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Stabilization of a delayed quantum system:

the photon box case-study∗

Hadis Amini † Mazyar Mirrahimi‡ Pierre Rouchon§

Abstract

We study a feedback scheme to stabilize an arbitrary photon number state in a mi-
crowave cavity. The quantum non-demolition measurement of the cavity state allows a
non-deterministic preparation of Fock states. Here, by the mean of a controlled field
injection, we desire to make this preparation process deterministic. The system evolves
through a discrete-time Markov process and we design the feedback law applying Lya-
punov techniques. Also, in our feedback design we take into account an unavoidable pure
delay and we compensate it by a stochastic version of a Smith predictor. After illustrat-
ing the efficiency of the proposed feedback law through simulations, we provide a rigorous
proof of the global stability of the closed-loop system based on tools from stochastic sta-
bility analysis. A brief study of the Lyapunov exponents of the linearized system around
the target state gives a strong indication of the robustness of the method.

1 Introduction

In the aim of achieving a robust processing of quantum information, one of the main tasks is
to prepare and to protect various quantum states. Through the last 15 years, the application
of quantum feedback paradigms has been investigated by many physicists [21, 19, 5, 10, 16]
as a possible solution for this robust preparation. However, most (if not all) of these efforts
have remained at a theoretical level and have not been able to be give rise to successful
experiments. This is essentially due to the necessity of simulating, in parallel to the system,
a quantum filter [1] providing an estimate of the state of the system based on the historic
of quantum jumps induced by the measurement process. Indeed, it is, in general, difficult
to perform such simulations in real time. In this paper, we consider a prototype of physical
systems, the photon-box, where we actually have the time to perform these computations in
real time (see [6] for a detailed description of this cavity quantum electrodynamics system).

Taking into account the measurement-induced quantum projection postulate, the most
practical measurement protocols in the aim of feedback control are the quantum non-demolition
(QND) measurements [2, 18, 20]. These are the measurements which preserve the value of
the measured observable. Indeed, by considering a well-designed QND measurement process
where the quantum state to be prepared is an eigenstate of the measurement operator, the
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measurement process, not only, is not an obstacle for the state preparation but can even help
by adding some controllability.

In [4, 9, 8] QND measures are exploited to detect and/or produce highly non-classical
states of light trapped in a super-conducting cavity (see [11, chapter 5] for a description of
such QED systems and [3] for detailed physical models with QND measures of light using
atoms). For such experimental setups, we detail and analyze here a feedback scheme that
stabilizes the cavity field towards any photon-number states (Fock states). Such states are
strongly non-classical since their photon numbers are perfectly defined. The control corre-
sponds to a coherent light-pulse injected inside the cavity between atom passages. The overall
structure of the proposed feedback scheme is inspired by [7] using a quantum adaptation of
the observer/controller structure widely used for classical systems (see, e.g., [12, chapter 4]).
As the measurement-induced quantum jumps and the controlled field injection happen in
a discrete-in-time manner, the observer part of the proposed feedback scheme consists in a
discrete-time quantum filter. Indeed, the discreteness of the measurement process provides
us a first prototype of quantum systems where we, actually, have enough time to perform the
quantum filtering and to compute the measurement-based feedback law to be applied as the
controller.

From a mathematical modeling point of view, the quantum filter evolves through a
discrete-time Markov chain. The estimated state is used in a state-feedback, based on a
Lyapunov design. Indeed, by considering a natural candidate for the Lyapunov function, we
propose a feedback law which ensures the decrease of its expectation over the Markov process.
Therefore, the value of the considered Lyapunov function over the Markov chain defines a
super-martingale. The convergence analysis of the closed-loop system is, therefore, based on
some rather classical tools from stochastic stability analysis [13].

One of the particular features of the system considered in this paper corresponds to a
non-negligible delay in the feedback process. In fact, in the experimental setup considered
through this paper, we have to take into account a delay of d steps between the measurement
process and the feedback injection. Indeed, there are, constantly, d atoms flying between the
photon box (the cavity) to be controlled and the atom-detector (typically d = 5). Therefore,
in our feedback design, we do not have access to the measurement results for the d last atoms.
Through this paper, we propose an adaptation of the quantum filter, based on a stochastic
version of the Smith predictor [17], which takes into account this delay by predicting the
actual state of the system without having access to the result of d last detections.

In the next section, we describe briefly the physical system and the associated quantum
Monte-Carlo model. In Section 3, we consider the dynamics of the open-loop system. We
will prove, through theorem 1 that the QND measurement process, without any additional
controlled injection, allows a non-deterministic preparation of the Fock states. Indeed, we will
see that the associated Markov chain converges, necessarily, towards a Fock state and that
the probability of converging towards a fixed Fock state is given by its population over the
initial state. Also, through proposition 1, we will show that the linearized open-loop system
around a fixed Fock state admits strictly negative Lyapunov exponents (see Appendix B for
a definition of the Lyapunov exponent).

In Section 4, we propose a Lyapunov-based feedback design allowing to stabilize globally
the delayed closed-loop system around a desired Fock state. The theorem 2 proves the almost
sure convergence of the trajectories of the closed-loop system towards the target Fock state.
Also, through proposition 2, we will prove that the linearized closed-loop system around the
target Fock state admits strictly negative Lyapunov exponents.
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Finally in Section 5, we propose a brief discussion on the considered quantum filter and
by proving a rather general separation principle (theorem 3), we will show a semi-global
robustness with respect to the knowledge of the initial state of the system. Also, through
a brief analysis of the linearized system-observer around the target Fock state and applying
the propositions 1 and 2, we show that its largest Lyapunov exponent is also strictly negative
(proposition 3).

A preliminary version of this paper without delay has appeared as a conference paper [15].
The delay compensation scheme is borrowed from [6]. The authors thank M. Brune, I.
Dotsenko, S. Haroche and J.M. Raimond from ENS for many interesting discussions and
advices.

2 A discrete-time Markov process

Figure 1: The quantum electrodynamic setup including the microwave cavity C with its
feedback scheme (in green).

As illustrated by Figure 1, the system consists in C a high-Q microwave cavity, B a box
producing Rydberg atoms, R1 and R2 two low-Q Ramsey cavities, D an atom detector and
S a microwave source. The dynamics model is discret in time and relies on quantum Monte-
Carlo trajectories (see [11, chapter 4]). Each time-step indexed by the integer k corresponds
to atom number k coming from B, submitted then to a first Ramsey π/2-pulse in R1, crossing
the cavity C and being entangled with it, submitted to a second π/2-pulse in R2 and finally
being measured in D. The state of the cavity is associated to a quantized mode. The control
corresponds to a coherent displacement of amplitude α ∈ C that is applied via the micro-wave
source S between two atom passages.

In this paper we consider a finite dimensional approximation of this quantized mode and
take a truncation to nmax photons. Thus the cavity space is approximated by the Hilbert
space C

nmax+1. It admits (|0〉 , |1〉 , . . . , |nmax〉) as ortho-normal basis. Each basis vector |n〉 ∈
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C
nmax+1 corresponds to a pure state, called Fock state, where the cavity has exactly n photons,

n ∈ {0, . . . , nmax}. In this Fock-states basis the number operator N corresponds to the
diagonal matrix

N = diag(0, 1, . . . , nmax).

The annihilation operator truncated to nmax photons is denoted by a. It corresponds to the
upper 1-diagonal matrix filled with (

√
1, . . . ,

√
nmax):

a |0〉 = 0, a |n〉 =
√
n |n− 1〉 for n = 1, . . . , nmax

The truncated creation operator denoted by a† is the Hermitian conjugate of a. Notice that
we still have N = a†a, but truncation does not preserve the usual commutation [a,a†] = 1
that is only valid when nmax = +∞.

Just after the measurement of the atom number k− 1, the state of the cavity is described
by the density matrix ρk belonging to the following set of well-defined density matrices:

X =
{
ρ ∈ C

(nmax+1)2 | ρ = ρ†, Tr (ρ) = 1, ρ ≥ 0
}
. (1)

The random evolution of this state ρk can be modeled through a discrete-time Markov pro-
cess that will be described bellow (see [6] and the references therein explaining the physical
modeling assumptions).

