the choice of rigid transformation has on the deformable
registration results;

Registrations were repeated changing the parameters of interest for two clinical
datasets from HN patients.
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3 Results

Rigid only transformations were applied to describe the global motion, as it
is an intra-subject registration. Mask usage in the rigid registration improved
the global alignment results and reduced significantly the computation time.
Ignoring the last level of registration has no visual effect if masks are used,
which reduces the computation time even further. The rigid registrations took
approximately 1 minute to compute.

Fig. 1. Saggital slices of the CBCT, registered image and difference image between
the two. The first column refers to a rigid-only transformation, and the second to the
deformable transformation. Gray areas show where the CBCT and registered image
disagree. Even though the anatomy of the HN in conventionally considered rigid, a
rigid-only registration cannot fully capture all the changes. A rigid registration shows
considerable disagreement in the bone and external contours alignment. Using de-
formable registration the matching is improved. Near the throat there are still discrep-
ancies due to swallowing.

Regarding the deformable registration,

1. Values of BE within the interval [0.01, 0.10] seem to produce acceptable
results. For these two datasets the best visual results are produced by a
narrower range ([0.02, 0.06]). Low values of BE may give good NMI values,
but visually the alignment is incorrect (Fig. 2).

2. In general, using the jacobian penalty term only causes dramatic visual
changes for low values of BE, where folding is more likely to occur. The
introduction of this parameter appears to smooth the effect that other pa-
rameters changes have. Thus values within [0.01, 0.10] seem like a good
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Effect that the BE has on the NV of the deformable registration Effect of JL value in the NMI of the deformable registration in the 2 datasets
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Fig. 2. Decreasing of the NMI value with increasing BE/JL value. Increasing values of

BE and JL overall decrease the similarity measure as the code is built to maximize it
and penalty terms constrain that maximization.

compromise between constrain of the transformation and stopping folding
from occurring.

3. The number of bins used in the joint histogram calculations affects the over-
all results. Unexpectedly, increasing the number of bins does not seem to
increase the computation time but it degrades the final registration. It is
possible that a higher binning value makes the code more sensitive to noise
in the images. Also, CBCT intensity values for the same type of tissue may
vary in different areas of the image so smaller binning intervals may lead to
the same tissue being separated in different bins on different zones of the
image. Considering NMI values and visual assessment, a binning of 64 was
found as acceptable in all tests done.

4. A thresholding may be advisable to remove “padding” values (voxels with
intensities inferior to -1000HU) and to deal with high-intensity artefacts.
The thresholding conducted showed no improvement in image alignment
and computation time. However, since the effect of threshold is similar to
the effect of increasing the binning of the joint histogram, for thresholding
to have a positive effect the choice of binning must be adjusted properly. We
are still to find the best combination of both.

5. Reducing the maximum number of iterations reduces the computation time
by forcing the algorithm to finish before it reaches a convergence value.
Overall it looks like a good compromise to use a maximum of 1000 iterations
at, which limits the maximum computation time to approximately 5 minutes.

6. Good results were achieved when using CP spacing between 5 and 10 voxels.
For lower values it is difficult to sufficiently constrain the registration and
the algorithm looses the capture range of bigger deformations.

7. The choice of rigid registration parameters does have an impact in the fol-
lowing deformable registration. In general initializing the deformable regis-
tration with a better rigid alignment reduces the time spent to reach con-
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Fig. 3. Computation time using different initial rigid alignments.

vergence (Fig. 3). The final resuls are visually similar while overall the NMI
value is slightly improved.

8. Masking the reference image in the deformable transformation reduces the
computation time to 1 minute, but can make the registrations more sensitive
to other parameters.

Combining all these results, overall the deformable registration takes around 1
minute if a mask is used, and up to a maximum of 5 minutes if none is used.

4 Conclusions

The code used is fairly robust as small changes in the parameters do not
cause dramatic changes in the registration results, particularly when the jacobian
penalty term is used. For the parameters investigated there are intervals of values
that give promising results.

For rigid registrations the best results were achieved using a mask and ignor-
ing the last level of resolution. The optimal parameters found for the deformable
registration are: BE=[0.02, 0.06], JL=[0.01, 0.10], a maximum number of 1000
iterations, a binning of 64 for the joint histogram calculation, no thresholding
and a control point spacing between 5 and 10 voxels. Such registrations can take
up to a maximum of 5 minutes to finish; using a mask this time can be reduced
to less than 1 minute.

5 Future Work

On this preliminary work we focused only on two datasets. We will use our
findings on more datasets to narrow this range of parameters to a single value,
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valid for all HN images produced in UCLH. On this next step we will also include
more quantitative analysis of the registration.

Future quantitative checks must assess accuracy, robustness and consistency.
They can include jacobian analysis of the deformation field and calculation of
other similarity measures that are not maximized by the algorithm, such as the
Sum of the Square Distances (SSD). The output of the deformable registration
is a deformation field that relates each point in the CT to the CBCT image.
This information can be used to deform the contours delineated in the CT to
the CBCT space. A quantitative analysis of the registration can be done by com-
paring the automatically generated contours with the ones drawn by a trained
physician (generally considered as gold-standard) by using quantities such as
Dice Similarity Index (DSI), Pearson’s correlation coefficient (CC) [7], Overlap
Index [8] and Distance Transformation (DT).

We will also investigate whether image pre-processing to reduce noise and
enhance contrast can improve the registrations.
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Abstract. In Image-Guided Radiation Therapy of prostate cancer, tBET
scan acquired at each treatment fraction could be used itoadeta cumula-
tive dose distribution thanks to non-rigid registratiorovkéver, this cumulative
dose estimation is highly sensitive to non-rigid registraterrors. For this rea-
son, validation of the registration algorithm with orgaredap measures or visual
assessment is not sufficient. In this paper, we describedhstruiction of a nu-
merical phantom based on a finite element model of the peoatat the neighbor
organs which can be used to assess the non-rigid registratituracy. Prelimi-
nary results show the potential of this phantom to betteratarize registration
algorithms than traditional Dice score.

1 Introduction

Image-Guided Radiation Therapy (IGRT) aims at increadiegprecision of radiation
dose delivery. In the context of prostate cancer, a plan@omgputed Tomography (CT)
image with manually defined prostate and organs at risk (CddRpeations is usually
associated with daily Cone Beam Computed Tomography (CBQIBw-up images.
The CBCT images allow to visualize the prostate positiontan@position the patient
accordingly. The goal of this rigid registration step is toid the prostate being under-
irradiated and subsequently the main OARs (bladder andmgdb be over-irradiated.
However, prostate rigid motion is not the only anatomicalatéoon from fraction to
fraction. Large deformations can occur due to bladder antune filling variations,
leading to a received dose that can differ from the planned Ahany fraction, if dose
criteria are not met, the clinician may decide to replan teatment. To compare the
actually received dose with the prescribed one, non-riggistration is used to estimate
the tissue deformation to be able to compute the dose loaadymulated.

In order to register pelvic CT and CBCT images, some apprembhave been pro-
posed [1, 2], which combine non-rigid registration and segtation in order to propa-
gate CT delineations in the CBCT images. To evaluate theracgwf the registration
algorithms used in this context, the Dice score remains ddelyused criteria, even
if it has been shown [3] that it does not necessarily refleetdbality of the regis-
tration. Indeed, the Dice score measures the overlap bettiveedelineations, which
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in our context are the CBCT delineations and the propagaleddlineations. It only
characterizes the correspondance of the organs, whelisagitessary to evaluate the
local matching of the voxels. Indeed, the radiotherapy iregla precise knowledge of
the local dose accumulation. However, obtaining a referefchis local matching is
very difficult with real images. Another approach is to use Tlarget Registration Er-
ror using pairs of landmarks that are automatically or mipua&fined. But due to the
poor quality of the CBCT images, this is a difficult task, ahd tandmarks are usually
placed on distinctive anatomical marks (e.g bones), whezedgistration quality is not
as crucial as on the considered organs. Recently, new tialidapproaches have been
developed in order to better characterize the quality afteggion algorithms [4]. Our
work is part of the effort made to bring some new evaluati@ctpdures for CT/CBCT
non-rigid registration of pelvic structures.

To do so, a numerical phantom is generated using a biomesdiambdel integrating
the prostate and the OARs (bladder, rectum and seminalleggidhis phantom is
realistic enough to allow non-rigid registration withoubdifying algorithm parameters
that would be used for real subject registration. Moreotres, transformation model
used to generate the numerical organs is different from tfes aisually used in non-
rigid registration, allowing a fair comparison betweerfelié€nt kind of algorithms. Even
if these deformations remain simple, they give some ansregiarding the validity of
the deformation fields estimated during registration.

In the first section, the approach used to generate the ncah@hantom is de-
scribed in detail. Then, some non-rigid registration mdthonder study are explained,
justifying the different components of the scheme. Finallyme preliminary results
are given, which show that the numerical phantom allows sori@thinate more finely
between different registration algorithms.

2 Phantom generation

2.1 Biomechanical model

A finite element model of the prostate and OAR (seminal vesicbladder, rectum)
is used to generate the phantom. It is described using ANS¥SgDbModeler. The
geometry of the anatomical structures is defined by conisigérpical sizes and shapes
derived from patient CT data. They are represented by plidaagfaces from either
B-splines contours of organs (rectum) or by geometricalpsitig of object (prostate,
seminal vesicles, bladder) and then discretized in suifi@mtum, bladder) or volume
(prostate, seminal vesicles) finite elements.

The simulation is set up by considering typical elastic makeroperties for the
tissues (Young modulus, Poisson ratio) derived from [5T6f organs’ wall thickness
and the internal pressures for bladder and rectum are @otdiom [7]. The values
used fo this simulation are provided in table 1. The boundanditions are defined
by fixed supports attached to the extremities of the rectudhtl@ prostate apex, and
elastic support to represent organs surrounding the rediloreover contacts are de-
fined between the different organs of interest. The simutatif organ deformations
is performed by ANSYS Mechanical. Different values of imi@rpressure of rectum
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Table 1. Linear elastic material properties and Walls thickness

Organ Poisson’sratio|Young's modulus (kPa)|Wall thickness (mm)
Bladder 0.49 10 2.9
Rectum 0.45 10 2.28
Prostate 0.4 21

Seminal Vesicles 0.49 10 1

and bladder are applied to deform the structures in a ranggarable with typical
deformations observed on real patient through CT data.

Typical results of this simulation are given in figure 1. Iisthreliminary study, two
different simulated sets of organs are used: one to genei@iephantom, the other to
create a CBCT phantom.

(a) CBCT organs (b) CT organs

Fig. 1. Numerical organs generated using ANSYS. Phantom repessén(a) is used to generate
the CBCT phantom, while (b) is used for the CT.

2.2 CT/CBCT reconstruction

To reconstruct synthetic images, the aim is to integratdfitie= element models of
the different organs in real CT/CBCT images. To do so, twéedint CT/CBCT im-
ages pairs taken from two subjects are considered: the fiestsabject A) receive the
synthetic organs, while the intensities of the second eméject B) are used to fill
these synthetic organs. The choice to use the organs’ itiemnsf a second subject was
guided by technical difficulties encountered while builglthe phantom. For this data,
a clinician manually delineated the prostate and OARs.

Thesubject A is drained from its real organs, using the expert delineatibhen the
goal is to fill it back with the synthetic organs. ThebjectB is used for that purpose.
For the bladder and the prostate, an affine registrationd®ivthe binary images of
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(a) bladder affine registrdb) Filled synthetic bladder
tion

Fig. 2. synthetic CT bladder reconstruction. (a) shows the overktpreen syntethic (pink) and
subject B (blue) bladder after affine registration. The intensitiethe subject B bladder taken
from the original CT are used to fill the synthetic one (b).

subject B and the binary images of the synthetic organs is performbis. dllows to
align the modeled organs with real organs and then to fill yhehetic bladder and
prostate with the textures and pixels intensitiesdfject B.

