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Abstract

In this paper, we discuss the dissipativity property of Duhem hysteresis operator. Under mild assumptions on the functions
which define the Duhem operator, an explicit construction of the storage functions satisfying a dissipation inequality is given
based on the data on these functions. The constructed storage function is also related to the underlying anhysteresis function
which is commonly used to describe hysteresis in magnetic material. The results can thus facilitate analysis of systems with
Duhem operator via dissipativity approach.
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1 Introduction

Hysteresis is a nonlinear phenomenon that is commonly
found in a wide range of physical systems, such as,
magnetic material, piezo-electric material and mechan-
ical friction. For studying the influence of hysteresis in
a system, numerous hysteresis models have been pro-
posed, such as the backlash, elastic-plastic, Preisach
and Duhem models [3,15].

In the literature on magnetic materials, the hysteresis
behavior is caused by the friction/pinning of the mag-
netic domain-walls [12,20]. When the influence of the
friction/pinning of magnetic domain-walls is neglected,
the relation between the magnetization and the external
magnetic field defines the anhysteresis behavior. In this
case, Jiles and Atherton [12] propose a hysteresis model
for describing the magnetization that is composed of
an anhysteresis part and another component which is
due to the pinning of magnetic domain-walls. Similarly,
Coleman and Hodgdon [4] propose another hysteresis
model to describe the same phenomenon. These models
are particular classes of Duhem model [15].
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Hysteresis phenomenon that is due to the friction, ei-
ther between the magnetic domain-walls or between
mechanical surfaces, dissipates energy by heat. This is
related to the concept of dissipativity in the systems
theory literature [19,21], where the energy transfer can
be described by constructing a storage function sat-
isfying a certain dissipation inequality. Based on this
concept, various stability analysis and controller de-
signs for dissipative systems have been proposed, see,
for example, [10,17,19].

Consequently, the dissipative characterization of hys-
teresis operators can be useful for analyzing the stability
of hysteretic systems and for designing a stabilizing con-
troller. In Gorbet et al.[5], it is shown that for a Preisach
hysteresis operator Φ with a non-negative weighting
function, a positive semi-definite function H : R2 → R+

can be constructed such that for every continuous input
signal u,

dH(y(t),u(t))
dt ≤ ẏ(t)u(t), ∀t ≥ 0,

where the signal y := Φ(u, y0) and y0 := y(0) is the
initial condition of the Preisach operator. This dissipa-
tivity property has been employed in [5] to show the
stability of electro-mechanical systems with a hysteretic
piezo-actuator. By exploiting the dissipativity property,
the controller can be designed without having to deter-
mine an inverse model of the hysteresis which is difficult
to construct but has been used to counteract the hys-
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teresis behavior (see, for example, [7]). For relay and
backlash operators, the corresponding storage function
has been proposed in Brokate and Sprekels [3].

However, the existence of such a function H for the
Duhem model is not well-known despite the applica-
bility of Duhem model for describing hysteresis phe-
nomena in magnetic materials, such as, the magnetic
electron lenses [2]. A preliminary result for a small class
of Duhem model has been presented in Jayawardhana
and Andrieu [11]. In this paper, we extend the result in
[11] by admitting a larger class of Duhem model that
admits anhysteresis function (the precise definition of
anhysteresis function is given in Section 3).

2 Preliminaries

For an open set U ∈ R
n, we denote C1(U) the space

of continuously differentiable functions f : U → R and
AC(U) the space of absolutely continuous functions
f : U → R. For any real valued function z,we denote
ż(t) := d

dtz(t) when it makes sense.

Using the same description as in [15,16,22], the Duhem
operator Φ : AC(R+) × R → AC(R+), (u, y0) �→
Φ(u, y0) =: y is described by

ẏ(t) = f1(y(t), u(t))u̇+(t) + f2(y(t), u(t))u̇−(t) , (1)

where y(0) = y0, u̇+(t) := max{0, u̇(t)}, u̇−(t) :=
min{0, u̇(t)} and f1, f2 ∈ C1(R2).