Let us denote by αk ∈ C the control at step k. Then ρk+1, the cavity state after measure-
ment of atom k is given by

ρk+1 = Msk(ρk+ 1
2
), ρk+ 1

2
= Dαk−d

(ρk) (2)

where,

• sk ∈ {g, e}, Mg(ρ) =
MgρM

†
g

Tr
(

MgρM
†
g

) ,Me(ρ) =
MeρM

†
e

Tr
(

MeρM
†
e

) with operatorsMg = cos (ϕ0 + ϑN)

and Me = sin (ϕ0 + ϑN) (ϕ0, ϑ constant parameters). For any n ∈ {0, . . . , nmax} we set
ϕn = ϕ0 + nϑ.

• Dα(ρ) = DαρD
†
α where the unitary displacement operator Dα is given by Dα =

eαa
†−α∗

a. In open-loop, α = 0, D0 = I (identity operator) and D0(ρ) = ρ. Notice

that D†
α = D−α.

• sk is a random variable taking the value g when the atom k is detected in g (resp. e
when the atom k is detected in e) with probability

Pg,k = Tr
(
Mgρk+ 1

2
M †

g

) (
resp. Pe,k = Tr

(
Meρk+ 1

2
M †

e

))
. (3)

• The control elaborated at step k, αk, is subject to a delay of d steps, d being the number
of flying atoms between the cavity C and the detector D.

We will assume through out the paper that the parameters ϕ0, ϑ are chosen in order to have
Mg, Me invertible and such that the spectrum of M †

gMg = M2
g and M †

eMe = M2
e are not

degenerate. This implies that the nonlinear operators Mg and Me are well defined for all
ρ ∈ X and that Mg(ρ) and Me(ρ) belongs also to the state space X defined by (1). Notice
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Figure 2: 〈3|ρk|3〉 (fidelity with respect to the 3-photon state) versus the number of passing
atoms k ∈ {0, . . . , 400} for 100 realizations of the open-loop Markov process (6) (blue fine
curves) starting from the same coherent state ρ0 = D√

3(|0〉 〈0|). The ensemble average over
these realizations corresponds to the thick red curve.

that Mg and Me commute, are diagonal in the Fock basis and satisfy M †
gMg +M †

eMe = I.
The Kraus map associated to this Markov process is given by:

Kα(ρ) =MgDαρD
†
αM

†
g +MeDαρD

†
αM

†
e . (4)

It corresponds to the expectation value of ρk+1 knowing ρk and αk−d:

E (ρk+1 | ρk, αk−d) = Kαk−d
(ρk). (5)

3 Open loop dynamics

3.1 Simulations

We consider in this section the following dynamics

ρk+1 = Msk(ρk), (6)

obtained from (2) when αk−d ≡ 0. Figure 2 corresponds to 100 realizations of this Markov
process with nmax = 10 photons, ϑ = 2

10 and ϕ0 =
π
4 −3ϑ. For each realization, ρ0 is initialized

to the the same coherent state D√
3(|0〉 〈0|) with Tr (Nρ0) ≈ 3 as mean photon number. We

observe that either 〈3|ρk|3〉 tends to 1 or 0. Since the ensemble average curve is almost
constant, the proportion of trajectories for which 〈3|ρk|3〉 tends to 1 is given approximatively
by 〈3|ρ0|3〉.
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3.2 Global convergence analysis

The following theorem underlies the observations made for simulations of Figure 2

Theorem 1. Consider the Markov process ρk obeying (6) with an initial condition ρ0 ∈ X
defined by (1). Then

• for any n ∈ {0, · · · , nmax}, Tr (ρk |n〉 〈n|) = 〈n| ρk |n〉 is a martingale

• ρk converges with probability 1 to one of the nmax + 1 Fock state |n〉 〈n| with n ∈
{0, · · · , nmax}.

• the probability to converge towards the Fock state |n〉 〈n| is given by Tr (ρ0 |n〉 〈n|) =
〈n| ρ0 |n〉.

Proof. Let us prove that Tr (ρk |n〉 〈n|) is a martingale. Set ξ = |n〉 〈n|. We have

E (Tr (ξρk+1) | ρk) = Pg,kTr

(
ξ
MgρkM

†
g

Pg,k

)
+ Pe,kTr

(
ξMeρkM

†
e

Pe,k

)

= Tr
(
ξMgρkM

†
g

)
+Tr

(
ξMeρkM

†
e

)
= Tr

(
ρk(M

†
g ξMg +M †

e ξMe)
)
.

Since ξ commutes with Mg and Me and M †
gMg +M †

eMe = I we have E (Tr (ξρk+1) | ρk) =
Tr (ξρk).

Considering the following function:

Vn(ρ) = f(〈n|ρ|n〉),

where f(x) = x+x2

2 . Notice that f is 1-convexe, f ′ ≥ 1
2 on [0, 1] and satisfies

∀(x, y, θ) ∈ [0, 1], θf(x) + (1− θ)f(y) = θ(1−θ)
2 (x− y)2 + f(θx+ (1− θ)y). (7)

The function f is increasing and convex and 〈n|ρk|n〉 is a martingale. Thus Vn(ρk) is sub-
martingale. Since

〈n|Mg(ρ)|n〉 = cos2ϕn

Tr
(

MgρM
†
g

) 〈n|ρ|n〉 , 〈n|Me(ρ)|n〉 = sin2ϕn

Tr
(

MeρM
†
e

) 〈n|ρ|n〉

we have

E (Vn(ρk+1) | ρk) = Tr
(
MgρkM

†
g

)
f

(
cos2ϕn

Tr
(

MgρkM
†
g

) 〈n|ρk|n〉
)

+Tr
(
MeρkM

†
e

)
f

(
sin2ϕn

Tr
(

MeρkM
†
e

) 〈n|ρk|n〉
)

Then (7), together with

θ = Tr
(
MgρkM

†
g

)
, x = cos2ϕn

Tr
(

MgρkM
†
g

) 〈n|ρk|n〉 , y = sin2ϕn

Tr
(

MeρkM
†
e

) 〈n|ρk|n〉

6



yields to

E (Vn(ρk+1) | ρk)− Vn(ρk) =

Tr
(

MgρkM
†
g

)

Tr
(

MeρkM
†
e

)

(〈n|ρk|n〉)2

2

(
cos2ϕn

Tr
(

MgρkM
†
g

) − sin2ϕn

Tr
(

MeρkM
†
e

)

)2

.

Thus we recover that Vn(ρk) is a sub-martingale, E (Vn(ρk+1) | ρk) ≥ Vn(ρk). We have also

shown that E (Vn(ρk+1) | ρk) = Vn(ρk) implies that either 〈n|ρk|n〉 = 0 or Tr
(
MgρkM

†
g

)
=

cos2ϕn (assumption Mg and Me invertible is used here).
We apply now the invariance theorem established by Kushner [13] (recalled in the Ap-

pendix A) for the Markov process ρk and the sub-martingale Vn(ρk). This theorem implies
that the Markov process ρk converges in probability to the largest invariant subset of

{
ρ ∈ X | Tr

(
MgρM

†
g

)
= cos2ϕn or 〈n|ρ|n〉 = 0

}
.

But the set {ρ ∈ X | 〈n|ρ|n〉 = 0} is invariant. It remains thus to characterized the largest

invariant subset denoted by Xn and included in
{
ρ ∈ X | Tr

(
MgρM

†
g

)
= cos2ϕn

}
.

Take ρ ∈ Xn. Invariance means that Mg(ρ) and Me(ρ) belong to Xn (the fact thatMg and
Me are invertible ensures that probabilities to jump with s = g or s = e are strictly positive

for any ρ ∈ X ). Consequently Tr
(
MgMg(ρ)M

†
g

)
= Tr

(
MgρM

†
g

)
= cos2ϕn. This means that

Tr
(
M4

g ρ
)
= Tr2

(
M2

g ρ
)
. By Cauchy-Schwartz inequality,

Tr
(
M4

g ρ
)
= Tr

(
M4

g ρ
)
Tr (ρ) ≥ Tr2

(
M2

g ρ
)

with equality if, and only if, M4
g ρ and ρ are co-linear. M4

g being non-degenerate, ρ is nec-
essarily a projector over an eigenstate of M4

g , i.e., ρ = |m〉 〈m| for some m ∈ {0, . . . , nmax}.
Since Tr

(
MgρM

†
g

)
= cos2ϕn > 0, m = n and thus Xn is reduced to {|n〉 〈n|}. Therefore the

only possibilities for the ω-limit set are Tr (ρ |n〉 〈n|) = 0 or 1 and

Wn(ρk) = Tr (ρk |n〉 〈n|) (1− Tr (ρk |n〉 〈n|) k→∞−→ 0 in probability.