However, this procedure is not adapted to the rectum andns¢mesicles, due to
the geometrical differences between the synthetic orgathsree ones ofubject B. So
some pixels are randomly selected in théject B organs to fill the synthetic organs.
For the rectum, two regions are differentiated to take irtcoant the gas areas that
often come across with the pelvic images. The same procésladopted for both CT
and CBCT images. An illustration of the synthetic CT bladagronstruction is given
in figure 2.

2.3 Experimental data

Finally, two sets of data are used during the experimentshawn in figure 3: the
numerical CT/CBCT phantom generated as described abogeharubject A, a real
patient, which serves as a reference to assess the relevtieephantom. Two pro-
cedures are considered: a phantom CT to CBCT registratimhaaeal subject CT to
CBCT registration.

3 Registration procedure set-up

An iconic registration scheme, taking into account the grayes of the pixels of the
images to register, is applied. A registration method isallgaefined by i) a similarity
measure, ii) a motion model and iii) an optimization proaedin the experiments, the
elastiX toolbox [8] is used during the registration proces which allows the repro-
ducibility of the results. The Mutual Information (MI) sitarity measure based on Mat-
tes [9, 10] implementation is chosen, since it allows effitimultimodal registration.
Regarding the motion model, the registration procedurévised in two steps: first, a
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(c) Phantom CT (d) Phantom CBCT

Fig. 3. Images used during the tests. (a) Original CT image. (b)i@aldCBCT image. (c) Gen-
erated CT phantom image. (d) Generated CBCT phantom image.

rigid registration to globally align the two images; secpamdon-rigid registration using
a Free-Form Deformation (FFD) model based on B-Splines. [Ifi¢ optimization is

based on the adaptive stochastic gradient descent pracddacribed in [12]. More-
over, a coarse to fine (or pyramidal) approach allows to tegglobal as well as local
motion.

Besides this global scheme, the motion is regularized usinglifferent methods:
(i) a penalty term based on the bending energy of a thin mbh&sdtd11], that insures
the global smoothness of the transformation.

(i) a rigid penalty term [13] on the bones that are extradtgthresholding the original
image. This term forces the bones to deform rigidly durirgyribn-rigid registration.

In the following, the three methods are compar&dl denotes the registration
scheme without regularizatiod/ Iz stands for the registration with a Bending En-
ergy penalty, whileV/ Iz p designates the procedure with a Rigid Penalty on the bones.
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4 Results

The registration experiments are led using exactly the saanameters for both sub-
ject and phantom registration. They are conducted in twpsstiérst, the Dice scores
between the CBCT organs and the propagated CT organs fophatttom and subject
registration is calculated. Then, the measures of locahasibn errors given by the
phantom are provided.

4.1 Dicescore

The evaluation of the registration is made using the Diceestmassess the relevance
of the phantom compared to the real subject. The resultswn oy table 2. Two major
remarks can be made regarding these results.

First, the Dice scores obtained with the subject and the tohaneach similar lev-
els, even if some differences occur: rectum and seminathessiesults are slightly
better with the phantom, while bladder results seem bettéhe real subjects. In fact,
during the phantom’s registration, the drained out orgahg&;h have been refilled with
some random pixels taken from fat and muscles of the sulgjesttirb the registration
procedure.

Nevertheless, the results seem promising. Indeed, regptde different registra-
tion algorithms used, one can see that for both datasetBitieescores improve when
a penalty term is added to the mutual information. On therdtaad, by using only the
Dice score for validation, it is not possible to choose aipaldr penalty term, since the
results obtained wit/ Iz andM I p are relatively close.

Table 2. Dice score obtained for the different organs and registnathethods. The results ob-
tained with the phantom are close from those obtained onubjest. The results obtained after
the rigid regstration step are also given for comparison.

Bladder Prostate Rectum Seminal Vesicles
Phantom|Subject || Phantom|Subj ect ||Phantom|Subj ect||Phantom Subj ect
Rigid | 0.70 0.73 0.67 0.76 0.54 0.58 0.34 0.36
MI 0.76 0.79 0.69 0.75 0.60 0.62 0.36 0.37
MIgg| 0.79 0.89 0.75 0.83 0.69 0.66 0.63 0.41
MIrp| 0.73 0.85 0.91 0.79 0.79 0.66 0.79 0.41

4.2 Local registrationerrors

The numerical phantom gives access to local validationtethat cannot be obtained
from the Dice score. Indeed, one can obtain the registratitor, as a distance in mm,
for each voxel on the surface of the phantom, since we knowthet transformation of
the organs between the 2 images. In table 3 are reported e, ménimum and max-
imum registration error in mm, for each organ and each negish method. While the
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Dice score didn't allow to clearly separatél gz and M I p methods, these new error
measures are very informative. They show the clear supgriofr M Irp compared
to M Igg with a total mean error for all the organs which is almost Bdl{3.76mm
for MIpg against 6.09mm foM Izp). They also confirm that taking into account a
penalty term during registration improves the results.

Table 3. Local registration errors (in mm), for the different orgamsl registration methods. This
demonstrates the superiority df Ir» compared ta\/ I gk .

Bladder |Prostate|Rectum|SV

Mean| 11.58 8.95 6.24 |5.58
MI Min | 0.10 0.12 0.08 | 0.11
Max | 21.42 | 16.73 | 15.36 (11.2

Mean| 11.62 | 4.62 510 |3.02
MIpg| Min | 0.09 0.05 | 0.06 |0.05
Max | 20.32 | 8.30 | 12.52 | 5.16
Mean| 8.19 1.88 272 | 225
MIgp| Min| 0.08 0.01 | 0.02 |0.01
Max | 14.94 | 3.41 6.07 | 3.06

5 Discussion and conclusion

In this paper, we have presented a numerical phantom of thec pstructures for
CT/CBCT image registration evaluation.

This phantom aims to be a complement to the classical DicEiceat which do
not evaluate the local matching of the organs, on whichsé¢hie cumulated dose com-
putation. We showed that this phantom is able to differémtiagistration algorithms
that cannot be characterized with the use of the Dice scoespkcially gives access
to a precious information concerning the deformationsvestiéd during registration.
Indeed, with its use, the local motion of every voxel on théaze of the phantom can
be evaluated precisely.

Regarding the conclusions we can get from the registratiatuation, although the
experiments were performed on a reduced data set, it seaitns tlgistration scheme
including a rigid penalty term on the bones can produce begteilts than the tradition-
nal scheme or the one including a bending energy. This has toilfirmed on a larger
dataset, and this will be the object of our future work. The@uarization terms given
here could also be combined in order to obtain an even beieitr

It would also be important to build a phantom which could lmsel to a real patient,
in order to be able to use affine registration to fill the recamd seminal vesicles. For
that purpose, we plan to generate a patient specific phahtatrwould take into account
the geometrical particularity of each subject.
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Abstract. We have proposed a computerized method for determination of ro-
bust beam directions against patient setup errors using electron density (ED)-
based beam’s eye view (BEV) in hadron particle therapy. The basic idea of our
proposed method was to find the robust beam directions, whose ED-based BEV
image has spatial fluctuations with low special frequency and small amplitude.
The proposed method was applied to four head and neck cancer patients for
evaluation of the proposed method. As a preliminary result, radiation oncolo-
gists agreed with most beam directions, which seem to be robust against patient
setup errors, suggested by the proposed method. Our proposed method could
be feasible to determine the robust beam directions against patient setup errors
in hadron particle therapy.

Keywords: hadron particle therapy, robust beam direction, electron density
(ED)-based beam’s eye view (BEV) image, Fourier analysis

1 Introduction

Proton therapy or heavy ion therapy (carbon ion) has the physical ability to increase
the high dose delivered to tumors while achieving a very low dose to normal tissue
[1,2]. In particular, the highly-ionizing property of the heavy ion charged particles,
i.e., higher linear energy transfer (LET), leads to eventual tumor cell death with high-
er tumor control probability than conventional radiotherapy of X-rays or electrons
from the biological point of view.

In the hadron particle therapy, the distal end shape of dose distribution is modulat-
ed by a passive or active beam shaping method according to beam’s eye view (BEV)
of a 3D electron density (ED) map of a computed tomography (CT) image for each
patient. However, the accurate dose distributions produced by the hadron particles

*E-mail: arimurah@med.kyushu-u.ac.jp

adfa, p. 1, 2011.
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may be very sensitive to patient setup errors [3-9] occurring in a lateral direction or-
thogonal to the beam direction. If the patient setup errors are not taken into account
during the treatment planning, the actual dose distribution that would occur in the
patient during treatment could be strongly degraded compared with the planned dose
distribution. In other words, due to patient setup errors, the distal end of the dose
distribution in a beam direction could not be fitted with that of a tumor shape if the
ED-based BEV in the beam direction changed more abruptly (high frequency fluctua-
tion) with large amplitude fluctuation. This incident could lead to significant tumor
underdose, but fatal overdose in organs at risk.

The goal in this study was to develop a computerized method for determination
of robust beam directions against the patient setup errors based on the ED-based
BEVs in the beam direction in the hadron therapy.

2 Materials and methods

2.1  Overall procedure

The proposed method mainly consisted of the following two steps: (1) production
of a beam’s eye view (BEV) image by projecting a 3D electron density image from a
particle source to a planning target volume (PTV) distal end, (2) determination of
robust beam directions against patient setup errors by using the slope of the power
spectrum.

2.2 Clinical cases

Radiation treatment planning (RTP)-CT (referred to as planning CT) images of
four head and neck cancer patients (ages: 48-85; median: 64.5) who had undergone
conventional x-ray radiotherapy at our institution were selected for determination of
the robust beam directions. All patients were scanned to acquire planning CT images
(pixel size: 0.59 mm x 0.59 mm, depth bits per pixel: 16) using a 4-slice CT scanner
(Mx 8000, Philips, Amsterdam, The Netherlands) with a slice thickness of 3.0 mm.
Contours of clinical target volumes (CTV) of head and neck cancers were manually
outlined by radiation oncologists on the planning CT images using a commercially
available RTP system (Eclipse, Varian Medical Systems Inc., Palo Alto, USA).

2.3  Determination of robust beam directions against patient setup errors by
using the slope of the power spectrum

The fundamental idea of our proposed method was to find the robust beam directions
whose ED-based BEV images had spatial fluctuations with low spatial frequency and
small amplitude. A BEV image was produced by projecting a 3D electron density
image in a beam direction from a particle source to the distal end of a planning target
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volume (PTV). Power spectra of the ED-based BEV images in all directions, i.e., 0 to
355 degrees, with an interval of 5 degrees were calculated for evaluation of the spatial
fluctuations in the ED-based BEV images in a beam direction. We assumed that as
the average spatial frequency and amplitude of the fluctuation in the ED-based BEV
images in a beam direction become lower and smaller, respectively, the absolute val-
ue of the slope of the power spectrum becomes larger. Therefore, the slopes of one-
order polynomial of the power spectra were calculated for determination of the robust
beam directions.

Prior to calculation of the power spectral images, the ED-based BEV images were
preprocessed as follows.  First, the pixel values outside the irradiation field were
assigned the average pixel value of the ED-based BEV inside the simulated irradia-
tion field for decreasing the difference in the pixel value between inside and outside
of the irradiation field. Second, a Gaussian filter was applied to inner and outer nar-
row bands (10 pixels) apart from the edge of the ED-based BEV for reducing the
higher frequency components in the power spectrum, which were not related to the
ED-based BEV. Third, a mean value in the ED-based BEV image was subtracted
from the image to remove the influence of the mean value of the power spectral im-
age.