The existence of solutions to (1) has been reviewed in
[15]. In particular, if for every υ ∈ R, f1 and f2 satisfy

(γ1 − γ2)[f1(γ1, υ)− f1(γ2, υ)] ≤ λ1(υ)(γ1 − γ2)
2,

(γ1 − γ2)[f2(γ1, υ)− f2(γ2, υ)] ≥ −λ2(υ)(γ1 − γ2)
2,

for all γ1, γ2 ∈ R, where λ1 and λ2 are nonneg-
ative, then the solution to (1) exist and Φ maps
AC(R+)× R → AC(R+).

The Duhem operator in (1) encapsulates many different
models which have been proposed in literature, such as,
the Bouc-Wen model [8], the LuGre friction model [23],
the Coleman-Hodgdon model [2,4], the Dahl model and
the Jiles-Atherton model [12].

Definition 2.1 The Duhem operator as in (1) is said to
be dissipative with respect to the supply rate ẏu if there
exists a non-negative function H : R2 → R+ such that
for every u ∈ AC(R+) and y0 ∈ R

dH(y(t), u(t))

dt
≤ ẏ(t)u(t) (2)

holds for almost all t ∈ R+ with y := Φ(u, y0).

By integrating the dissipation inequality (2) from
0 to T , we have H(y(T ), u(T )) − H(y(0), u(0)) ≤∫ T

0 ẏ(τ)u(τ)dτ . Since H ≥ 0,
∫ T

0 ẏ(τ)u(τ)dτ ≥

−H(y(0), u(0)) holds for all T ≥ 0. By relating it to the
work by Angeli [1], this inequality implies that such a
Duhem operator satisfying (2) has a counter-clockwise
input-output dynamics which, for linear systems, is
equivalent to the negative-imaginary linear systems as
discussed in [14]. We remark that the inequality (2) in
the Definition 2.1 has also been used in the study of dis-
sipativity for Preisach model [5] and semi-linear Duhem
model [18]. This dissipation inequality belongs also to
the family of generalized dissipation inequality as de-
scribed in [21]. In this paper, the dissipation inequality
of the Duhem operator is studied based on the solutions
(y, u) of the underlying differential equation (1).

3 Main results

In this section, we show that under mild assumptions on
f1 and f2, we can obtain explicitly a family of storage
functions H which satisfies (2). It is constructed based
only on the knowledge of f1 and f2.

Before we can state our main results in Theorem 3.3
and 3.4 given respectively in subsections 3.4 and 3.5,
we need to introduce three functions in the following
subsections: an anhysteresis function fan, a traversing
function ωΦ (or νΦ) and an intersecting function Ω (or
Υ). These functions are defined based on f1 and f2, and
they play important roles in the construction of the stor-
age function and in the characterization of dissipativity.
Generally speaking, the anhysteresis function fan de-
fines the curve where f1 = f2, the traversing function
ωΦ describes the trajectory of Φ when a monotone in-
creasing u or a monotone decreasing u is applied from a
given initial condition, and the intersecting function Ω
defines the intersection of fan and ωΦ from a given ini-
tial condition. The dual interpretation is applicable to
the traversing function νΦ and its corresponding inter-
secting function Υ.

3.1 The anhysteresis function

In order to define the anhysteresis function, we rewrite
f1 and f2 as follows

f1(γ, υ) = F (γ, υ) +G(γ, υ),

f2(γ, υ) = −F (γ, υ) +G(γ, υ),

}
∀(γ, υ) ∈ R

2 . (3)

where F := f1−f2
2 , G := f1+f2

2 . We assume that the
implicit function υ �→ {γ ∈ R, F (γ, υ) = 0} admits a
unique explicit solution γ = fan(υ) (or υ = gan(γ))
where fan (or gan) is C

1. Such function fan (or gan) is
called an anhysteresis function and the corresponding
graph {(υ, fan(υ))|υ ∈ R} (or {(gan(γ), γ|γ ∈ R}) is
called an anhysteresis curve. Using fan, it can be checked
that f1(fan(υ), υ) = f2(fan(υ), υ) holds for all υ ∈ R.