The convergence in probability together with the fact that Wn(ρk) is a positive bounded
(Wn ∈ [0, 1]) random process implies the convergence in expectation. Indeed

lim sup
k→∞

E (Wn(ρk)) ≤ ǫ lim sup
k→∞

P (Wn(ρk) ≤ ǫ) + lim sup
k→∞

P (Wn(ρk) > ǫ)

≤ ǫ+ lim sup
k→∞

P (Wn(ρk) > ǫ) ≤ ǫ,

where for the last inequality, we have applied the convergence in probability ofWn(ρk) towards
0. As the above inequality is valid for any ǫ > 0, we have

lim
k→∞

E (Wn(ρk)) = 0.

Furthermore, by the first part of the Theorem, we know that Tr (ρk |n〉 〈n|) is a bounded
martingale and therefore by the Doob’s first martingale convergence theorem (see the Theo-
rem 4 of the Appendix A), Tr (ρk |n〉 〈n|) converges almost surely towards a random variable
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l∞n ∈ [0, 1]. This implies that Wn(ρk) converges almost surely towards the random variable
l∞n (1− l∞n ) ∈ [0, 1]. We apply now the dominated convergence theorem

E (l∞n (1− l∞n )) = E

(
lim
k→∞

Wn(ρk)

)
= lim

k→∞
E (Wn(ρk)) = 0.

This implies that l∞n (1− l∞n ) vanishes almost surely and therefore

Wn(ρk) = Tr (ρk |n〉 〈n|) (1−Tr (ρk |n〉 〈n|)) k→∞−→ 0 almost surely.

As we can repeat this same analysis for any choice of n ∈ {0, 1, . . . , nmax}, ρk converges almost
surely to the set of of Fock states

{|n〉 〈n| | n = 0, 1, . . . , nmax},

which ends the proof of the second part.
We have shown that the probability measure associated to the random variable ρk con-

verges to the probability measure

nmax∑

n=0

pnδ(|n〉 〈n|),

where δ(|n〉 〈n|) denotes the Dirac distribution at |n〉 〈n| and pn is the probability of conver-
gence towards |n〉 〈n|. In particular, we have

E (Tr (|n〉 〈n| ρk)) k→∞−→ pn.

But Tr (|n〉 〈n| ρk) is a martingale and E (Tr (|n〉 〈n| ρk)) = E (Tr (|n〉 〈n| ρ0)). Thus

pn = 〈n| ρ0 |n〉 ,

which ends the proof of the third and last part.

3.3 Local convergence rate

According to theorem 1, the Ω-limit set of the Markov process (6) is the discrete set of Fock
states {|n〉 〈n|}n∈{0,...,nmax}. We investigate here the local convergence rate around one of
these Fock states denoted by ρ̄ = |n̄〉 〈n̄| for some n̄ ∈ {0, . . . , nmax}.

Since Mg(ρ̄) = Me(ρ̄) = ρ̄, we can develop the dynamics (6) around the fixed point ρ̄. We
write ρ = ρ̄+ δρ with δρ small, Hermitian and with zero trace. Keeping only the first order
terms in (6), we have

δρk+1 =
Msk

δρkM
†
sk

Tr
(

Msk
ρ̄M

†
sk

) −
Tr

(

Msk
δρkM

†
sk

)

Tr
(

Msk
ρ̄M

†
sk

) ρ̄.

Thus the linearized Markov process around the fixed point ρ̄ reads

δρk+1 = AskδρkA
†
sk

− Tr
(
AskδρkA

†
sk

)
ρ̄ (8)

where the random matrices Ask are given by :

8



• Ag =
Mg

cosϕn̄
with probability Pg = cos2ϕn̄

• Ae =
Me

sinϕn̄
with probability Pe = sin2ϕn̄.

The following proposition shows that the convergence of the linearized dynamics is exponential
(a crucial robustness indication).

Proposition 1. Consider the linear Markov chain (8) of state δρ belonging to the set of
Hermitian matrices with zero trace. Then the largest Lyapunov exponent Λ is given by (ϕn =
ϕ0 + nϑ)

Λ = max
n ∈ {0, . . . , nmax}

n 6= n̄

(
cos2ϕn̄ log

(
| cosϕn|
| cosϕn̄|

)
+ sin2ϕn̄ log

(
| sinϕn|
| sinϕn̄|

))

and is strictly negative: Λ < 0.

Proof. Set δρn1,n2 = 〈n1|δρ|n2〉 for any n1, n2 ∈ {0, . . . , nmax}. Since Tr (δρk) ≡ 0, we exclude
here the case (n1, n2) = (n̄, n̄) because δρn̄,n̄k = −∑n 6=n̄ δρ

n,n
k . Since Ae and Ag are diagonal

matrices, we have
δρn1,n2

k+1 = an1,n2
sk

δρn1,n2

k (9)

where sk = g (resp. sk = e) with probability cos2 ϕn̄ (resp. sin2 ϕn̄) and where an1,n2
g =

cosϕn1
cosϕn2

cos2 ϕn̄
and an1,n2

e =
sinϕn1

sinϕn2

sin2 ϕn̄
.

Denote by Λn1,n2 the Lyapunov exponent of (9) for (n1, n2) 6= (n̄, n̄). By the law of large

numbers, we know that
log(|∏l=k

l=0 a
n1,n2
sk |)

k+1 converges almost surely towards

cos2ϕn̄ log(|an1,n2
g |) + sin2ϕn̄ log(|an1,n2

e |).

Thus, we have

Λn1,n2 = cos2 ϕn̄

(
log
(
| cosϕn1

|
| cosϕn̄|

)
+ log

(
| cosϕn2

|
| cosϕn̄|

))

+ sin2 ϕn̄

(
log
( | sinϕn1

|
| sinϕn̄|

)
+ log

( | sinϕn2
|

| sinϕn̄|

))

The function

[
0,
π

2

]
∋ ϕ 7→

(
cosϕ

| cosϕn̄|

)cos2 ϕn̄
(

sinϕ

| sinϕn̄|

)sin2 ϕn̄

increases strictly from 0 to 1 when ϕ goes from 0 to arcsin(| sinϕn̄|) and decreases strictly
from 1 to 0 when ϕ goes from arcsin(| sinϕn̄|) to π

2 . Since (n1, n2) 6= (n̄, n̄), Λn1,n2 < 0.
Denote by Λn = Λn,n̄ for n ∈ {0, . . . , nmax}:

Λn = cos2ϕn̄ log
(
| cosϕn|
| cosϕn̄|

)
+ sin2ϕn̄ log

(
| sinϕn|
| sinϕn̄|

)
.

Since (n1, n2) 6= (n̄, n̄), we have Λn1,n2 ≤ maxn 6=n̄ Λ
n and Λ = maxn 6=n̄Λ

n is strictly negative.
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Figure 3: Tr (ρkρ̄) = 〈3|ρk|3〉 versus k ∈ {0, . . . , 400} for 100 realizations of the closed-
loop Markov process (2) with feedback (10) (blue fine curves) starting from the same state
ρ0 = D√

3(|0〉 〈0|) (no delay, d = 0). The ensemble average over these realizations corresponds
to the thick red curve.
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Figure 4: Tr (ρkρ̄) = 〈3|ρk|3〉 versus k ∈ {0, . . . , 400} for 100 realizations of the closed-
loop Markov process (12) with feedback (11) (blue fine curves) starting from the same state
χ0 = (D√

3(|0〉 〈0|), 0, . . . , 0) and with 5-step delay (d = 5). The ensemble average over these
realizations corresponds to the thick red curve.
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4 Feedback stabilization with delays

4.1 Feedback scheme and closed-loop simulations

Through out this section we assume that we have access at each step k to the cavity state
ρk. The goal is to design a causal feedback law that stabilizes globally the Markov chain (2)
towards a goal Fock state ρ̄ = |n̄〉 〈n̄| with n̄ photon(s), n̄ ∈ {0, . . . , nmax}. To be consistent
with truncation to nmax photons, n̄ has to be far from nmax (typically n̄ = 3 with nmax = 10
in the simulations below).