Fourth, a power spectral image was calculated by using two-dimensional Fourier
transformation from the preprocessed image. The power spectral image in the Carte-
sian coordinate system was converted to the polar coordinate system, which has the
horizontal axis of the angle and the vertical axis of the spatial frequency. The power
spectral image was integrated over a range of angles from 0 to 360 degrees to calcu-
late the slope of an average power spectrum by using the following equation:

G(f)=jj601nP(f,t9)d6’, )

where f is the spatial frequency (mm-1), and 6 is the angle (degree) in the power spec-
tral image. The slope of the average power spectrum was evaluated as the slope of a
one-order polynomial of the power spectrum from 0.0195 mm-1 to a Nyquist fre-
quency, which was calculated by a least square method. The slopes were calculated
in all directions (0 to 355 degrees) with an interval of 5 degrees. Finally, the robust
beam directions against patient setup errors were determined by selecting the direc-
tions corresponding to the several largest gradients of average power spectra for all
beam directions. Figure 1 shows the resulting images in the major steps of the pro-

posed method.
d M

ED-BEV Subtract the average  Power spectral image  Power spectral image in
value from the image polar coordinate system

Fig. 1. Resulting images in the major steps of the proposed method.
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3 Results and discussion

We applied the proposed method to four head and neck cancer cases and detected the
beam directions. Nine beams of 13 beams (69%), which were used for the four pa-
tients in clinical practice, would be theoretically acceptable from the robustness point
of view against the patient setup error. Figure 1 shows an example of the slope of the
average power spectra as a function of beam direction, and the detected beam direc-
tions of 0 to 355 degrees are indicated by blue lines. Figure 2 shows the robust beam
directions determined by the proposed method on three CT slices for a case. Each red
region shows a PTV region, and each light blue region shows the beam path. In this
case, 125, 130, and 135 degrees were considered as the robust beam directions. In a
discussion of the results with radiological oncologists, all the oncologists agreed with
most of the optimum beam directions determined by the proposed method. The sug-
gested beam directions were close to those employed as one of beam directions in
clinical practice.

830

780

Gradient

730 -~

680
0 60 120 180 240 300 360

Beam direction (degree)

Fig. 2. Slope of average power spectral value as a function of the beam direction (0 to 355
degree).
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Slice number: 254/497 Slice number: 273/497 Slice number: 327/497

Fig. 3. Robust beam directions determined by the proposed method on three CT slices for a
case by selecting the directions corresponding to the three largest slopes of average power
spectra for all beam directions.

4 Conclusions

We have proposed a computerized determination of robust beam directions against
patient setup errors based on Fourier analysis of ED-based BEVs in hadron particle
therapy. The proposed method could be useful to select the robust beam directions
against patient setup errors in hadron particle therapy such as carbon ion therapy.
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Abstract. Intensity Modulated Radiotherapy (IMRT) allows delivering of highly
conformal dose to complex targets, implying nevertheless the choice of optimal
constraints for the organs at risk (OAR) with the aim of reducing toxicity. To
estimate the risk of toxicity, current predictive models stand on the dose-volume
histograms (DVH) whose main drawback is the lack of spatial accuracy as they
consider the organs as a whole volume and thus ignore the heterogeneous intra-
organ radio-sensitivity. A framework for finding relationships between local dose
and toxicity is proposed here. In this approach, the planned dose distributions
are registered together on a common coordinate system and compared across a
population at a voxel level, thereby allowing the highlighting of 3D anatomi-
cal patterns which may be in part responsible of toxicity. We demonstrated here
the value of the approach by explaining rectal toxicity in prostate cancer radio-
therapy (PCRT). 116 patients with 31 month median follow-up were considered.
They received a total dose of 80 Gy in the prostate by IMRT. When analyzing
rectal toxicity, significant difference of dose was found in large regions within
the anterior wall close to the prostate (1cm). This promising voxel-wise approach
allowed the highlighting of regions that may be involved in rectal toxicity.

1 Introduction

Radiation therapy (RT) is a commonly prescribed treatment for people diagnosed with
prostate cancer which has proven to be efficient for tumor control. Several strategies
have been recently developed to increase local control, particularly by increasing the
dose of radiation demonstrating a close dose-effect relationship [1,2]. However, in
prostate cancer radiotherapy (PCRT), rectal and urinary toxicity occurrences, that are
frequent with standard prescribed doses (70 Gy), may increase for higher doses. With
the precision of the accelerators steadily growing (ARC-Therapy, cyberknife), the pos-
sibilities for achieving better control by increasing the dose are available but at the
expense of the risk of toxicity if efficient adaptive plannings allowing the inclusion of
accurate predictive models are not devised.

The prediction of complications as a consequence of the irradiation has been largely
treated in the literature [3] [4]. These predictions are commonly based on the planned
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dose distribution using the dose-volume histograms (DVH) [5] within radiobiological
Normal Tissue Complication Probability (NTCP) models [6,7,8]. NTCP models were
proposed in the early 1980s to estimate the risk of toxicity, based on the dose distribu-
tion and the irradiated volume of the structures at risk. Different studies have shown a
correlation between dose, volume and rectal toxicity [9,10,11,12,13,14]. However, cur-
rent DVH-based models for prediction of toxicity exhibit many limitations. Firstly, they
do not implicitly integrate individual’s specificities (such as the medical history, ...) and
concomitant treatments (chemotherapy, androgen deprivation), which may differ across
a population. Secondly, they lack spatial accuracy since they are not able to correlate
the treatment outcome with spatial patterns of dose thereby considering homogeneous
radiosensitive organs. Indeed, the subtle correlation that may exist between local dose
and toxicity may not be detected if the rich three-dimensional dose distribution is re-
duced and represented as a DVH. The waste may be even worse when the DVH is
reduced to a single value such as the effective dose (D) or the Equivalent Uniform
Dose (EUD), which has also proved to be correlated with the risk of toxicity [15,14].
A tri-dimensional cartography depicting sub-regions presenting higher risk of damage
will help to define more accurate organ constraints in terms of local dose.

The notion of spatiality and local dose related with toxicity has been raised in pre-
vious works [16] either with a parametric description of the dose distribution [17] [18]
or within a voxel-based approach [19] however very approximative in terms of both
anatomical matching and therefore dose mapping. In this particular work we are ad-
dressing the question of producing a 3D cartography (a set of parameters &(z), x €
3D), which may explain the local dose-toxicity relationships from a voxel-based popu-
lation analysis. The framework as depicted in fig 1 lies on non-rigid registration.

The particularity here is to take full advantage of the 3D dose distributions thereby
explaining toxicity at a local level through voxel-wise comparisons. We use a non-rigid
registration strategy which allows the inter-individual mapping of doses in a single coor-
dinate system. This approach advantageously exploits information available at the plan-
ning, namely the 3D anatomical data, 3D organ delineations and TPS planned doses. It
stands on a non-rigid registration scheme which combines organs delineations with CT
scans in order to achieve a better organ matching across all the individuals.

Clinical follow up

3D
Population-based
Model

Non-rigid
registration

Anatomical Data
Dose(x)

Fig. 1. 3D population-based approach. It includes inter-individual non-rigid registration for dose
mapping before population comparisons.
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2 Materials and Methods

The main steps of the method are depicted in figure 2. i) The inter-individual CT and
contour delineations are non-rigidly registered towards a single template (common co-
ordinate system), ii) the planned doses distributions are mapped towards the template by
applying the computed transformations and iii) a voxel-wise comparison of the mapped
doses is performed in the common coordinate system (in this work, two sampled t-
tests). The output is a 3D map highlighting voxels where the differences are significant
between two groups.

2.1 Data

116 individuals treated for prostate cancer with IMRT and a three-year follow-up were
selected. The patients underwent a planning CT scan before the treatment. The size of
the images in the axial plane was 512*512 pixels with 1 mm resolution 2-mm thick
slices. For each patient, the bladder, rectum, prostate and seminal vesicles (SV) were
manually contoured by the same expert. For each patient, the prescribed dose was com-
puted in a standard Treatment Planning System (TPS) step and then resampled into the
CT native space. The patients received a total dose of 80 Gy in the prostate. 2nd year-
rectal toxicity was included in the analysis using the SOMALENT classification and
bleeding scoring (at least 1 episode).

2.2 Registration

In order for the voxel-wise comparisons to be meaningful in terms of dose-effect rela-
tionships, anatomical correspondences across the population were previously computed
through non-rigid registrations and dose mappings of all individuals towards a single
template.

Native Coordinate Systems :Common Coordinate system

planning CT

Voxel-wise
comparisons

Registered Mapped
anatomy doses

Fig. 2. Dose mapping using a non-rigid registration (NRR) approach.
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Registering inter-individual CTs is particularly challenging because of the poor soft-
tissue contrast, the large inter-individual variability and the filling differences of the
bladder and the rectum [20]. In this context, it has been shown that a pure intensity-
based registration is not accurate as required in population analysis and may lead to
local errors [21]. If all the complementary knowledge about the individuals’ anatomy
is used, the performance of the registration would considerably improve. To this end,
we developed an organ-driven non-rigid registration strategy which yields an accurate
matching between organs in the common coordinate system (CS). In this study, the
template was selected as a representative individual.

Native CS

B2 o

Common CS

‘W‘ l CT-Scar | l
delineations| b . S
s i |
0% NN 9O J
& 1 - ;
PR T T g e

| NDmaPs | ‘ - 1
Lo ; :
i i i
Eoq el
| k. 1 s |
; ybria CT-DMAP |/ Hybria CT-NDMAP|

NRR )T

Fig. 3. Hybrid Non-rigid registration (NRR) approach bringing 3D doses from their native Co-
ordinate System (CS) towards the Common CS. After organ delineation, Normalized Distance
Maps (NDMAPS) are computed and combined with the CT scan to be registered. The result is
the transformation used to fartherly map the dose.

The methodology exploits both the CT scans and the organ delineations as depicted
in fig. 3. Thus, normalized Distance Maps (NDMAPS) for each of manually-segmented
organs (prostate, bladder and rectum) were obtained as follows: For each individual’s
organ, i) an euclidean distance map was computed, ii) the distance maps of both the indi-
vidual and the template were multiplied by the maximum distance of the template’s and
the individual’s maps, respectively. Those maps replaced the corresponding individual’s
organs within the CT scan yielding a new hybrid image where the organs appear clearly
defined. Finally, the diffeomorphic demons algorithm [22] was applied to register those
images towards the template.

2.3 Voxel-based Analysis

According to predefined inclusion criteria, comparisons between non-toxic individuals
and individuals with different toxicity scores were performed. For each comparison,
two-sampled t-tests at a voxel-basis, produced 3D maps for both the dose differences
and the p-values. Voxels where the differences were significant between the groups (p-
values < 0.01) were characterized in terms of: absolute volume, mean dose difference
and their localization in the rectum, namely the distance of the region to the prostate
and the seminal vesicles surfaces as shown in Fig 3.
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3 Validation and Results

3.1 Registration

To assess the quality of the registration, the Dice Similarity Coefficient defined as
DSC =2 (%) was computed between each individual’s registered rectum and
the corresponding organ in the common coordinate system. 30 individuals were ran-
domly selected from the data base and leave-one-out cross validation was performed
thereby obtaining averaged DSC. Results were compared with different intensity regis-
tration strategies [23,24,22]as illustrated in Fig. 4 illustrates the results.
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Fig. 4. Dice score comparisons between different intensity-based registration strategies and the
hybrid approach used in this paper. The different strategies result from a combination of Rigid,
Affine [23], Free Form Deformation (FFD) [24] and Demons [22] non-rigid registration.

