Convergence of a Vertex centred Discretization of Two-Phase Darcy flows on General Meshes

Konstantin Brenner 1, 2 Roland Masson 1, 2
2 COFFEE - COmplex Flows For Energy and Environment
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR7351
Abstract : This article analyses the convergence of the Vertex Approximate Gradient (VAG) scheme recently introduced for the discretization of multiphase Darcy flows on general polyhedral meshes. The convergence of the scheme to a weak solution is shown in the particular case of an incompressible immiscible two phase Darcy flow model with capillary diffusion using a global pressure formulation. A remarkable property in practice is that the convergence is proven whatever the distribution of the volumes at the cell centres and at the vertices used in the control volume discretization of the saturation equation. The numerical experiments carried out for various families of 2D and 3D meshes confirm this result on a one dimensional Buckley Leverett solution.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [20 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00755072
Contributor : Roland Masson <>
Submitted on : Wednesday, November 27, 2013 - 8:49:59 PM
Last modification on : Saturday, September 8, 2018 - 8:38:02 AM
Document(s) archivé(s) le : Saturday, April 8, 2017 - 2:46:19 AM

File

vagconv-IJFV.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00755072, version 2

Citation

Konstantin Brenner, Roland Masson. Convergence of a Vertex centred Discretization of Two-Phase Darcy flows on General Meshes. International Journal on Finite Volumes, Institut de Mathématiques de Marseille, AMU, 2013, 10, pp.1-37. ⟨hal-00755072v2⟩

Share

Metrics

Record views

771

Files downloads

254