The feedback is based on the fact that, in open-loop when αk ≡ 0, Tr (ρ̄ρk) = 〈n̄|ρk|n̄〉 is a
martingale. When d = 0, [15] proves global almost sure convergence of the following feedback
law

αk =

{
ǫTr (ρ̄ [ρk,a]) if Tr (ρ̄ρk) ≥ η
argmax
|α|≤ᾱ

(Tr (ρ̄ Dα(ρk))) if Tr (ρ̄ρk) < η (10)

for any ᾱ > 0 when ǫ, η > 0 are small enough. This feedback law ensures that Tr (ρ̄ρk) is a
sub-martingale.

When d > 0, we cannot set αk−d = ǫTr (ρ̄ [ρk,a]) since αk will depend on ρk+d and the
feedback law is not causal. In [6], this feedback law is made causal by replacing ρk+d by its
expectation value (average prediction) ρpred

k knowing ρk and the past controls αk−1, . . . , αkd :

ρpred

k = Kαk−1
◦ . . . ◦Kαk−d

(ρk)

where the Kraus map Kα is defined by (4).
We will thus consider here the following causal feedback based on an average compensation

of the delay d

αk =





ǫTr
(
ρ̄ [ρpred

k ,a]
)

if Tr
(
ρ̄ρpred

k

)
≥ η

argmax
|α|≤ᾱ

(
Tr
(
ρ̄ Dα(ρ

pred

g,k )
)
Tr
(
ρ̄ Dα(ρ

pred

e,k )
))

if Tr
(
ρ̄ρpred

k

)
< η (11)

with {
ρpred

g,k = Kαk−1
◦ . . . ◦Kαk−d+1

(MgDαk−d
ρkD

†
αk−d

M †
g )

ρpred

g,k = Kαk−1
◦ . . . ◦Kαk−d+1

(MeDαk−d
ρkD

†
αk−d

M †
e )

The closed-loop system, i.e. Markov chain (2) with the causal feedback (11) is still a
Markov chain but with (ρk, αk−1, · · · , αk−d) as state at step k. More precisely, denote by
χ = (ρ, β1, · · · , βd) this state where βl stands for the control α delayed l steps. Then the state
form of the closed-loop dynamics reads





ρk+1 = Msk(Dβd,k
(ρk))

β1,k+1 = αk

β2,k+1 = β1,k
...

βd,k+1 = βd−1,k.

(12)

where the control law defined by (11) corresponds to a static state feedback since




ρpred

k = ρpred(χk) = E (ρk+d | χk) = Kβ1,k
◦ . . . ◦Kβd,k

(ρk)

ρpred

g,k = ρpred

g (χk) = Kβ1,k
◦ . . . ◦Kβd−1,k

(MgDβd,k
ρkD

†
βd,k

M †
g )

ρpred

e,k = ρpred

e (χk) = Kβ1,k
◦ . . . ◦Kβd−1,k

(MeDβd,k
ρkD

†
βd,k

M †
e )

(13)
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Notice that ρpred

k = ρpred

g,k + ρpred

e,k .
Simulations displayed on Figures 3 and 4 correspond to 100 realizations of the above

closed-loop systems with d = 0 and d = 5. The goal state ρ̄ = |3〉 〈3| contains n̄ = 3 photons
and nmax, ϕ0 and ϑ are those used for the open-loop simulations of Figure 2. Each realization
starts with the same coherent state ρ0 = D√

3(|0〉 〈0|) and β1,0 = . . . = βd,0 = 0. The feedback
parameters appearing in (11) are as follows:

ǫ = 1
2n̄+1 = 1

7 , η = 1
10 , ᾱ = 1.

This simulations illustrate the influence of the delay d on the average convergence speed: the
longer the delay is the slower convergence speed becomes.

Remark 1. The choice of the feedback law whenever Tr
(
ρ̄ρpred

k

)
< η might seem complicated

for real-time simulation issues. However, this choice is only technical. Actually, any non-
zero constant feedback law will seems to achieve the task here (see for instance the simulations
of [6]). However, the convergence proof for such simplified control scheme is more complicated
and not considered in this paper.

4.2 Global convergence in closed-loop

Theorem 2. Take the Markov chain (12) with the feedback (11) where ρpred

k , ρpred

g,k and ρpred

e,k

are given by (13) with ᾱ > 0. Then, for small enough ǫ > 0 and η > 0, the state χk converges
almost surely towards χ̄ = (ρ̄, 0, . . . , 0) whatever the initial condition χ0 ∈ X × C

d is (the
compact set X is defined by (1)).

Proof. It is based on the Lyapunov-type function

V (χ) = f (Tr (ρ̄ρpred)) with ρpred = Kβ1
◦ . . . ◦Kβd

(ρ) (14)

where f(x) = x+x2

2 has already been used during the proof of theorem 1. The proof relies in
4 lemmas:

• in lemma 1, we prove an inequality showing that, for small enough ǫ, V (χ) and Tr (ρ̄ρpred(χ))
are sub-martingales within {χ | Tr (ρ̄ρpred) ≥ η}.

• in lemma 2, we show that for small enough η, the trajectories starting within the set
{χ | Tr (ρ̄ρpred) < η} always reach in one step the set {χ | Tr (ρ̄ρpred) ≥ 2η};

• in lemma 3, we show that the trajectories starting within the set {χ | Tr (ρ̄ρpred) ≥ 2η},
will never hit the set {χ | Tr (ρ̄ρpred) < η} with a uniformly non-zero probability p > 0;

• in lemma 4, we combine the first step and the invariance principle due to Kushner,
to prove that almost all trajectories remaining inside {χ | Tr (ρ̄ρpred) ≥ η} converge
towards χ̄ = (ρ̄, 0, . . . , 0).

The combination of lemmas 2, 3 and 4 shows then directly that χk converges almost surely
towards χ̄. We detail now these 4 lemmas.

Lemma 1. For ǫ > 0 small enough and for χk satisfying Tr (ρ̄ρpred(χk)) ≥ η,

E (Tr (ρ̄ρpred(χk+1)) | χk) ≥ Tr (ρ̄ρpred(χk)) + ǫ
∣∣Tr
(
ρ̄ [ρpred

k ,a]
)∣∣2

12



and also

E (V (χk+1) | χk) ≥ V (χk) +
ǫ
2

∣∣Tr
(
ρ̄ [ρpred

k ,a]
)∣∣2

+
Pg,kPe,k

2 (Tr (ρ̄ Dαk
◦Kβ1,k

◦ · · · ◦Kβd−1,k
◦Mg ◦Dβd,k

(ρk)
)

−Tr
(
ρ̄ Dαk

◦Kβ1,k
◦ · · · ◦Kβd−1,k

◦Me ◦Dβd,k
(ρk)

))
2

(15)

Proof. Since M †
gMg +M †

eMe = I and [ρ̄,Mg] = [ρ̄,Me] = 0, we have

Tr
(
ρ̄ Kβ1,k+1

◦Kβ2,k+1
◦ · · · ◦Kβd,k+1

(ρk+1)
)
=

Tr
(
ρ̄ Dβ1,k+1

◦Kβ2,k+1
◦ · · · ◦Kβd,k+1

(ρk+1)
)
.

Also, we have:

E
(
f
(
Tr
(
ρ̄ Kβ1,k+1

◦Kβ2,k+1
◦ · · · ◦Kβd,k+1

(ρk+1)
))

| χk

)
=

Pg,kf
(
Tr
(
ρ̄ Dαk

◦Kβ1,k
◦ · · · ◦Kβd−1,k

◦Mg ◦Dβd,k
(ρk)

))
+

Pe,kf
(
Tr
(
ρ̄ Dαk

◦Kβ1,k
◦ · · · ◦Kβd−1,k

◦Me ◦Dβd,k
(ρk)

))
.