Considering the whole population (116 patients), the median dice score was 0.75
£0.12 for the rectum and 0.92 +0.13 for the bladder. Fig. 5 depicts an example of
the dose mapping from the native coordinate system to the common coordinate sys-
tem (template) through the different steps of this method.(fig. 5(a)), individual’s CT,
(fig. 5(b)) manual segmentations on the template (fig. 5(c)) individual’s planned dose
distribution and (fig. 5(d)) mapped dose distributions in the template CS.

3.2 Voxel-based comparisons

The statistical analysis was conducted only on the properly registered patients (Dice
score > 0.7), leading to the inclusion of 74 patients for the rectal toxicity analysis.
Median follow-up was 31 months (6 to 64). Grade 1 and 2 rectal acute toxicity rates
were 26% and 4% respectively. Two year rectal toxicity (> grade 2) and bleeding rates
were: 9% (95% CI: 3-14) and 20% (95% CI: 12-27). As shown in table 1 significant
differences of dose were found in large regions. More than 90% of them were within
the first 1cm (anterior wall). These results suggest that rectal bleeding is more related
with higher dose in regions close to the prostate. The more sensitive area seems to be
between 10 and 15mm. fig. 6
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(b) Template

80 Gy

(d) Individual’s dose  (e) Dose warped to the template

Fig.5. 3D Dose mapping through an organ-driven non-rigid registration methodology. (a) A
typical individual’s CT; (b) Manually Segmented organs on the template; (c) Individual’s TPS
planned dose in the native CS; (d) Dose mapped to the template CS.

Significant (p<0.01) voxel characteristics| Rectal Bleeding |Grade 2 rectal toxicity

voxel characteristics (2 years) (2years)
Absolute Volume(mm3) 1555.07 (4.45%)| 2913.02 (8.33%)
Dose Difference 8.06 10.16

Distribution (%) of the voxels|5mm 16.026.35Gy  |48.87[10.33Gy
by the distance of the voxel |10mm 96.65|7.98Gy  |94.27|10.21Gy
from the prostate 15mm 99.65|8.05Gy  |94.64|10.22Gy
and the seminal vesicles 20mm 100 |8.06Gy |94.64|10.22Gy
30mm 100 [8.06Gy [94.64]10.22Gy
Table 1. voxel-wise comparison: characterization in terms of absolute volume, mean dose dif-
ference and localization in the rectum, defined as the distance to the prostate and the seminal
vesicles surfaces.

4 Discussion and conclusion

We proposed in this paper a methodological framework based on non-rigid registration
aimed at determining the local dose-effect relationship in PCRT, thereby helping to
unravel the heterogeneous intra-organ radio-sensitivity to predict toxicity. Further work
considers the inclusion of individuals clinical variables that may also be involved in
toxicity (age, concomitant treatments, etc). Another issue to take into account is the
differences between the planned and delivered doses, as during the treatment the organs
at risk may deform or displace with respect to the initial conditions at the planning step.

To a large extent, determining the heterogeneous intra-organ sensitivity across a
population, combined with patient-specific information in an inverse IMRT planning
will allow to produce a personalized treatment with high local control and reduced tox-
icity. This general framework may be extended in order to adapt the ongoing treatment
and thereby take into account not only data from a model but also integrate the dynamic
individual’s specificities (i.e. tumour response, anatomical modifications) as depicted
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(@ (b)

Fig. 6. Results of voxel-wise analysis in the template: regions where the difference in dose are
significant (p-values < 0.01) for rectal bleeding at 2 years (a) and rectal toxicity at 2 years (b).

in fig. 7. In this framework for adaptive radiotherapy, the set of parametres @ extracted
from population data may be then combined with the individual’s parameters ¢, (t),
which may change during the treatment (¢) in order to adapt the therapy.
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Po;gjl;‘:ltlon Eredicine %) Adaptive Personalized
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Data

« Clinical

« Biological

+ Imaging (CT, CBCT, MRI, PET, histology, ...)
« Dose(x)

+ Grading (Tox/Failure)

Fig. 7. General Adaptive Inverse Planning considering population data and dynamic individual’s
specificities (¢, (t)=anatomical modifications, tumor response).
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Abstract. In high dose rate brachytherapy, needles are inserted into
soft tissue and subsequently radioactive sources are used to deliver a
high dose inside the target region. While this approach can achieve a
steep dose gradient and offers a focused, organ sparing treatment, it
also requires a careful positioning of the needles with respect to the
tissue. We have previously proposed to use an optical fiber embedded in
the needle to detect soft tissue deformation. To validate the approach,
we have developed an experimental setup to compare the actual needle
motion with the motion estimated via the fiber. Our results show a good
agreement between actual and estimated motion, indicating that optical
deformation detection through the needle is possible.

1 Introduction

In high dose rate (HDR) brachytherapy, needles are inserted into soft tissue and
subsequently radioactive sources are used to deliver a high dose inside the target
region. On the one hand, this approach can achieve a steep dose gradient and
offers a focused, organ sparing treatment. On the other hand, it also requires a
careful positioning of the needles with respect to the tissue, as the dose is highest
in the direct proximity of the sources [1-3].

Different methods including gridlike templates and robotic needle drivers
have been proposed for needle placement. One issue is the soft tissue deforma-
tion resulting from the insertion force [4]. One approach is modeling the needle
tissue interaction [5], or to study the resulting force [6]. Clearly, image guidance
can also help identifying tissue motion. However, sophisticated modalities like
magnetic resonance imaging (MRI) are typically not available in brachytherapy
settings. Moreover, imaging can be subject to artifacts caused be the needles,
e.g., phantom echoes in ultrasound images.

We have previously proposed to embed an optical fiber into a brachytherapy
needle to allow for optical coherence tomography (OCT) along the needle path
[7]. Moreover, we have studied the feasibility of using Doppler data acquired
through the needler to estimate the relative motion between needle tip and soft
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tissue [8]. However, the actual validation of the approach requires measuring the
tissue deformation caused by the needle. We present a phantom setup to measure
the deformation and to compare the motion estimated from the Doppler data
with the measurements.

2 Material and Methods

Optical coherence tomography (OCT) is an interferometric approach that can
penetrate up to 3mm into tissue, resulting in images with a depth resolution of
better than 10 ym. While the images represent different scattering properties in
the probe, OCT it can also be used to obtain Doppler data [9]. As the phase
shift between subsequent A-scans is proportional to the relative velocity between
fiber tip and scatter source, integrating over the velocities yields an estimate of
the relative motion of the needle with respect to the tissue.

We use a bevel point tipped needle with an embedded optical fiber (Figure
la) connected to an OCT-System (Callisto, Thorlabs) with a 1200 Hz A-scan
rate. An industrial robot (Adept Viper s850) with a positioning accuracy of
30pm is used to move the needle along its axis. Tissue motion is monitored
using a Logitech Pro 9000 camera using the vcapg2-plugin for Matlab [10]. The
camera’s sensitivity was adapted to provide good contrast between needle and
phantom structures.

(a) (b)

Fig. 1: On the left the modified needle with the embedded fiber is shown (a). On
the right an image of the relative motion profiles for different depth accumulated
over one second of needle motion (b).

For our experiments we used phantoms made of gelatine. To obtain sufficient
scattering, 7902 powder was added. However, typically gelatine shows little fric-
tion and hence little deformation after the initial penetration of the surface. To
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induce and detect deformations we added layers of colored gelatine with a differ-
ent stiffness, such that the needle tip and the layers are well visible in the camera
images. The robot was configured to continuously move the needle with a speed
of approximately 0.05 mm/s while OCT and camera images were recorded with
1200Hz and 30 Hz, respectively. In a post-processing step, the camera images
with maximum deformation of the gelatine layer were identified and the related
time stamp defined the end point of the motion trace. The deformation was then
estimated from the camera image by taking the needle as a reference, and the
relative motion estimated by the OCT as well as the actual robot motion were
determined from the recorded data.

As the OCT Doppler data can be considered as one-dimensional depth pro-
files of the relative velocity v,..; between tissue and needle tip, we need to decide
in which depth to measure the motion. To this end we compute the accumulated
motion for all depth and a windows of 1s. Figure 1b shows the resulting motion
profiles, which generally show a maximum approximately 300 pixels or 1 mm
from the needle tip.

3 Results

Figures 2a and 2b show the deformation caused by the needle. The horizontal
layer is gelatine with a higher stiffness, leading to the distinct deformation,

(a) (b)

Fig.2: The left image shows the situation before the needle moved into the
colored gelatine layer visible as a black horizontal bar (a). The right image
illustrates the maximum deformation of the layer, this defines the endpoint for
the measurements (b). The distance between the lower boundary of the layer in
(a) and the needle tip in (b) is measured as an estimate for the deformation, it
is approximately 3.28 mm.
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Fig. 3: An overview of the OCT A-scans at different time steps / needle positions,
from left to right.
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Fig. 4: The left plot shows the velocity of material in front of the needle over time
/ needle position (a). The right plot shows the corresponding motion estimate

(b).

which is approximately 3.28 mm in this case. In Figure 3 the OCT data recorded
during the needle motion is summarized. Note that each column in the image
corresponds to an A-scan showing the real part of the signal, i.e., the left hand
side represents the situation before entering the layer and the last column on the
left corresponds to the A-scan in the situation shown in Figure 2b. A careful look
at the image reveals that there is a brighter region that gradually gets smaller
on the left, indicating some compression.

The actual velocity of material in front of the needle and the resulting es-
timate of the relative motion are presented in Figures 4a and 4b, respectively.
Note that the total motion through the gelatine is estimated as approximately
4.78 mm. The robot moved 8.16 mm while deformation of 3.28 mm and the esti-
mated motion add to 8.06 mm

4 Discussion

Our experiments are preliminary in that they need to be repeated and the deter-
mination of the deformation from the images should be automated. Moreover,
the scattering and absorption in actual tissue may affect ability to detection of
motion in sufficient depth, where the smaller SNR typically leads to an under-
estimation of the Doppler signal [11].
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However, the results still provide further indication that a precise estimation
of the needle tip motion relative to soft tissue is possible using OCT Doppler
data. Such information would be valuable when placing needles for brachyther-
apy or biopsies, where proper placement of the needle with respect to soft tissue
is important. The methods is not affected by artifacts from other needles and the
high sampling rate allows for real-time control, e.g., of robotic needle drivers.
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Abstract The goal of this study was to develop a computer-assisted treatment
planning system for the stereotactic body radiation therapy (SBRT) based on
several similar cases in a radiation treatment planning (RTP) database. Similar
cases were automatically selected based on image features from the radiation
treatment planning point of view. The beam angles were determined by regis-
tration of similar cases to an objective case with respect to lung regions using a
linear registration technique. We applied the proposed method to 10 test cases
by using an RTP database of 81 cases with lung cancer. As a result, the pro-
posed method suggested usable beam arrangements, which might be equivalent
to manual beam arrangements of cases in the RTP database. Therefore, the pro-
posed method could be feasible for automated determination of beam arrange-
ments in SBRT.

Keywords: Radiotherapy treatment planning, Similar treatment plans, Beam ar-
rangement, Image features.

1 Introduction

With the recent advancement of radiation treatment technique, e.g., stereotactic
body radiation therapy (SBRT), it has become possible to concentrate very large
doses of radiation to tumors, and minimize the doses to surrounding organs by using
multiple beams with coplanar and non-coplanar directions [1-3]. Therefore, it is very
important to determine the appropriate beam arrangement for the successful imple-
mentation of the SBRT. However, a process of treatment planning for SBRT is labo-
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rious and dependent on an experience of a treatment planner. The treatment planner
makes tradeoff decision between the benefit to a tumor and the risk to the surrounding
normal tissues. This is traditionally handled by comparison of several treatment plans
developed in a time consuming iterative manner. We address this problem by sugges-
tion of treatment plans, which are automatically determined based on similar cases to
each patient in a database including plans designed by senior experienced treatment
planners.