The dissipativity property for Duhem model with gan ≡
0 has been presented in our preliminary work in [11].
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3.2 The traversing function

For every pair (y0, u0) ∈ R
2, let ωΦ,1(·, y0, u0) :

[u0,∞) → R be the solution z of
z(υ) − y0 =

∫ υ

u0
f1(z(σ), σ) dσ, for all υ ∈ [u0,∞) and

let ωΦ,2(·, y0, u0) : (−∞, u0] → R be the solution z of
z(υ) − y0 =

∫ υ

u0
f2(z(σ), σ) dσ, for all υ ∈ (−∞, u0].

Using the above definitions, for every pair (y0, u0) ∈ R
2,

the function ωΦ(·, y0, u0) : R → R is defined by the
concatenation of ωΦ,2(·, y0, u0) and ωΦ,1(·, y0, u0):

ωΦ(υ, y0, u0) =

{
ωΦ,2(υ, y0, u0) ∀υ ∈ (−∞, u0)

ωΦ,1(υ, y0, u0) ∀υ ∈ [u0,∞).
(4)

Similarly, we can introduce the function νΦ which is
dual to construction of ωΦ. For every pair (y0, u0) ∈ R

2,
let νΦ,1(·, y0, u0) : [u0,∞) → R be the solution z of
z(υ) − y0 =

∫ υ

u0
f2(z(σ), σ) dσ, for all υ ∈ [u0,∞) and

let νΦ,2(·, y0, u0) : (−∞, u0] → R be the solution z of
z(υ)− y0 =

∫ υ

u0
f1(z(σ), σ) dσ, for all υ ∈ (−∞, u0]. Us-

ing the above definitions, for every pair (y0, u0) ∈ R
2,

the function νΦ(·, y0, u0) : R → R is defined by the con-
catenation of νΦ,2(·, y0, u0) and νΦ,1(·, y0, u0):

νΦ(υ, y0, u0) =

{
νΦ,2(υ, y0, u0) ∀υ ∈ (−∞, u0)

νΦ,1(υ, y0, u0) ∀υ ∈ [u0,∞).
(5)

3.3 Intersecting function

As indicated before, the function Ω defines the inter-
section between ωΦ(·, γ, υ) and fan(·). More precisely,
the function Ω : R

2 → R is an intersecting function
(corresponding to ωΦ and fan) if ωΦ(Ω(γ, υ), γ, υ) =
fan(Ω(γ, υ)) for all (γ, υ) ∈ R

2; and Ω(γ, υ) ≥ υ when-
ever γ ≥ fan(υ) and Ω(γ, υ) < υ otherwise. This implies
that the two functions ωΦ(·, γ, υ) and fan(·) intersect at
a unique point larger or smaller than u0 depending on
the sign of γ − fan(υ). In our main result, we also need

that dΩ(y(t),u(t))
dt exists for every solutions (y, u) of (1).

The following lemma gives sufficient conditions on f1
and f2 for the existence of such an intersecting function
Ω.

Lemma 3.1 [9, Lemma 3.1] Assume that f1 and f2 in
(3) be such that f1, f2 and fan are C1. Moreover, assume
that fan is strictly increasing and there exists a positive
real number ε such that for all (γ, υ) ∈ R

2

f1(γ, υ) <
dfan(υ)

dυ
− ε whenever γ > fan(υ) and (6)

f2(γ, υ) <
dfan(υ)

dυ
− ε whenever γ < fan(υ) (7)

hold. Then there exists an intersecting function Ω ∈
C1(R2) (corresponding to ωΦ and fan) such that for all
u ∈ AC(R+), y0 ∈ R and y := Φ(u, y0),

d
dtΩ(y(t), u(t))

exists for almost all t.

For the proof of Lemma 3.1, we refer to [9, Lemma 3.1].

Similarly, we can define an intersecting function Υ de-
scribing the intersection between νΦ(·, γ, υ) and fan(·).
The function Υ : R2 → R is an intersecting function
(corresponding to νΦ and fan) if νΦ(Υ(γ, υ), γ, υ) =
fan(Υ(γ, υ)) for all (γ, υ) ∈ R

2; and Υ(γ, υ) ≥ υ when-
ever γ ≥ fan(υ) and Υ(γ, υ) < υ otherwise. We also re-

quire that dΥ(y(t),u(t))
dt exists for every solutions (y, u) of

(1). The following lemma gives sufficient conditions on
f1 and f2 for the existence of such an intersecting func-
tion Υ.