By (7) we find

E (V (χk+1) | χk) = f
(
Tr
(
ρ̄ Dαk

◦Kβ1,k
◦ · · · ◦Kβd−1,k

◦Kβd,k
(ρk)

))

+
Pg,kPe,k

2

(
Tr
(
ρ̄ Dαk

◦Kβ1,k
◦ · · · ◦Kβd−1,k

(
Mg ◦ Dβd,k

(ρk)−Me ◦ Dβd,k
(ρk)

)) )2

Since ρpred(χk) = ρpred

k = Kβ1,k
◦ · · · ◦Kβd−1,k

◦Kβd,k
(ρk) we have

Tr
(
ρ̄ Dαk

◦Kβ1,k
◦ · · · ◦Kβd−1,k

◦Kβd,k
(ρk)

)
= Tr

(
ρ̄ Dαk

(ρpredk )
)

For α small the Baker-Campbell-Hausdorff formula yields

Dα(ρ) = eαa
†−α∗

a ρ e−(αa†−α∗
a) = ρ+ [αa† − α∗a, ρ] +O(|α|2)

Consequently

Tr
(
ρ̄ Dαk

(ρpred

k )
)
= Tr

(
ρ̄ ρpred

k

)
+Tr

(
ρ̄ [αka

† − α∗
ka, ρ

pred

k ]
)
+O(|αk|2).

Since αk = ǫTr
(
ρ̄[ρpred

k ,a]
)
, we get

Tr
(
ρ̄ Dαk

(ρpred

k )
)
= Tr

(
ρ̄ ρpred

k

)
+ 2ǫ

∣∣Tr
(
ρ̄[ρpred

k ,a]
)∣∣2 +O(ǫ2).

Thus for ǫ > 0 small enough and uniformly in ρpred

k ∈ X

Tr
(
ρ̄ Dαk

(ρpred

k )
)
≥ Tr

(
ρ̄ ρpred

k

)
+ ǫ
∣∣Tr
(
ρ̄[ρpred

k ,a]
)∣∣2 .

Using the fact that f is increasing and f(x+ y) ≥ f(x) + y/2 for any x, y > 0, we get

f
(
Tr
(
ρ̄ Dαk

(ρpred

k )
))

≥ f(
(
Tr
(
ρ̄ ρpred

k

))
+ ǫ

2

∣∣Tr
(
ρ̄[ρpred

k ,a]
)∣∣2 .
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Lemma 2. When η > 0 is small enough, any state χk satisfying the inequality Tr (ρ̄ρpred(χk)) <
η yields a new state χk+1 such that Tr (ρ̄ρpred(χk+1)) ≥ 2η.

Proof. SinceMg andMe are invertible, there exists ζ ∈]0, 1[ such that, for any χ, Tr
(
ρpred
g (χ)

)
≥

ζ and Tr (ρpred

e (χ)) ≥ ζ (ρpred

g and ρpred

e are defined in (13)). Denote by Xζ the compact set of
Hermitian semi-definite positive matrices with trace in [ζ, 1]: for any χ, ρpred

g (χ) and ρpred

e (χ)
are in Xζ . Let us prove first that, for any ρg, ρe ∈ Xζ

max
|α|≤ᾱ

(Tr (ρ̄ Dα(ρg)) Tr (ρ̄ Dα(ρe))) > 0. (16)

If for some ρg, ρe ∈ Xζ , the above maximum is zero, then for all α ∈ C (analyticity of Dα

versus ℜ(α) and ℑ(α)):
Tr (ρ̄ Dα(ρg)) Tr (ρ̄ Dα(ρe)) ≡ 0.

This implies that either Tr (ρ̄ Dα(ρg)) ≡ 0 or Tr (ρ̄ Dα(ρe)) ≡ 0 (if the product of two analytic
functions is zero, one of them is zero). Take ρ ∈ Xζ such that Tr (ρ̄ Dα(ρ)) ≡ 0. We can
decompose ρ as a sum of projectors,

ρ =

m∑

ν=1

λν |ψν〉 〈ψν | ,

where λν are strictly positive eigenvalues,
∑

ν λν ∈ [ζ, 1], and ψν are the associated normalized
eigenstates of ρ, 1 ≤ m ≤ nmax. Since Tr (ρ̄ Dα(ρ)) ≡ 0 for all α ∈ C , we have for all
ν, 〈ψν | Dα|n̄〉 = 0. Fixing one ν ∈ {1, · · · ,m} and taking ψ = ψν noting that Dα =
exp(ℜ(α)(a† − a) + ıℑ(α)(a† + a) and deriving j times versus ℜ(α) and ℑ(α) around α = 0
we get, 〈

ψ | (a† − a)j |n̄
〉
=
〈
ψ | (a† + a)j |n̄

〉
= 0 ∀j ≥ 0.

With j = 0, we get, 〈ψ |n̄〉 = 0. With j = 1 we get 〈ψ |n̄− 1〉 = 〈ψ |n̄ + 1〉 = 0 since
a† |n̄〉 =

√
n̄+ 1 |n̄+ 1〉 and a |n̄〉 =

√
n̄ |n̄− 1〉. With j = 2 and using the null Hermitian

products obtained for j = 0 and 1, we deduce that 〈ψ |n̄− 2〉 = 〈ψ |n̄+ 2〉 = 0, since aa† |n̄〉
and a†a |n̄〉 are colinear to |n̄〉. Similarly for any j and using the null Hermitian products
obtained for j′ < j, we deduce that 〈ψ |max(0, n̄ − j)〉 = 〈ψ |min(nmax, n̄+ j)〉 = 0. Thus,
for any n, 〈ψ|n〉 = 0, |ψ〉 = 0 and we get a contradiction. Thus (16) holds true for any
ρg, ρe ∈ Xζ .

The map F

(ρg, ρe) 7→ F (ρg, ρe) = max
|α|≤ᾱ

(Tr (ρ̄ Dα(ρg)) Tr (ρ̄ Dα(ρe)))

is continuous. We have proved that for all ρg, ρe in the compact set Xζ , F (ρg, ρe) > 0. Thus
exists δ > 0 such that F (ρg, ρe) ≥ δ for any ρg, ρe ∈ Xζ . Take α̃ an argument of the maximum,

Tr (ρ̄ Dα̃(ρg))Tr (ρ̄ Dα̃(ρe)) = max
|α|≤ᾱ

(Tr (ρ̄ Dα(ρg))Tr (ρ̄ Dα(ρe))) ≥ δ

Since (Cauchy-Schwartz inequality for the Frobenius product) Tr (ρ̄ Dα̃(ρg)) ≤ 1 and Tr (ρ̄ Dα̃(ρe)) ≤
1, we have Tr (ρ̄ Dα̃(ρg)) ≥ δ and Tr (ρ̄ Dα̃(ρe)) ≥ δ.

Take now η < δ
2 and χk such that Tr (ρ̄ρpred(χk)) ≤ η. According to (11), αk is chosen as

an argument of

max
|α|≤ᾱ

(
Tr
(
ρ̄ Dα(ρ

pred

g,k )
)
Tr
(
ρ̄ Dα(ρ

pred

e,k )
))
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where ρpred

g,k , ρ
pred

e,k ∈ Xζ . Thus Tr
(
ρ̄ Dαk

(ρpred

g,k )
)
≥ δ and Tr

(
ρ̄ Dαk

(ρpred

e,k )
)

≥ δ. But either

ρpred

k+1 = 1
Pg,k

Kαk
(ρpred

g,k ) or ρpred

k+1 = 1
Pe,k

Kαk
(ρpred

g,k ) where 0 < Pg,k, Pe,k < 1. Since we have the

identity Tr (ρ̄Kα(ρ)) = Tr (ρ̄Dα(ρ)) because ρ̄ commutes with Mg and Me, we conclude that
Tr (ρ̄ ρpred(χk+1)) ≥ δ ≥ 2η.

Lemma 3. Initializing the Markov process χk within the set {χ | Tr (ρ̄ρpred(χ)) ≥ 2η}, χk

will never hit the set {χ | Tr (ρ̄ρpred(χ)) < η} with a probability

p >
η

1− η
> 0.