The usefulness of similar cases in the field of radiation oncology has been shown
in some papers. Commowick et al. used a most similar image in a database for the
segmentation of critical structures [4]. Chanyavanich et al. developed new prostate
intensity modulated radiation therapy plans based on a most similar case [5]. Howev-
er, we assumed a most similar case could not necessarily be a most usable case for the
treatment planning. The goal of this study is to develop a computer-assisted treatment
planning system for SBRT based on several similar cases in a radiation treatment
planning (RTP) database. In this paper, we aim to evaluate beam arrangements, which
are determined based on 1st to 5Sth most similar cases to each patient in the RTP data-
base.

2 Methods

2.1 Clinical cases

We built a RTP database including 81 cases (47 males and 34 females) and a test
dataset of 10 cases (9 males and a female) with lung cancer who received SBRT.
These patients were scanned by using a 4-slice computed tomography (CT) scanner
(Mx 8000; Philips, Amsterdam, The Netherlands) with a slice thickness of 2.0 - 5.0
mm, and a pixel size of 0.78 - 0.98 mm. Treatment planning was performed by expe-
rienced radiation oncologists on a commercially available RTP system (Eclipse ver-
sion 6.5 and 8.1; Varian Medical Systems Inc., Palo Alto, USA). Seven to eight
beams with coplanar and non-coplanar directions were arranged depending on each
patient. All patients received a prescribed dose of 48 Gy at the isocenter in 4 fractions.

2.2 Selection of similar cases

Similar cases to an objective case should be defined from the treatment planning point
of view. In the proposed method, the five most similar cases to the objective case
were automatically selected in the RTP database by defining the weighted Euclidean
distance of image feature vectors between the objective case and each case in the RTP
database. The weighted Euclidean distance djyqg, Which is considered a similarity
measure, was calculated by:

(1
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where G is the number of image features, w; is the weight of the i-th image feature, o;
is the i-th image feature for the objective case, and f; is the i-th image feature for each
case in the RTP database. In this study, we defined four types of image features, i.e.,
planning target volume (PTV) location, PTV shape, lung size, and spinal cord posi-
tional features. The weights of image features were considered as the importance of
image features in terms of the treatment planning. We gave a large weight to the spi-
nal cord positional features for reducing extra dose to the spinal cord. The weights for
the PTV location, PTV shape, lung size, and spinal cord positional features were set
as 0.3, 0.1, 0.3, and 1.0, respectively.

2.3 Determination of beam arrangements using an affine transformation

The beam angles of the objective case were determined by registration of similar
cases to the objective case with respect to lung regions using the following linear
registration technique, i.e., affine transformation [6]:

P Uy, Uy Uz Uy p
!
q || U Uy Uy Uy q
0= 2
r Uy Uz Uz Uy ro,
1 O 0 O 1 1

where the transformation parameters u;;...u;; were determined based on feature
points. First, the affine transformation matrix to register the lung regions of each simi-
lar case with that of the objective case was calculated based on two feature points,
which were automatically selected for the registration in vertices of the circumscribed
parallelepiped of lung regions. Second, a beam direction based on a gantry angle 0
and couch angle ¢ was converted from a spherical polar coordinate system to a Carte-
sian coordinate system as unit direction vector (p, g, r) as follows:

p sinfcos @
q |= —cosf 3)
r sinfsin @

Third, each beam direction vector of the similar case in the Cartesian coordinate sys-
tem was modified by using the same affine transformation matrix of equation (2) as a
registration with respect to lung regions. Finally, the resulting direction vector (p’, ¢,
r’) in the Cartesian coordinate system was transformed into the spherical polar coor-
dinate system as gantry angle 6’ and couch angle ¢ as follows:
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In this step, five beam arrangements were determined based on the five most similar
cases.

3 Evaluation Methodology

The proposed method was evaluated by comparing eight planning evaluation indi-
ces between an objective original plan based on the manual beam arrangement and the
five plans based on the five most similar cases to the objective case. Moreover, the
five plans obtained from the proposed method were sorted based on an RTP evalua-
tion measure with eight planning evaluation indices, which was the Euclidean dis-
tance in a feature space between each plan and an ideal plan. In this study, the ideal
plan was assumed to produce a uniform irradiation with a prescription dose in the
PTV and no irradiation to the surrounding organs and tissues. The usefulness of each
plan was estimated by the following Euclidean distance d,, of the planning evalua-
tion vector between the ideal plan and each plan determined by a similar plan:

(6)

where N is the number of planning evaluation indices, a;is the j-th planning evalua-
tion index for the ideal plan, and ; is the j-th planning evaluation index for the plan
based on the five most similar plans obtained by the proposed method. Note that each
planning evaluation index was divided by standard deviation of all cases in RTP data-
base for normalizing the range of each index. The eight evaluation indices were the
D95, homogeneity index (HI), conformity index (CI) for the PTV, V5, V10, V20,
mean dose for the lung, and maximum dose for the spinal cord, whose values for the
ideal plan were set to 48 Gy (prescription dose), 1.0, 1.0, 0%, 0%, 0%, 0 Gy, and 0
Gy, respectively.

The planning evaluation indices for the PTV calculated in this study were the D95,
HI, and CI. The D95 was defined as a minimum dose in the PTV that encompasses at
least 95% of the PTV. The HI was calculated as the ratio of the maximum dose to the
minimum dose in the PTV [7]. The CI represented a degree of conformity, defined as
the ratio of the treated volume to the PTV. The treated volume is defined as the tissue
volume that is intended to receive at least the selected dose and that is specified by the
radiation oncologist as being appropriate to achieve the purpose of the treatment[8].
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In this study, the treated volume was defined as the volume receiving the minimum
target dose.

The planning evaluation indices for normal tissues, i.e., the lung and spinal cord,
were calculated as described below. For the lung volume, which was defined as total
lung volume minus PTV, a V5, V10, V20, and mean dose were calculated. The Vx
was defined as a percentage of the total lung minus PTV receiving > x Gy. The max-
imum dose of the spinal cord was also calculated.

4 Results and Discussion

Figure 1 shows dose distributions obtained from (a) an original beam arrangement
of an objective case, (b) beam arrangement based on the most similar case, and (c) the
most usable beam arrangement based on the 4th most similar case. The value of HI,
CI, and spinal cord maximum dose were 1.10, 1.65, and 5.37 Gy, respectively, for the
original beam arrangement (Figure 1a). On the other hand, they were 1.13, 1.84, and
6.16 Gy, respectively, for the beam arrangement based on the most similar case (Fig-
ure 1b). And also, they were 1.08, 1.58, and 4.90 Gy, respectively, for the most usable
beam arrangement (Figure 1c). Therefore, the most usable plan has better conformity
to the tumor and better sparing of the spinal cord compared with the beam arrange-
ments based on original and also the most similar case.

Table 1 shows the planning evaluation indices obtained from the dose distributions
produced by original beam arrangements, beam arrangements based on the most simi-
lar case, and beam arrangements of the most usable plan determined by the RTP eval-
uation measure. In terms of the homogeneity index and conformity index, there were
statistically significant differences between the original beam arrangements and beam
arrangements based on the most similar case (P < 0.05). On the other hand, there
were no statistically significant differences between the original beam arrangements
and the most usable beam arrangements (P > 0.05) in all planning evaluation indices.
Therefore, the most usable beam arrangement could be feasible compared with the
beam arrangement based on the most similar case.
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Fig. 1. Dose distributions obtained from (a) an original beam arrangement, (b) beam arrange-
ment based on the most similar case, and (c) the most usable beam arrangement.

Table 1. Average planning evaluation indices in ten test cases obtained from the dose distribu-
tions produced by original beam arrangements, beam arrangements based on the most similar
case, and beam arrangements of the most usable plan determined by the RTP evaluation mea-
sure.

Beam arrangement = Beam arrangement

Original beam based on the most  of the most usable

arrangement ..
similar case plan

PTV

D95 (Gy) 45.5+£0.47 454+ 0.61 458 £0.62

Homogeneity index 1.13+0.03 1.15+0.04 1.13+0.04

Conformity index 1.70 £ 0.15 1.80 £ 0.18 1.74 £0.18
Lung

V5 (%) 16.0 = 6.30 15.7+5.04 14.4£4.98

V10 (%) 9.96 £4.52 9.54+3.35 9.10 +3.08

V20 (%) 398 +1.46 4.16 £ 1.40 4.06 +£1.29

Mean dose (Gy) 3.03+£1.11 3.04£0.94 2.90 +£0.93
Spinal cord

Maximum dose (Gy) 6.13 £3.62 5.19+4.94 8.21+7.23

5 Conclusions

We have developed a computer-assisted determination of the usable beam ar-
rangement from similar treatment plans in SBRT. Furthermore, we have studied the
feasibility of beam arrangements, which are determined based on 1st to 5th most simi-
lar cases to each patient in the RTP database. As a result, the proposed method may
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provide usable beam arrangements, which have no statistically significant differences
with the original beam directions (P > 0.05). Therefore, the proposed method can
assist radiation treatment planners in determination of beam arrangements in SBRT.
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Abstract. Open-source software provides an economic benefit by re-
ducing duplicated development effort, and advances science knowledge
by fostering a culture of reproducible experimentation. This paper de-
scribes recent advances in the plastimatch open software suite, which
implements a broad set of useful tools for research and practice in radio-
therapy and medical imaging. The focus of this paper is to highlight re-
cent advancements, including 2D-3D registration, GPU-accelerated mu-
tual information, analytic regularization of B-spline registration, auto-
matic 3D feature detection and feature matching, and radiotherapy plan
evaluation tools.

Keywords: Open source software, medical imaging, software engineer-
ing, radiotherapy.

1 Introduction

The fields of medical imaging and radiotherapy use sophisticated software to
achieve advanced medical results. Commercial software is generally closed source,
which makes it difficult to use for research, and often lacks the flexibility to
communicate with complementary software from other vendors. This gap in
functionality is properly filled by open-source solutions, which are well suited for
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research. This paper describes the plastimatch software suite for radiotherapy
image processing [1]. Plastimatch is open-source software, distributed under a
BSD-style license. The focus of plastimatch is on high-performance algorithms for
medical image computing, and on flexible radiotherapy utilities. Using standard
interchange formats such as DICOM and DICOM-RT, plastimatch can be easily
used together with other open source tools, including CERR [13], Conquest
DICOM |[2], ImageJ [3], VV [23], and 3D Slicer [4].

2 Background and History

The origin of the plastimatch project was a collection of image processing soft-
ware written to support medical physics research. The first utility, DRR genera-
tion, was written in 2003. Shortly thereafter, deformable image registration was
developed using the Insight Segmentation and Registration Toolkit (ITK) [5],
and cone-beam CT reconstruction using the Feldkamp, Davis and Kress (FDK)
algorithm [14].

In an attempt to overcome the long computation times of ITK’s deformable
registration algorithms, we began exploring GPU accelerated algorithms in 2006.
The first algorithms targeted were FDK filtered backprojection and demons de-
formable registration [30]. At the time, CUDA was not yet mature, and therefore
these algorithms were deployed using the BrookGPU compiler and runtime li-
brary [9]. Working together with our institutional lawyers, we released the first
open source version of the GPU Imaging Toolkit (GPUIT) in early 2007. Later
in 2007, the GPUIT registration routines were consolidated with the ITK regis-
tration routines to create the plastimatch project.