Lemma 3.2 Assume that f1 and f2 in (3) be such that
f1, f2 and fan are C1. Moreover, assume that fan is
strictly increasing and there exists a positive real number
ε such that for all (γ, υ) ∈ R

2

f2(γ, υ) <
dfan(υ)

dυ
− ε whenever γ > fan(υ) and (8)

f1(γ, υ) <
dfan(υ)

dυ
− ε whenever γ < fan(υ) (9)

hold. Then there exists an intersecting function Υ ∈
C1(R2) (corresponding to νΦ and fan) such that for all
u ∈ AC(R+), y0 ∈ R and y := Φ(u, y0),

d
dtΥ(y(t), u(t))

exists for almost all t.

3.4 Storage function using ωΦ

Under the hypotheses in Lemma 3.1, we can define a
candidate storage function H1 : R2 → R by

H1(γ, υ) = γυ+

∫ Ω(γ,υ)

υ

ωΦ(σ, γ, υ)dσ−
∫ Ω(γ,υ)

0

fan(σ)dσ,

(10)
where Ω is the intersecting function (corresponding to
ωΦ and fan).

Theorem 3.3 Consider the Duhem hysteresis operator
Φ defined in (1)-(3) with C1 functions F,G : R2 → R

and the corresponding anhysteresis function fan be C1.
Suppose that there exists an intersecting function Ω and
the following condition holds for all (γ, υ) ∈ R

2

(A) F (γ, υ) ≥ 0 whenever γ ≤ fan(υ), and F (γ, υ) < 0
otherwise.

Then for every u ∈ AC(R+) and for every y0 ∈ R, the
function t �→ H1

(
(y(t), u(t)

)
with y := Φ(u, y0)) and H1

as in (10) is differentiable and satisfies (2). Moreover, if
f1 ≥ 0 and f2 ≥ 0 then Φ is dissipative with respect to
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the supply rate ẏu with the storage function H1, i.e., H1

is non-negative.

The proof can be found in the Appendix A.

3.5 Storage function using νΦ

Dual to the results from the previous subsection, under
the hypotheses of Lemma 3.2 we can also define a storage
function based on νΦ. The candidate storage function
H2 : R2 → R is given by

H2(γ, υ) = γυ+

∫ Υ(γ,υ)

υ

νΦ(σ, γ, υ)dσ−
∫ Υ(γ,υ)

0

fan(σ)dσ,

(11)
where Υ is the intersecting function (corresponding to
νΦ and fan).

Theorem 3.4 Consider the Duhem hysteresis operator
Φ defined in (1)-(3) with C1 functions F,G : R2 → R

and the corresponding anhysteresis function fan be C1.
Suppose that there exists an intersecting function Υ and
Assumption (A) in Theorem 3.3 hold. Then for every
u ∈ AC(R+) and for every y0 ∈ R, the function t �→
H2

(
(y(t), u(t)

)
with y := Φ(u, y0)) and H2 as in (11) is

differentiable and satisfies (2). Moreover, if f1 ≥ 0 and
f2 ≥ 0 then Φ is dissipative with respect to the supply rate
ẏu with the storage functionH2, i.e., H2 is non-negative.

The proof is similar to the proof of Theorem 3.3.

Remark 3.5 If f1 and f2 satisfy the assumptions in both
Theorem 3.3 and Theorem 3.4, the convex combination
of H1 and H2 is also a storage function which satisfies
(2). Moreover, if additionally, it is assumed that f1 and
f2 are positive then the convex combination of H1 and
H2 is also a non-negative storage function. 