Proof. We know from lemma 1 that the process 1−Tr (ρ̄ρpred(χ)) is a super martingale in the
set {χ | Tr (ρ̄ρpred(χ)) ≥ η}. Therefore, one only needs to use the Doobs inequality recalled
in appendix:

P

(
sup

0≤k<∞
(1− Tr (ρ̄ρpred(χk))) > 1− η

)
>

1− Tr (ρ̄ρpred(χ0))

1− η
≥ 1− 2η

1− η
,

and thus p > 1− 1−2η
1−η

= η
1−η

.

Lemma 4. Sample paths χk remaining in the set {Tr (ρ̄ρpred(χ)) ≥ η} converges almost surely
to χ̄ as k → ∞.

Proof. We apply first the Kushner’s invariance theorem to the Markov process χk with the
sub-martingale function V (χk). It ensures convergence in probability towards I the largest
invariant set attached to this sub-martingale (see appendix). Let us prove that I is reduced
to {χ̄}.

By inequality (15), if (ρ, β1, . . . , βd) = χ belongs to I then Tr (ρ̄ [ρpred(χ),a]), i.e., α ≡ 0
and also

Tr
(
ρ̄ Dα ◦Kβ1

◦ · · · ◦Kβd−1
◦Mg ◦Dβd

(ρ)
)
=

Tr
(
ρ̄ Dα ◦Kβ1

◦ · · · ◦Kβd−1
◦Me ◦ Dβd

(ρ)
)
.

Invariance associated α ≡ 0 implies that β1 = . . . = βd = 0. Thus the above equality reads

Tr (ρ̄ Mg(ρ)) = Tr (ρ̄ Me(ρ))

where we have used the fact that, for any ̺ ∈ X , Tr (ρ̄ K0(̺)) = Tr (ρ̄ D0(̺)) = Tr (ρ̺̄). Then
ρ satisfies

Tr
(
ρ̄MgρM

†
g

)
Tr
(
MeρM

†
e

)
= Tr

(
ρ̄MeρM

†
e

)
Tr
(
MgρM

†
g

)

that reads, since M †
g ρ̄Mg = cos2ϕn̄ ρ̄, M

†
e ρ̄Me = sin2ϕn̄ ρ̄ and Tr (ρ̄ρ) > 0,

cos2ϕn̄Tr
(
MeρM

†
e

)
= sin2ϕn̄Tr

(
MgρM

†
g

)
.

Since Tr
(
MeρM

†
e

)
+Tr

(
MgρM

†
g

)
= 1, we recover Tr

(
MgρM

†
g

)
= cos2ϕn̄ the same condition

as the one appearing at the end of the proof of theorem 1. Similar invariance arguments
combined with Tr (ρ̄ρ) > 0 imply then ρ = ρ̄. Thus I is reduced to {χ̄}.
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Consider now the event P≥η = {∀k ≥ 0, Tr (ρ̄ρpred(χk)) ≥ η}}. Convergence of χk in
probability towards χ̄ means that

∀δ > 0, lim
k→∞

P (‖χk − χ̄‖ > δ | P≥η) = 0.

where ‖ · ‖ is any norm on the χ-space. The continuity of χ 7→ Tr (ρ̄ρpred(χ)) implies that,
∀δ > 0,

lim
k→∞

P (Tr (ρ̄ρpred(χk)) < 1− δ | P≥η) = 0.

As 0 ≤ Tr (ρ̄ρpred(χ)) ≤ 1, we have

1 ≥ E (Tr (ρ̄ρpred(χk)) | P≥η) ≥ (1− δ)P (1− δ ≤ Tr (ρ̄ρpred(χk)) | P≥η) .

Thus

1 ≥ E (Tr (ρ̄ρpred(χk)) | P≥η) ≥ 1− δ − P (Tr (ρ̄ρpred(χk)) < 1− δ | P≥η) .

and consequently, ∀δ > 0, lim sup
k→∞

E (Tr (ρ̄ρpred(χk)) | P≥η) ≥ 1− δ, i.e.,

lim
k→∞

E (Tr (ρ̄ρpred(χk)) | P≥η) = 1.

The process Tr (ρ̄ρpred(χk)) is a bounded sub-martingale and therefore, by Theorem 4 of
the Appendix A, we know that it converges for almost all trajectories remaining in the set
{Tr (ρ̄ρpred(χ)) ≥ η}. Calling the limit random variable fid∞, we have by dominated conver-
gence theorem

E (fid∞) = E

(
lim
k→∞

Tr (ρ̄ρpred(χk)) | P≥η

)
= lim

k→∞
E (Tr (ρ̄ρpred(χk)) | P≥η) = 1.

This trivially proves that fid∞ ≡ 1 almost surely and finishes the proof of the Lemma.

4.3 Convergence rate around the target state

Around the target state χ̄ = (ρ̄, 0, . . . , 0) the closed-loop dynamics reads

ρk+1 = Msk(Dβd,k
(ρk))

β1,k+1 = ǫTr
(
[a, ρ̄] Kβ1,k

◦ · · · ◦Kβd,k
(ρk)

)

β2,k+1 = β1,k
...

βd,k+1 = βd−1,k.

Set χ = χ̄+ δχ with δχ = (δρ, δβ1, . . . , δβd) small. Computations based on

Dδβ(ρ̄) = ρ̄+
(
δβ[a†, ρ̄]− δβ∗[a, ρ̄]

)
+O(|δβ|2),

Kδβ(ρ̄) = K0(ρ̄) + cos ϑ
(
δβ[a†, ρ̄]− δβ∗[a, ρ̄]

)
+O(|δβ|2),

K0(ρ̄) = ρ̄, K0([a
†, ρ̄]) = cos ϑ [a†, ρ̄], K0([a, ρ̄]) = cosϑ [a, ρ̄],

Tr
(
[a, ρ̄][a†, ρ̄]

)
= −(2n̄+ 1) and Tr

(
[a, ρ̄]2

)
= 0,
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yield the following linearized closed-loop system

δρk+1 = Ask

(
δρk + δβd,k[a

†, ρ̄]− δβ∗
d,k[a, ρ̄]

)
A†

sk
− Tr

(
AskδρkA

†
sk

)
ρ̄

δβ1,k+1 = −ǫ(2n̄+ 1)
(∑d

j=1 cos
jϑ δβj,k

)
+ ǫ cosdϑ Tr (δρk[a, ρ̄])

δβ2,k+1 = δβ1,k
...

δβd,k+1 = δβd−1,k

(17)

where sk ∈ {g, e}, the random matrices Ask are given by Ag =
Mg

cosϕn̄
with probability

Pg = cos2ϕn̄ and Ae =
Me

sinϕn̄
with probability Pe = sin2ϕn̄.

Set δρn1,n2

k = 〈n1|δρk|n2〉 for any n1, n2 ∈ {0, . . . , nmax}. Since Tr (δρk) ≡ 0, we exclude
here the case (n1, n2) = (n̄, n̄) because δρn̄,n̄k = −∑n 6=n̄ δρ

n,n
k . When (n1, n2) does not belong

to {(n̄−1, n̄), (n̄+1, n̄), (n̄, n̄−1), (n̄, n̄+1)}, we recover the open-loop linearized dynamics (9):

δρn1,n2

k+1 = an1,n2
sk

δρn1,n2

k

where sk = g (resp. sk = e) with probability cos2ϕn̄ (resp. sin2ϕn̄) and where an1,n2
g =

cosϕn1
cosϕn2

cos2ϕn̄
and an1,n2

e =
sinϕn1

sinϕn2

sin2ϕn̄
. A direct adaptation of the proof of proposition 1

shows that the largest Lyapounov exponent Λ0 of this dynamics is strictly negative and given
by

Λ0 = max
n ∈ {0, . . . , nmax}
n 6= n̄− 1, n̄, n̄+ 1

(
cos2ϕn̄ log

(
| cosϕn|
| cosϕn̄|

)
+ sin2ϕn̄ log

(
| sinϕn|
| sinϕn̄|

))
.