Table 1: Summary of plastimatch algorithms for 3D image registration.
Registration Algorithm |[ITK SC MC GPU
Translation
Rigid
Affine
Demons
B-spline (MSE,MI)
Viscous Fluid
Thin-plate spline
Wendland, Gaussian Spline v

ANENENENEN
NEN

\
NENEN

\

In 2008, a native implementation of B-spline registration was designed to
replace the ITK implementation, and the FDK reconstruction code was ported
from BrookGPU to CUDA. In 2009, we added GPU accelerated B-spline regis-
tration [24], landmark-based interactive registration, and DICOM-RT. This year
also saw the first usable user interfaces, as command-line programs launched from
3D Slicer and Aqualizer. In 2010, we considerably improved the landmark-based
registration by offering three different algorithms: thin-plate spline, Wendland
radial basis spline, and regularized Gaussian spline. The first GPU accelerated
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mutual information algorithm was released this year, together with OpenCL ac-
celeration, and dose volume histogram (DVH) computation capabilities. In 2011,
we released Reg23, a full-featured 2D-3D registration algorithm, capable of au-
tomatic registration using five different cost functions, interactive initialization,
and programmable pre-processing and post-processing. Analytic regularization
of B-spline registration was also introduced, as was automatic feature detection
and matching using the scale-invariant feature transform (SIFT) algorithm.

3 Overview of Plastimatch

Traditionally, plastimatch has been conceived and developed as an end-user ap-
plication, rather than as a library or toolkit. The standard method of using
plastimatch is on the command line, with configuration files and command line
options. A typical invocation would be to specify a command, such as register,
together with the necessary input files, configuration files, and options. A list of
supported commands are shown in the usage screen:

$ plastimatch --help
plastimatch version 1.5.11-beta (3583M)
Usage: plastimatch command [options]

Commands :
add adjust average crop compare
compose convert diff dvh £ill
header mask probe register resample
scale segment stats synth synth-vf
thumbnail warp xf-convert

3.1 Automatic 3D-3D Registration

Plastimatch uses a multi-stage, multi-algorithm framework for automatic image
registration. Only pairwise registration is supported. In the initialization stage,
the images are loaded, together with any image masks or initial transforma-
tions. The framework runs a fixed sequence of registration stages, as directed
by a parameter file. Each registration stage specifies the image resolution (for
multi-resolution registration), the transform and metric to be optimized, and
the optimization algorithm and parameters. If desired output files can be spec-
ified at each stage for saving intermediate results. A typical sequence of stages
might include a single rigid alignment stage, followed by two to four deformable
registration stages with increasing resolution and decreasing grid spacings.

Table 1 lists the summary of algorithms included in plastimatch, which in-
cludes six different core registration methods. Depending on the registration
method, you can choose one of four implementations: ITK, single core (SC),
multi-core (MC), or GPU. The six registration algorithms can operate on eight
different transform types: six ITK transforms and two native transforms. At the
end of each stage, the optimal transform is propagated to the next stage, and
automatically converted to a new transform type by the plastimatch application
framework.
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Fig. 1: Interactive registration is used to warp the MRI of a 6-month old infant
onto the CT of the same patient at age 2. The initial registration properly
matches the skull, but features within the brain are not properly aligned (left).
Landmarks are placed (center), which improve the registration (right).

3.2 Cone-beam CT and Digitally Reconstructed Radiographs

A cone-beam CT reconstruction application is provided which implements fil-
tered back projection using the Feldkamp, Davis and Kress (FDK) algorithm.
Input images in either raw, pfm, or hnd format are read, filtered, and backpro-
jected into a user defined volume geometry. Images in raw or pfm format must
be accompanied by a geometry specification file, whereas files in the Varian hnd
format use the geometry specified by the file header. Ramp filtering is performed
on the CPU using the FEFTW library [16], while backprojection is performed on
either CPU or GPU. The plastimatch DRR generator implements three variants
of the Siddon ray tracing method [26]. The fastest and most popular method uses
the original exact pathlength method based on the intersection of rays with the
image voxels. In addition, two voxel interpolation methods are included, which
can be used to increase the apparent resolution of the DRR construction. Both
multi-core and GPU versions are available.

3.3 Interactive (Landmark-based) Image Registration

While automatic registration yields acceptable results in many cases, we are often
confronted with difficult registration problems where automatic registration fails.
For this purpose, plastimatch includes two manual registration tools: a global
landmark-based tool based on thin plate splines, and a tool based on radial
basis functions (RBF) which allows us to make local registrations by adjusting
the RBF support .

The global tool is implemented as an ITK wrapper, takes a list of corre-
sponding points in 3D, and generates a complete vector that interpolates all of
the input landmarks. This method requires a minimum of six landmarks, which
are used to find a global affine transform superimposed with a minimum energy
deformation field [8]. The global landmark registration results can be used as a
standalone method, or to initialize the automatic registration. In contrast, the
RBF tool is a native warper, and does not perform global rigid or affine mapping.
Instead, it uses a small number of landmark pairs to correct failed deformable
registration results. The algorithm utilizes two types of radial basis functions,

111



Wendland function with finite support [7,15] and non-truncated Gausian func-
tion [6,25]. In both cases, a deformation is found by solving a system of linear
equations which is computationally very efficient as compared with algorithms
based on complex multidimensional minimization. In addition, Gaussian RBF
have a distinct feature with respect to regularization, because the regularized
vector field can be solved exactly with a simple equation. An independent reg-
ularization parameter is defined to control the balance between the fidelity of
the alignment of landmark pairs, and the smoothness of the deformation field.
An example of this idea is shown in Fig. 1, where the failed registration (left),
is corrected using two pairs of landmarks (center, right).

3.4 2D-3D Registration

The Reg23 module of plastimatch along with the oraifutils-sublibrary enables
rigid registration of a 3D volumetric image (e.g. a computed tomography) with
an essentially arbitrary number of projective 2D images (e.g. X-rays). The trans-
formation parameters (3 rotations, 3 translations) are iteratively optimized with
respect to a cost function which assesses the similarity between the X-rays and
on-the-fly DRRs computed from the volume. Uniform ray-casting DRR compu-
tation is implemented on the GPU using the openGL shading language (GLSL).
Beside of selected similarity metrics (normalized mutual information, normalized
cross correlation, gradient difference, mean reciprocal square difference) derived
from ITK, stochastic rank correlation [27] is a further configurable cost function.
All input images can be configured to be pre-processed prior to registration in-
cluding resampling, rescaling, cropping and unsharp masking. Downhill simplex
(AMOEBA) and 141 evolutionary algorithms are available for optimization. In
order to restrict similarity evaluation to a certain region of interest (ROI) in the
X-rays, a so-called auto-masking module is available [22]. Based on RT structure
sets which are typically generated in the pre-planning stage, an entity-specific
heuristic is configurable which allows logical combination, dilation/erosion and
projection of structures onto the X-ray planes which produces binary mask im-
ages that constrain metric evaluation. For example, in the case of pelvis registra-
tion, this mechanism enables automatic determination of ROIs that exclude the
femora which are prone to move relatively over the treatment course [22,28,29].
Fig. 2 gives a schematic overview of the main components using the example of
dual 2D/3D pelvis registration.

In addition to the core algorithm offering the mentioned capabilities, a Qt-
based general user interface (GUI) is provided as shown in Fig. 2. The GUI
enables the user to monitor the registration process, and simultaneously to in-
fluence registration by mouse interactions (translation, rotation, registration ini-
tialization). The overall program is configurable via a simple ASCII-based file
in order to enable easy integration with other applications such as recordverify-
systems. Moreover, utilizing this mechanism batch processing is achievable where
the registration results are stored in output files. Current work aims at providing
more convenient means for setting up the imaging geometry, extending the port-
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Fig.2: (left) Schematic overview of Reg23 components and their interconnec-
tions. (right) Reg23 GUI showing colored overlays of X-rays and DRRs. The
ROI generated by the auto-masking module is shown as a blue contour. Regis-
tration parameters are displayed in the control panel on the right.

folio of available DRR algorithms and implementing appearance-model-based
2D /3D registration.

3.5 Automatic Feature Detection and Matching

Several algorithms have been developed to perform automatic landmarks ex-
traction and matching, with the goal of increasing the accuracy of detection
and decreasing the cost in terms of time. First operators for the automatic ex-
traction of points have examined an image at a single scale, thus limiting the
accuracy and stability of feature detection. Scale Invariant Features Transform
(SIFT) is a method that provides extraction and matching of stable and promi-
nent points at different scales between two images. The algorithm supported by
Plastimatch was derived from Cheung and Hamarneh [11] and implemented in
C-++ using the Insight Toolkit (ITK) [5]. This method takes in inputs two 3D
(isotropic or anisotropic) images and generates lists containing stable landmarks
for each image as well as feature matches between the two images. The output
files (.fcsv) contain landmarks in physical coordinates that can be used with 3D
Slicer Fiducial module [4]. Figure 1 shows examples of successful individuation
of corresponding features in the original (left) and synthetic (right) image of
a phantom (RANDO phantom, The Phantom Laboratories, Salem, NY). The
synthetic image is obtained by applying rigid and non-rigid transformations to
the phantom.

3.6 Data Interchange

Plastimatch supports a wide variety of file input types for data interchange.
Using ITK wrappers, most image formats are supported, including DICOM,
Analyze, Metaimage, and NRRD. In addition, partial support exists for DICOM-
RT, XiO, and RTOG formats. Plastimatch is capable of rasterizing DICOM-RT
structure sets into images, as well as converting images back into DICOM-RT
structure sets. In addition, a utility is provided for attaching existing DICOM-
RT structure sets onto arbitrary DICOM series.
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(a) Translation 6mm (b) Rotation 5 degrees  (c) Non-rigid transform
Fig. 3: Successful examples of successful corresponding features detection (red
codes) in the original (right) and synthetic (left) image of RANDO phan-
tom. Rigid Transforms: (a) Translation [6 mm] in right-left, anterior-posterior,
superior-inferior directions and (b) Rotation [5] in superior-inferior direction.
Non-rigid transform: (¢) maximum deformation of 15.42, 5.72, 4.16 mm in right-
left, anterior-posterior, superior-inferior directions, respectively.

3.7 User Interface

While a native user interface is supported by Reg23, the plastimatch module
offers a user interface only as a plugin for Aqualizer [21] and 3D Slicer [4]. Aqual-
izer is a specialized research software for four-dimensional treatment planning.
Deformable image registration is used to map radiation dose from all breathing
phases onto a reference phase, and accumulate the time-averaged dose. 3D Slicer
is a general purpose research software for medical image computing. Plastimatch
plugins are available for automatic registration, landmark-based registration, and
DICOM-RT import.

4 Future Directions

4.1 Embedded Scripting

Plastimatch 1.6 features a new Lua-based embedded scripting engine that allows
users to construct custom workflows quickly and easily with minimal program-
ming experience. Images, transforms, and core plastimatch algorithms are ex-
posed through the scripting interface as simple abstract objects, which the user
can use to design an image processing pipeline specific to their particular applica-
tion. Fig. 4 demonstrates the usage of image, registration, and transform objects
to construct a 4D registration workflow in just 17 lines, excluding comments. For
users who need more flexibility and dynamic control, the scripting engine can
be ran in interactive mode. In this mode, the user is provided with a command
driven interface similar to MATLAB where they may navigate the filesystem,
use all available objects to operate on their data, run pre-written scripts, and
preview resulting images using an integrated slice viewer before writing them to
disk.