4 Stability analysis

The functionsH1 andH2 which are used in Theorem 3.3
and 3.4, respectively, are non-negative if both f1 and f2
are positive-definite. Moreover, from the definition ofH1

in (10), the null-set of H1, i.e., {(γ, υ) ∈ R
2 |H1(γ, υ) =

0} is given by R×{0}. This set is also the same as that of
H2 in (11). Consider now an interconnected system with
Duhem hysteresis operator Φ satisfying the hypotheses
of Theorem 3.3 with positive-definite f1 and f2 as follows

ẋ = f(x, y), u = h(x, y), y = Φ(u, y0), (12)

where f, h are smooth functions with f(0, 0) = 0,
h(0, 0) = 0 and x ∈ R

n is the state of the first subsystem.

Proposition 4.1 Assume that f1 and f2 satisfy∣∣∣∣1− f1(γ, υ)
∂h

∂γ
(ξ, γ)

∣∣∣∣ ≥ ε ,

∣∣∣∣1− f2(γ, υ)
∂h

∂γ
(ξ, γ)

∣∣∣∣ ≥ ε

(13)
for all (ξ, γ) ∈ R

n+1 where υ = h(ξ, γ) and ε > 0.
Suppose that there exists a radially unbounded function
W : Rn+1 → R+ for the first subsystem such that

∂W (ξ, γ)

∂ξ
f(ξ, γ) +

∂W (ξ, γ)

∂γ
w ≤ −α(ξ, γ)− h(ξ, γ)w

for all ξ ∈ R
n and for all γ, w ∈ R, where α is a positive

semi-definite function. Then the solutions of the closed
loop system (x(t), y(t)) converges to the set {(ξ, γ) ∈
R

n+1 |α(ξ, γ) = 0}.

Proof: Let V (x, y) = W (x, y)+H1(y, u) be the Lyapunov
function for (12) where

V̇ =
∂W (x, y)

∂x
f(x, y) +

∂W (x, y)

∂y
ẏ +

dH1(Φ(u, z0), u)

dt

≤ −α(x, y)− h(x, y)ẏ +
˙︷ ︸︸ ︷

Φ(y, z0)u = −α(x, y).

Since V is lower-bounded, the solutions (x(t), y(t)) are
bounded for all t ≥ 0. With (12), it yields that the time
function x(t) is uniformly continuous. Moreover, for all
t such that u̇(t) ≥ 0, we have

ẏ = f1(y, u)
[
∂h
∂x(x, y)f(x, y) +

∂h
∂y (x, y)ẏ

]
.

Hence,

ẏ
[
1− f1(y, u)

∂h
∂y (x, y)

]
= f1(y, u)

∂h
∂x (x, y)f(x, y).

Also, when u̇(t) ≤ 0, it yields

ẏ
[
1− f2(y, u)

∂h
∂y (x, y)

]
= f2(y, u)

∂h
∂x (x, y)f(x, y).

Using (13) and using the fact that (x, y) is bounded, we
obtain that y is a uniformly continuous function. Con-
sequently, using the Barbalat’s lemma, the solutions of
the closed loop system (x(t), y(t)) converges to the set
{(ξ, γ) ∈ R

n+1 |α(ξ, γ) = 0}. �

5 Conclusions

In this paper, a class of Duhem model which is dissipa-
tive with respect to the supply rate ẏu has been iden-
tified and the corresponding family of storage functions
has been presented. The class includes models that are
widely-used to describe magnetic material, such as, the
Jiles-Atherton and Coleman-Hodgdon models. There-
fore the analysis that is presented in this paper is relevant
to the stability analysis and control design for systems
that use electromagnetic-based actuators, e.g., voice-coil
actuators. A possible control design methodology that
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can exploit this dissipativity property is based on the in-
terconnection of counterclockwise systems as discussed
in [1] and [14].

A Proof of Theorem 3.3

It can be checked that the hypothesis (A) on F im-
plies that f1(γ, υ) ≥ f2(γ, υ) whenever γ ≤ fan(υ), and
f1(γ, υ) < f2(γ, υ) otherwise.