For (n1, n2) ∈ {(n̄ − 1, n̄), (n̄ + 1, n̄), (n̄, n̄ − 1), (n̄, n̄ + 1)}, we just have to consider x =
δρn̄,n̄−1 and y = δρn̄+1,n̄ since δρ is Hermitian. Set zj,k = δβj,k. We deduce from (17) that
the process Xk = (xk, yk, z1,k, . . . , zd,k) is governed by

xk+1 = ask(xk −
√
n̄zd,k)

yk+1 = bsk(yk +
√
n̄+ 1zd,k)

z1,k+1 = −ǫ(2n̄+ 1)
(∑d

j=1 cos
jϑzj,k

)
+ ǫ cosdϑ

(√
n̄xk −

√
n̄+ 1yk

)

z2,k+1 = z1,k
...

zd,k+1 = zd−1,k

(18)

where sk = g (resp. sk = e) with probability cos2ϕn̄ (resp. sin2ϕn̄) and

ag =
cosϕn̄−1

cosϕn̄
, ae =

sinϕn̄−1

sinϕn̄
, bg =

cosϕn̄+1

cosϕn̄
, be =

sinϕn̄+1

sinϕn̄
.

Take µ > 0 to be defined later, set σ = | cos ϑ| ∈]0, 1[ and consider

V (X) = |x|+ |y|+ µ
(
|z1|+ σ|z2|+ · · · + σd−1|zd|

)
.

A direct computation exploiting (18) yields

E (V (Xk+1) | Xk) = σ|xk −
√
n̄zd,k|+ σ|yk +

√
n̄+ 1zd,k|

+ σµ
(
|z1,k|+ σ|z2,k|+ · · ·+ σd−2|zd−1,k|

)

+ ǫµ

∣∣∣∣∣∣
−(2n̄+ 1)




d∑

j=1

cosjϑzj,k


+ cosdϑ

(√
n̄xk −

√
n̄+ 1yk

)
∣∣∣∣∣∣
.
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Thus

E (V (Xk+1) | Xk) ≤ (σ + ǫµσd
√
n̄+ 1)(|xk|+ |yk|)

+ σ(1 + ǫ(2n̄+ 1))µ
(
|z1,k|+ · · ·+ σd−2|zd−1,k|+ σ1−d(

√
n̄+

√
n̄+1)+ǫµ(2n̄+1)

(1+ǫ(2n̄+1))µ σd−1|zd,k|
)
.

Take µ =
√
n̄+

√
n̄+1

σd−1 , then

E (V (Xk+1) | Xk) ≤ σ(1 + 2ǫ(n̄ + 1)) V (Xk).

Because σ < 1, for ǫ > 0 small enough (ǫ < 1−σ
2(n̄+1)) the norm V (Xk) is a super-martingale

converging exponentially almost surely towards zero. Thus the largest Lyapunov exponent of
the linear Markov chain (18) is strictly negative. To conclude, we have proved the following
proposition:

Proposition 2. Consider the linear Markov chain (17). For small enough ǫ > 0, its largest
Lyapunov exponent is strictly negative.

5 Quantum filter and separation principle

5.1 Quantum filter and closed-loop simulations

The feedback law (11) requires the knowledge of (ρk, β1,k, · · · , βd,k). When the measurement
process is fully efficient and the jump model (2) admits no error, the Markov system (12)
represents a natural choice for the quantum filter to estimate the value of ρ. Indeed, we define
the estimator χest

k = (ρest

k , β1,k, · · · , βd,k) satisfying the dynamics





ρest

k+1 = Msk(Dβd,k
(ρest

k ))

β1,k+1 = αk

β2,k+1 = β1,k
...

βd,k+1 = βd−1,k.

(19)

Note that, similarly to any observer-controller structure, the jump result, sk = g or e, is the
output of the physical system (2) but the feedback control αk is a function of the estimator
ρest. Indeed, αk is defined as in (11):

αk =





ǫTr
(
ρ̄ [ρpred,estk , a]

)
if Tr

(
ρ̄ρpred,estk

)
≥ η

argmax
|α|≤ᾱ

(
Tr
(
ρ̄ Dα(ρ

pred,est

g,k )
)
Tr
(
ρ̄ Dα(ρ

pred,est

e,k )
))

if Tr
(
ρ̄ρpred,estk

)
< η (20)

where the predictor’s state ρpred,est

k is defined as follows:





ρpred,est

k = Kαk−1
◦ . . . ◦Kαk−d

(ρest

k )

ρpred,est

g,k = Kαk−1
◦ . . . ◦Kαk−d+1

(MgDαk−d
ρest

k D
†
αk−d

M †
g )

ρpred,est

g,k = Kαk−1
◦ . . . ◦Kαk−d+1

(MeDαk−d
ρest

k D
†
αk−d

M †
e )

We will see through this section that, even if do not have any a priori knowledge of the initial
state of the physical system, the choice of the feedback law through the above quantum filter
can ensure the convergence of the system towards the desired Fock state. Indeed, we prove a

18



semi-global robustness of the feedback scheme with respect to the choice of the initial state
of the quantum filter.

Before going through the details of this robustness analysis, let us illustrate it through
some numerical simulations. In the simulations of Figure 5, we assume no a priori knowledge
on the initial state of the system. Therefore, we initialize the filter equation at the maximally
mixed state ρest

0 = 1
nmax+1I(nmax+1)×(nmax+1). Computing the feedback control through the

above quantum filter and injecting it to the physical system modeled by (2), the fidelity (with
respect to the target Fock state) of the closed-loop trajectories of the physical system are
illustrated in the first plot of Figure 5. The second plot of this figure, illustrate the Frobenius
distance between the estimator ρest and the physical state ρ. As one can easily see, one still
have the convergence of the quantum filter and the physical system to the desired Fock state
(here |3〉 〈3|).

Through these simulations, we have considered the same measurement and control param-
eters as those of Section 4. The system is initialized at the coherent state ρ0 = D√

3(|0〉 〈0|)
while the quantum filter is initialized at ρest

0 = 1
nmax+1I(nmax+1)×(nmax+1).

Through the next subsection, we establish a sort of separation principle implying this
semi-global robustness of the closed-loop system with respect to the initial state of the filter
equation. Also through the short Subsection 5.3 we provide a heuristic analysis of the local
convergence rate of the filter equation around the target Fock state.

5.2 A quantum separation principle

We consider the joint system-observer dynamics defined for the state Ξk = (ρk, ρ
est

k , β1,k, . . . , βd,k):





ρk+1 = Msk(Dβd,k
(ρk))

ρest

k+1 = Msk(Dβd,k
(ρest

k ))

β1,k+1 = αk

β2,k+1 = β1,k
...

βd,k+1 = βd−1,k.

(21)

We have the following result, a quantum version of the separation principle ensuring asymp-
totic stability of observer/controller from stability of the observer and of the controller sepa-
ratly.

Theorem 3. Consider any closed-loop system of the form (21), where the feedback law αk is
a function of the quantum filter: αk = g(ρest

k , β1,k, . . . , βd,k). Assume moreover that, whenever
ρest

0 = ρ0 (so that the quantum filter coincides with the closed-loop dynamics (12)), the closed-
loop system converges almost surely towards a fixed pure state ρ̄. Then, for any choice of
the initial state ρest

0 , such that kerρest

0 ⊂ kerρ0, the trajectories of the system converge almost
surely towards the same pure state: ρk → ρ̄.

Remark 2. One only needs to choose ρest

0 = 1
nmax+1I(nmax+1)×(nmax+1), so that the assumption

kerρest

0 ⊂ kerρ0 is satisfied for any ρ0.

Proof. The basic idea is based on the fact that E (Tr (ρkρ̄) | ρ0, ρest

0 ) (where we take the
expectation over all jump realizations) depends linearly on ρ0 even though we are applying a
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Figure 5: (First plot) Tr (ρkρ̄) = 〈3|ρk|3〉 versus k ∈ {0, . . . , 400} for 100 realizations of the
closed-loop Markov process (2) with feedback (20) based on the quantum filter (19) starting
from the same state χest

0 = ( 1
nmax+1 I(nmax+1)×(nmax+1), 0, . . . , 0) with 5-step delay (d = 5). The

initial state of the physical system ρ0 is given by D√
3(|0〉 〈0|). The ensemble average over these

realizations corresponds to the thick red curve; (Second plot) The Frobenius distance between
the estimator ρest and ρ (

√
Tr ((ρ− ρest)2)) for 100 realizations. The ensemble average over

these realizations corresponds to the thick red curve.
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feedback control. Indeed, the feedback law αk depends only on the historic of the quantum
jumps as well as the initialization of the quantum filter ρest

0 . Therefore, we can write

βk,d = αk−d = α(ρest

0 , s0, . . . , sk−d−1),

where {sj}k−1
j=0 denotes the sequence of k first jumps. Finally, through simple computations,

we have
E (Tr (ρkρ̄) | ρ0, ρest

0 ) =
∑

s0,...,sk−1

M̃sk−1
◦ Dβk,d

◦ . . . ◦ M̃s0 ◦Dβ0,d
ρ0,

where
M̃sρ =MsρM

†
s .