4.2 Viscous Fluid Registration

The viscous fluid model [12] for registration assumes that the deformation is gov-
erned by the Navier-Stokes equation of viscous fluid motion. This approach takes
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-- load breathing phase 3 as the reference image for each pair-wise registration
reference_phase = Image.load ("data/phase_03.mha")

registration = Register.load ("data/stages.txt"

registration.fixed = reference_phase

-- define remaining phases in a phase array

phases = {
{ image = "data/phase_0l.mha", warp = "output/warp Ol.mha", xf = “output/xform 0l.mha” },
{ image = "data/phase_02.mha", warp = "output/warp_02.mha", xf = “output/xform 02.mha” },
{ image = "data/phase_04.mha", warp = "output/warp 04.mha", xf = “output/xform 04.mha” },
{ image = "data/phase_ 05.mha", warp = "output/warp 05.mha", xf = “output/xform 05.mha” }

}

-- loop through every input/output pair “p” in our phases array
for _,p in pairs(phases) do
-- load the phase and use as moving image for pair-wise registration
destination_phase = Image.load (p.image);
registration.moving = destination_phase
-- perform the registration and save the transform
xf = r:go()
-- warp the destination phase and save outputs
warp = destination_phase + xf
warp:save (p.warp);
xf:save (p.xf)
end

Fig.4: The new scripting system uses a familiar object-oriented approach to
provide users with direct access to core Plastimatch algorithms. This allows for
rapid design of custom workflows, such as the 4D registration workflow shown
here.

into account the physical model of tissue motion to regularize the deformation
fields, thus able to handle larger deformation compared with optical flow [17]
and elastic models [10]. A similarity measure is first established to quantify how
close two image volumes are to each other according to some chosen metric. For
multimodal registration, mutual information (MI) is a popular choice. Recently
a new measure is proposed by Lou et al. [18], called Bhattacharyya distance
(BD). It can avoid the instability issues that are present in MI. Next the defor-
mation that maximizes this similarity is computed by solving a N-S equation, in
which the force field that drives the deformation in an appropriate direction is
parallel to the gradient of the chosen similarity measure. The optimal solution
is iteratively updated by convolving the force field with a Gaussian filter as an
approximation. Moreover a multi-resolution scheme is used to increase the speed
and robustness. We implement the viscous fluid model with either MI or BD as
the similarity measure on the GPU [19]. It takes 6 seconds to register two images
of size 256x256x60 for 50 iterations using three multi-resolution levels.

4.3 Deformable Image Registration in CERR

While it is possible to use plastimatch with CERR via DICOM-RT file exchange,
this method is somewhat time consuming and complicated for end-users. Dur-
ing 2012, we intend to supply an interface for using plastimatch directly from
within CERR. The first stage of development will define a file-based method
for exchanging images, doses, and structure sets; thereby enabling dose warp-
ing, dose accumulation, structure set warping, and automatic contouring. This
interface will provide storage of the B-spline coefficients or dense vector fields
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for further external processing. Second stage development will investigate batch
processing methods and memory-based data exchange.

4.4 Multi Atlas-based Segmentation

Plastimatch will soon be adding support for
multi-atlas-based segmentation, which aims
to automatically delineate structure bound-
aries for an unlabeled target CT scan. Pro-
vided an atlas consisting of CT scans from
other patients with the relevant structure la-
beled, each CT scan in the atlas is registered
to the unlabeled target scan and the resulting
transform is applied to each of the labeled at-
las structures. This results in the labels from
each of the atlas scans being mapped into
the space of the target as shown in Fig. 5. To
distill these multiple delineations into a sin-
gle label for the target, a vote is conducted
for each target scan voxel to determine if it is
within the structure. With this label fusion,
multi-atlas-based segmentation can delineate
each relevant structure in the target CT.

5 Software Engineering

As of June 2012, plastimatch comprises
163,000 lines of cross-platform code, and
makes heavy use of the external libraries:
ITK, VTK, Qt, DCMTK, FFTW, CUDA,
and SQLite. Platform specific build configu-
rations are managed using CMake [20], which
accepts a build description language and generates a sane build environment spe-
cific to the available external libraries and compiler features. The absence of a
library results in reduced functionality; for example, if CUDA is not installed
plastimatch will still build but CUDA-accelerated implementations will be un-
available. The plastimatch philosophy is that external libraries are optional.

Software version control and defect tracking are managed through a custom
web-enabled install of GForge Advanced Server. Source code and documentation
are disseminated though a subversion repository, which allows anonymous access.
As a measure to maintain and improve software quality, the CTest system is used
to perform automated software testing. Test cases are included with the software
distribution and can be executed using the CMake generated build environment.
Prior to committing changes, developers execute a battery of tests to ensure
that functionality has not regressed. Additionally, automatic regression testing
is performed nightly across various build configurations.

Fig. 5: Multi-atlas based segmen-
tation uses voting to combine
multiple registration results into
a best contour for a structure.
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6 Licensing

The plastimatch software is licensed under a BSD license for Reg23, and a custom
BSD-style license for plastimatch. These licenses specifically allows royalty-free
non-exclusive license to use, modify, and redistribute our software. The primary
restrictions on licensing are that (1) attribution and copyright notices be re-
tained, (2) modified versions must be clearly marked, and (3) names, logos,
and trademarks of our institutions are not used for promotion. Our software is
provided AS IS, without warranty. The custom license clearly states that the
software has been designed for research purposes only, and that clinical appli-
cations are neither recommended nor advised. A complete copy of the license is
available on-line [1].
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Abstract. Purpose: Interest in adaptive radiation therapy research is constantly
growing. The available software tools are usually tied to expensive proprietary
applications. Although there are free open-source software applications and al-
gorithms to solve particular problems of radiation therapy (RT) research, each
of these standalone tools is limited to a specific purpose, development environ-
ment, and input/output data formats. To address these limitations, we propose
SlicerRT, a customizable, free, open-source RT research toolkit.

Methods: SlicerRT is an open-source extension for the widely used 3D Slicer
platform. SlicerRT provides functionality specifically designed for RT research,
in addition to the powerful tools that 3D Slicer offers for visualization, registra-
tion, segmentation, and data management. The feature set of SlicerRT was de-
fined through consensus discussions among a large pool of RT researchers, in-
cluding both radiation oncologists and medical physicists. The development
processes used were similar to those of 3D Slicer, which ensure traceability and
professional quality of the resulting software and its distribution and user sup-
port mechanisms.

Results: Modules have been created for importing and loading DICOM-RT da-
ta, computing and displaying dose volume histograms for anatomical structures,
creating accumulated dose volumes and isodose surfaces, and comparing dose
volumes. Testing environment was set up to automatically test the modules for
regression and against results of other applications.

Conclusions: An open-source software platform has been created and tested to
support RT research. SlicerRT aspires to be an open-source toolkit for RT re-
search, providing fast computations and convenient workflows for researchers.
It is a medium into which RT researchers can integrate their methods and algo-
rithms, and conduct comparative testing. SlicerRT also provides a general im-
age-guided therapy infrastructure to assist clinical translation of experimental
therapeutic approaches.

Keywords: Radiation therapy, treatment planning, 3D Slicer, DICOM-RT
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User interface prototyping to understand
radiology thinking
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Abstract Recent technological solutions for image-guidedapes focus on re-
placing the cognitive processes of physicians. Henethere is a lack of
knowledge in the field of cognitive ergonomics netjiag radiology image
thinking, such as image interpretation and 3D retidg. This paper addresses
the need of studying mental models in this contélxe goal is to be able to de-
sign better user interfaces for advanced technoddgplutions which match the
cognitive processes of physicians. The usefulnéssnploying a prototype in
the early phases of development is shown througlextample of oblique view
interpretation. Recommendations are given how irgerface prototyping can
be used to study mental models.

1 Introduction

Radiotherapy and interventional radiology procedurequire the physician, the
physicist, or technician to read a set of 2D ramjglimages (e.g. Computed Tomo-
graphy (CT) or Magnetic Resonance Imaging (MRI)mder to plan, perform and
evaluate a treatment. These 2D images represeBDtlamatomy of the patient, which
has to be mentally reconstructed and manipulatextdar to make decisions for cer-
tain steps of a treatment, such as planning thectay of an ablation needle or a
radiation beam. 3D reconstructions may provide @egd 3D understanding of the
scanned body part, but these images do not pralétiled anatomical information
for the planned treatment. Furthermore, interactiotihh 3D images is restricted to
basic operations, such as rotation and zooming.

Many research and technological solutions focusemfacing the cognitive proc-
esses of the physician with computationally sugggbstisualizations, simulations and
decision making, for example, segmented tumorsemssels are shown to support
spatial orientation and navigation, or images a&gistered to exploit the combined
information coming from multiple sources (e.g. where modality clearly visualizes
the tumor and the other can be used for real-tiavégation) [1].

The current research was conducted as a prepafatianarger project to develop
a new interface for 3D ultrasound image guidanoegdration of registered CT or
MRI was considered as possible future technologyadhieve smooth integration of
new technologies in the interventional scene, teldgical developments are sup-
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ported by designing novel user interface solutighggdying cognitive ergonomics, as
well as workflow redesign.

However, there is actually little knowledge abowguitive ergonomics in this
field, such as how physicians can interpret aneraut with segmentation overlays on
radiology images or how they can interpret and geatei based on new forms of im-
ages. The main undiscovered areas for example antairmodels of anatomy, men-
tal manipulations of anatomy, spatial orientatiangd navigation using radiology im-
ages. In order to be able to develop efficient 2Digation support, a better under-
standing of cognitive ergonomics related issueiessary.

The investigation addresses the need for undeiisijgmdental models of physi-
cians in order to develop user interfaces whickhir thinking processes. While it is
a general problem regarding radiology image thigkin this paper this need is pre-
sented through the example of interventional radjpl The form of mental models
and their manipulations are hard to reveal, becéusg are not directly available to
the outsider [2] and it is difficult for people &xternalize and verbalize mental mod-
els and processes. This paper reports on expesiémaeesing an interactive prototype
to study cognitive processes of physicians in #idyephases of development and for
iterative improvement, as opposed to only usingpt@otype to test usability. The
difference between these two approaches will bdaged in subsequent sections.
Finally, recommendations will be made on the progsrof the prototype which are
crucial in order to obtain the expected results.

2 Mental models and manipulations

In general, mental models are internal represemisitof external reality, such as
objects, situations or working principles of a syst[3]. In medical image usage it
includes aspects such as anatomy, physiologicaepses (e.g., temperature changes
because of blood flow), etc. In the current phaseuo research, we restrict the usage
of the term to represent spatial mental modelsuofidn anatomy as perceived, inter-
preted and mentally constructed based on 2D ragijolmages. As the physician
scrolls through a series of radiology images angkpkes the anatomy from different
viewpoints, (s)he constructs a 3D mental modeismfind.

Radiology images are usually taken from predefingdvpoints which are or-
thogonal to the human body. Anatomy drawings faining, as well as CT/MRI
scans show orthogonal cross-sections of the hunodly. brhese are the reference
images the physician can fully interpret, tha{$3he is able to maintain spatial orien-
tation, locate structures and identify structurasea on their contours. They are also
the images based on which a physician can construnental model of anatomy.
Images taken in oblique orientations are genemdilifcult to interpret and are not
trusted Manipulation of the mental model is necessary durimedical image usage

[4].
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In order to achieve successful 3D navigation, thgsjzian needs to maintain spa-
tial orientation, that is, to be able to corredtigntify anatomical locations in the
human body and to understand the spatial relatipagf surrounding organs or tis-
sues [5]. The navigational goal of the physiciartasguide the needle or a beam
through a trajectory that is safe for the patignatoiding vital structures, and to end
in the target position, e.g. in a tumor.