So, we easily have the linearity of E (Tr (ρkρ̄) | ρ0, ρest

0 ) with respect to ρ0.
At this point, we apply the assumption kerρest

0 ⊂ kerρ0 and therefore, one can find a
constant γ > 0 and a well-defined density matrix ρc0 in X , such that

ρest

0 = γρ0 + (1− γ)ρc0.

Now, considering the system (21) initialized at the state (ρest

0 , ρ
est

0 , 0, . . . , 0), we have by the
assumptions of the theorem and applying dominated convergence theorem:

lim
k→∞

E (Tr (ρkρ̄) | ρest

0 , ρ
est

0 ) = 1.

By the linearity of E (Tr (ρkρ̄) | ρ0, ρest

0 ) with respect to ρ0, we have

E (Tr (ρkρ̄) | ρest

0 , ρ
est

0 ) = γE (Tr (ρkρ̄) | ρ0, ρest

0 ) + (1− γ)E (Tr (ρkρ̄) | ρc0, ρest

0 ) ,

and as both E (Tr (ρkρ̄) | ρ0, ρest

0 ) and E (Tr (ρkρ̄) | ρc0, ρest

0 ) are less than or equal to one, we
necessarily have that both of them converge to 1:

lim
k→∞

E (Tr (ρkρ̄) | ρ0, ρest

0 ) = 1.

This implies the almost sure convergence of the physical system towards the pure state ρ̄.

5.3 Local convergence rate for the quantum filter

Let us linearize the system-observer dynamics (21) around the equilibrium state
Ξ̄ = (ρ̄, ρ̄, 0, . . . , 0). Set Ξ = Ξ̄+ δΞ with δΞ = (δρ, δρest, δβ1, . . . , δβd) small, δρ and δρest Her-
mitian and of trace 0. We have the following dynamics for the linearized system (adaptation
of (17)):

δρk+1 = Ask

(
δρk + δβd,k[a

†, ρ̄]− δβ∗
d,k[a, ρ̄]

)
A†

sk
− Tr

(
AskδρkA

†
sk

)
ρ̄

δρestk+1 = Ask

(
δρestk + δβd,k[a

†, ρ̄]− δβ∗
d,k[a, ρ̄]

)
A†

sk
− Tr

(
Askδρ

est
k A†

sk

)
ρ̄

δβ1,k+1 = −ǫ(2n̄+ 1)
(∑d

j=1 cos
jϑ δβj,k

)
+ ǫ cosdϑ Tr (δρestk [a, ρ̄])

δβ2,k+1 = δβ1,k
...

δβd,k+1 = δβd−1,k

(22)

where sk ∈ {g, e}, the random matrices Ask are given by Ag =
Mg

cosϕn̄
with probability

Pg = cos2ϕn̄ and Ae =
Me

sinϕn̄
with probability Pe = sin2ϕn̄.
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At this point, we note that by considering δ̃ρk = δρest

k − δρk, we have the following simple
dynamics:

δ̃ρk+1 = Ask δ̃ρkA
†
sk

− Tr
(
Ask δ̃ρkA

†
sk

)
ρ̄.

Indeed, as the same control laws are applied to the quantum filter and the physical system,
the difference between δρest

k and δρk follows the same dynamics as the linearized open-loop
system (8). But, we know by the proposition 1 that this linear system admits strictly negative
Lyapunov exponents. This triangular structure, together with the convergence rate analysis
of the closed-loop system in proposition 2, yields the following proposition whose detailed
proof is left to the reader:

Proposition 3. Consider the linear Markov chain (22). For small enough ǫ > 0, its largest
Lyapunov exponent is strictly negative.

6 Conclusion

We have analyzed a measurement-based feedback control allowing to stabilize globally and
deterministically a desired Fock state. In this feedback design, we have taken into account
the important delay between the measurement process and the feedback injection. This delay
has been compensated by a stochastic version of a Smith predictor in the quantum filtering
equation.

In fact, the measurement process of the experimental setup [4] admits some other im-
perfections. These imperfections can, essentially, be resumed to the following ones: 1- the
atom-detector is not fully efficient and it can miss some of the atoms (about 20%); 2- the
atom-detector is not fault-free and the result of the measurement (atom in the state g or e)
can be inter-changed (a fault rate of about 10%); 3- the atom preparation process is itself a
stochastic process following a Poisson law and therefore the measurement pulses can be empty
of atom (a pulse occupation rate of about 40%). The knowledge of all these rates can help us
to adapt the quantum filter by taking into account these imperfections. This has been done
in [6], by considering the Bayesian law and providing numerical evidence of the efficiency of
such feedback algorithms assuming all these imperfections.
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A Stability theory for stochastic processes

We recall here the Doob’s first martingale convergence theorem, the Doob’s inequality and the
Kushner’s invariance theorem. For detailed discussions and proofs we refer to [14](Chapter
2) and [13] (Sections 8.4 and 8.5).

The following theorem characterizes the convergence of bounded martingales:

Theorem 4 (Doob’s first martingale convergence theorem). Let {Xn} be a Markov chain on
state space X and suppose that

E (Xn) ≥ E (Xm) , for n ≥ m,

this is Xn is a submartingale. Assume furthermore that (x+ is the positive part of x)

sup
n

E
(
X+

n

)
<∞.

Then limnXn (= X∞) exists with probability 1, and E (X+
∞) <∞.

Now, we recall two results that are often referred as the stochastic versions of the Lyapunov
stability theory and the LaSalle’s invariance principle.

Theorem 5 (Doob’s Inequality). Let {Xn} be a Markov chain on state space X . Suppose
that there is a non-negative function V (x) satisfying E (V (X1) | X0 = x) − V (x) = −k(x),
where k(x) ≥ 0 on the set {s : V (x) < λ} ≡ Qλ. Then

P

(
sup

∞>n≥0
V (Xn) ≥ λ | X0 = x

)
≤ V (x)

λ
.

For the statement of the second theorem, we need to use the language of probability mea-
sures rather than the random processes. Therefore, we deal with the space M of probability
measures on the state space X . Let µ0 = σ be the initial probability distribution (every-
where through this paper we have dealt with the case where µ0 is a Dirac on a state ρ0 of
the state space of density matrices). Then, the probability distribution of Xn, given initial
distribution σ, is to be denoted by µn(σ). Note that for m ≥ 0, the Markov property implies:
µn+m(σ) = µn(µm(σ)).

Theorem 6 (Kushner’s invariance theorem). Consider the same assumptions as that of the
theorem 5. Let µ0 = σ be concentrated on a state x0 ∈ Qλ (Qλ being defined as in theorem 5),
i.e. σ(x0) = 1. Assume that 0 ≤ k(Xn) → 0 in Qλ implies that Xn → {x | k(x) = 0} ∩Qλ ≡
Kλ. Under the conditions of theorem 5, for trajectories never leaving Qλ, Xn converges to
Kλ almost surely. Also, the associated conditioned probability measures µ̃n tend to the largest
invariant set of measures M∞ ⊂ M whose support set is in Kλ. Finally, for the trajectories
never leaving Qλ, Xn converges, in probability, to the support set of M∞.
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B Lyapunov exponents of linear stochastic processes

Consider a discrete-time linear stochastic system defined on R
d by

Xk+1 = AskXk,

where Ask is a random matrix taking its values inside a finite set {A1, . . . , Am} with a sta-
tionary probability distribution for sk over {1, . . . ,m}. Then

λ(X0) = lim
k→∞

1

k
log

(‖Xk‖
‖X0‖

)
,

for different initial states X0 ∈ R
d, may take at most d values which are called the Lyapunov

exponents of the linear stochastic system.
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