3 M ethods and materials

31 Approach

Cognitive processes of physicians were studieds fieans attaining insight into
the (tacit) knowledge of physicians which is buifi from natural human capacities,
combined with trained skills and experience in pcac Furthermore, specific under-
standing of cognitive strategies of manipulating Bbdels of the patient's anatomy
in the mind. The aim was to come up with theorétmadels of 3D navigation and
mental manipulations and to use in the design d€hiag user interface solutions.

3.2 Methods

The following methods were used for studying memaidels: ethnography, ex-
plorative studies with the prototype, comparingutessto vision science (in-depth
literature study) and proposing a theory, and adilich of theory by interviewing
doctors. These methods are presented through ampéx@n Section 4.2.

3.3 Materials

The current version of the prototype includes a Ipemof hardware and software
elements. The elements were chosen to accommdaat®gnitive ergonomics inves-
tigation, and also to support following developmphases, such as usability testing.

» Visual Studio 2005 was used as programming enviemirand the code was writ-
tenin C++,

» To visualize objects from different viewpoints C8ih was used for 3D graphics
(www.coin3d.org).This was needed to attain suffitiBdelity regarding response
to motor control of tools, essential for understagdmental model coupling to
hand motions.

» For rapid user interface development and to deflexible user interfaces Qt
(http://gt.nokia.com/products) was used. This isracial property: user feedback
should lead to quick and substantial changes in inserface, i.e., doable in one
evening for next round testing with significantlyamged interface.

» Coin3D and Qt was integrated using the SoQt libsari

» For handling volumetric data SIMVoleon was appligD. data are needed in radi-
ology prototyping as mental models and navigatien3 in nature.
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» For easy integration of the user interface VirtiR@ality Peripheral Network
(VRPN) (http://www.cs.unc.edu/Research/vrpn/) wasdi

» Motion tracking was used to provide real-time visiggedback about the tracked
instrument: Ascension’s Flock of Birds device (hftpww.ascension-tech.com/).

» To create a volume out of a series of axial CTeslithat is usable by SIMVoleon a
Matlab (http://www.mathworks.com/) script was emyad.

4 Results

4.1  Prototyperoles
According to our experiences, using an interagpinaotype is useful for:

» Explorative studies: Novel interactions, as they may be imagined m fihal de-
sign, can be explored. Putting the user in a rgatal situation, and by providing
multiple solutions at the same time, the futurer use explore which solutions are
the most efficient.

» Workflow studies: When interacting with the prototype and explagnimhat users
are doing and thinking, it is easier for the engim® understand the clinical work-
flow. Users tend to recall previous cases whichfcaimer deepen this knowledge.
Difficult situations and similarities to other pextures are also explained.

* Mental model studies: Observations combined with thinking aloud aneiviews
are general methods for mental model understanditogvever, observations in
themselves are useless for the observer withogp{ddinical knowledge to make
assumptions about physical and cognitive actiortefphysician, due to the mini-
mally invasive nature of the procedures in whidffiailt imaging modalities and
subtle hand movements are applied. Concentratirngeitreatment, physicians are
only able to provide a very limited amount of infation during the procedure.
Deep interviews may bring up knowledge about teattent, but this knowledge
is mainly procedural. The physician recalls thecpdure and explains the experi-
enced difficulties, but being disconnected from i@l situation, this method is in-
efficient to study psychomotor actions. Having ameiactive prototype which
simulates the real situation provides a relaxed ¥aythe physicians (without
harming the patient) to express themselves andhtoresearcher to ask specific
questions. Reactions often bring up issues abatileg and experience.

e Communication: Inefficient communication and misunderstandings aighly
limiting factors in multidisciplinary projects. Digssions over an interactive proto-
type are useful to communicate ideas to the fuamé user and to correct for
wrong assumptions in early phases of design. Bssidemmunication of other
team members, such as industrial designers, comgcitntists and imaging spe-
cialists becomes easier as well.

» Experiencing interaction: By actually experiencing the interaction (e.@rpling a
needle trajectory or adjusting the needle to ttenméd trajectory with real-time
visual feedback), the user does not need to imalgawe an interaction concept
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would work in reality. Furthermore, also the nonelical researcher can experi-
ence the interaction, and can have a feel of tlysipian’s work.

» Co-design and idea generation: Try-outs of the prototype naturally bring up im-
provement possibilities as well as new ideas.

4.2  Example: oblique sliceinter pretation

A prototype was designed to test some new useraictien concepts using CT data-
sets for two interventional radiology tasks: (1pkenating needle trajectories and (2)
following a planned trajectory. The following ing&tions were available:

» Traditional orthogonal views (axial, sagittal, coat)

* Views related to the needle: slices that are odhafto the needle (needle-dot
view: looking from the point of view of the needl@nd slices which contain the
entire needle line (needle-line view: rotation ardthe needle)

» A preoperatively planned needle trajectory in &hws

» Real-time feedback about the current position efrteedle (as a needle line)

» Arbitrary control of CT images while observing thédnom different viewpoints
(selection of any obligue slice)

» A volumetric view containing the dataset (as a kléorm), the planned needle
trajectory, as well as real-time feedback of thecked needle and the clipping
plane (which defines the oblique plane). This vigas designed for spatial orien-
tation, not for visualizing 3D organs.

Before the test, we had sorassumptions regarding the two alternative ways of as-

sessing critical tissues and trajectories:

» The needle-dot view is useful to check all obligliees perpendicular to the nee-
dle in order to see where the needle intersectbdblg and to decide whether it is a
good trajectory or not. The idea is to look frone thoint of view of the needle,
from the skin to the tip of the needle inside tloely (or the other way around),
slice by slice, having a view on the needle trajgcand its close surroundings.

» The needle-line view clearly shows the route ofribedle having the entire needle
trajectory in view that can be inspected from diéfg angles.

The goal was to know how the novel interactions are useglysicians and what

kind of information they provide and add to thereut situation.

The reactions of the physicians were ambiguous. Although theidéhaving better

ways to evaluate the needle trajectory was appesLighe oblique views were not

used or not trusted, because:

« It conflicts with the cognitive strategies of thadiologist: they learn to look at
images which are orthogonal to the body. In genehal axial view is enough to
build a 3D mental model, and other orthogonal viens used to better localize
structures.

* In the oblique slices structures are distorted dasipared to orthogonal slices
which are the reference images for physicians),raakles interpretation (identify-
ing contours for organ localization, shape undediteg and estimating distances)
and spatial orientation difficult.
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As a positive mental model related example, it barmentioned that the use of the
tracked needle was highly appreciated. It was ugedtively, and its movement was
immediately understood in relation to the dataadbém phantom was used to repre-
sent the human body). Reportedly, this kind of gation resembled needle naviga-
tion in the real clinical situation. It was alsovesd to use as a training tool to learn
spatial orientation.
Interestingly, the needle-dot view was useful fdjuating the needle line to the
planned trajectory. As it was said, it is similaranother procedure in which the X-
ray beam is set orthogonal to the needle. Thisiexample when user-system inter-
action meets user experiences.
After the test, we wanted to knowhat the reasons arefor the difficulty of interpret-
ing oblique views.
» From physicians, we learned that they conflict vitle mental model of radiolo-
gists.
« According to vision science literature [6], selagtian oblique slice is not an obvi-
ous task and cannot be imagined as a cutting aperdt is probably done through
a set of mental rotations. Unfortunately, mentahtions have not been studied in
this context.
Findings of vision science led tonew assumption: interpretation is easier when an
orthogonal slice is rotated to an oblique slice. &l&» learned that radiologists work
with spatial references (e.g. they always use presvineedle insertion attempts for
new trials (left, right, 1 cm further, etc.)). Ahetr possible solution could be a well-
designed spatial reference system or spatial meferknks, which improve interpreta-
tion of oblique slices.
Our findings werevalidated by physicians through interviews who confirmed the
difficulty of oblique slice interpretation and alsonfirmed the need of oblique slices
by giving clinical examples. Actually, some doctdesselop their own strategies to be
able to work with oblique slices, while others tiseir old strategies.

5 Discussion

5.1 5.1 Prototype recommendations

Development started on an experimental low-costaieh platform that facilitate
requirements analysis, and exploration, commurdnaéind clarification of ideas by
enabling fast changes in the software. Besides thesrecommend to take care of
three important properties of the prototype: intéxaty, flexibility, and fidelity.

Interactivity We experienced that prototypes facilitating theigiegprocess of
navigational systems of radiology images have tinteractive due to the constantly
changing environment that cannot be captured inef@mple, a paper prototype.
Interactive prototypes enable exploring both phalsémd cognitive aspects of human-
computer interaction while providing a realistitusition [7]. An interactive prototype
is necessary because of the complexity of intevacfThis way, the practitioner does
not need to image how the proposed system would,wehich reduces misunder-
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standings and allow the researcher to focus omstiied problems. Other investiga-
tions also revealed the necessity of working pyqes in this context [8].

Flexibility Flexibility was an important factor of the experimi& prototype. It
was beneficial that the number, size and layoutnt#rface elements were easily
changeable to represent certain functionalitiespexific part of the treatment or spe-
cific user groups.

Fidelity To gain initial insight into the cognitive processef physicians in early
phases of research, it was crucial to provide théth a high-fidelity prototype on
certain dimensions [9]. Mental model navigationtire mind is coupled to motor
movements of the hand and to image guidance fekdimaevell. These dimensions
therefore had to be high-fidelity. Considering otlkéteria the prototype could re-
main low-fidelity, e.g., in the first test a foanhgntom was used; that was good
enough. Also functionality was intentionally kept a low-level of fidelity; there was
no focus on overall system usability. Functionesitare gradually built into the proto-
type as our knowledge grows.

52  Mental model studiesvs. usability testing

Table 1 presents the difference between using thtype for usability testing
and mental model studies in terms of goals, figelitd expected results.

1 Mental model studies vs. usability testing

Method Goals Fidelity Results
Usability testing « Performance (e.g. Mixed-fidelity: fidelity Errors and improvement|
(prototype testing in time) requirements (as al- possibilities;
clinic or lab) « Accuracy (e.g. numbef ways) depend on the To some extent learning
of mistakes) research target. E.g., if| about user reasoning and

« Recall (e.g. remem- | accuracy is measured, | behavior
bering after a period | registration has to be
of time) perfect. In usability

- Satisfaction (e.g. testing there are prede-

confidence, stress, fined targets defining
enjoyment, visual ap-{ Which part should have

peal) high fidelity gnd which
« Cognitive limits (e.g. do not lneed it, or would

number of menu even distract.

items)
Mental mode studies | Understanding of cogni{ Mixed-fidelity (for the Models of radiology
(prototype explora- tive processes (e.g. same reasons). In the | thinking:
tions — combined with | image interpretation) current study: » models of radiology
ethnography and « Low fidelity: func- image interpretation
vision literature study) tionality was re- » models of 3D radiol-

stricted ogy havigation

« High-fidelity: visuali-
zations and interac-
tions resembled the
clinical situation
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6 Conclusion and futurewor k

We have proposed to study mental models of physidia be able to design better
user interfaces for novel technological solutiddefortunately, there is little knowl-
edge about modeling of radiology thinking in liten@. From our prototype studies it
was learned that mental models of engineers mégrdibm mental models of physi-
cians, which can lead to communication problemstarideffective user interfaces of
new products. Although an example was presenten ffe field of interventional
radiology, the problem is also valid for other diglof radiology image interpretation
and navigation, such as radiotherapy. Using low;dogeractive and flexible proto-
types from the very early phases of developmeatuseful method for studying men-
tal models of physicians, as well as to resolve momication and design problems.
Next steps in our research will be: next iterativental model research, requirement
analysis, idea finding usability testing and clalievaluation.
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