Let u ∈ AC(R+), y0 ∈ R and denote u∗ := Ω(y, u).
First, we would prove that for almost all t ∈ R+,

Ḣ1

(
(Φ(u, y0))(t), u(t)

)
exists. Using (10) and with Leib-

niz derivative rule and denoting y := (Φ(u, y0)), we have

dH1

(
y(t), u(t)

)
dt

= ẏ(t)u(t)

+

[
ωΦ(u

∗(t), y(t), u(t))− fan(u
∗(t))

]
u̇∗(t)

+

∫ u∗(t)

u(t)

d

dt
ωΦ(υ, y(t), u(t))dυ, (A.1)

where we use the relation ωΦ(u(t), y(t), u(t)) = y(t).

Let t ≥ 0. The first term in the RHS of (A.1) exists
for almost all t ≥ 0 since y(t) satisfies (1). Note that
since ωΦ(u

∗(t), y(t), u(t)) = fan(u
∗(t)), the second term

of (A.1) is zero since u̇∗(t) exists by the definition of Ω.
In order to get the dissipativity with the supply rate (2),
it remains to check whether the last term of (A.1) exists,
is finite and satisfies∫ u∗(t)

u(t)

d

dt
ωΦ(υ, y(t), u(t))dυ ≤ 0. (A.2)

It suffices to show that, for every υ ∈ [u(t), u∗(t)], the
following Dini’s derivative :

lim
ε↘0+

1

ε
[ωΦ(υ, y(t+ε), u(t+ε))−ωΦ(υ, y(t), u(t))] (A.3)

exists and the limit is less or equal to zero when u∗(t) >
u(t) and the limit is greater or equal to zero elsewhere.

For any ε ≥ 0, let us introduce the continuous function
ωε : R → R by ωε(υ) = ωΦ(υ, y(t + ε), u(t + ε)). More
precisely, for every ε ≥ 0, ωε is the unique solution of

ωε(υ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y(t+ ε) +

∫ υ

u(t+ε)

f1(ωε(σ), σ)dσ ∀υ ≥ u(t+ ε),

y(t+ ε) +

∫ υ

u(t+ε)

f2(ωε(σ), σ)dσ ∀υ ≤ u(t+ ε).

(A.4)
Note that ω0(υ) = ωΦ(υ, y(t), u(t)) for all υ ∈ R and

ωε(u(t+ ε)) = y(t+ ε) ∀ ε ∈ R+ . (A.5)

In order to show the existence of (A.3) and the validity
of (A.2), we consider several cases depending on the
sign of u̇(t) and y(t)− fan(u(t)).

First, we assume that u̇(t) > 0 that is not of mea-
sure zero. This implies that there exists a suffi-
ciently small δ > 0 such that for every ε ∈ (0, δ],
we have u(t + ε) > u(t) and ω0(u(t + ε)) =

y(t) +
∫ u(t+ε)

u(t) f1(ω0(σ), σ) dσ. Moreover, with the

change of integration variable σ = u(τ) we obtain

ω0(u(t + ε)) = y(t) +
∫ t+ε

t f1(ω0(u(τ)), u(τ)) u̇(τ) dτ,
for all ε ∈ [0, δ].

The functions ε �→ w0(u(t + ε)) and ε �→ y(t + ε)
with ε ∈ (0, δ] are two AC functions which are so-
lutions of the same locally Lipschitz ODE and with
the same initial value. By uniqueness of solution, we
get ω0(u(t + ε)) = y(t + ε). This fact together with
(A.5) shows that ωε(u(t + ε)) = ω0(u(t + ε)) for all
ε ∈ [0, δ]. Let us evaluate (A.3) when y(t) ≥ fan(u(t)).
In this case, we have u(t) < u∗(t) from the prop-
erty of Ω. Also, since for every ε ∈ (0, δ] the two
functions ωε(υ) and ω0(υ) satisfy the same ODE for
υ ∈ [u(t + ε), u∗(t)], we have ωε(υ) = ω0(υ) for all
υ ∈ [u(t+ε), u∗(t)] and for all ε ∈ [0, δ]. This implies that
limε↘0+

1
ε [ωε(υ) − ω0(υ)] = 0, for all υ ∈ [u(t), u∗(t)].

Therefore, the inequality (A.2) holds for almost all
u̇(t) > 0 and y(t) ≥ fan(u(t)).

Now, we check (A.2) when y(t) < fan(u(t)) and u̇(t) > 0
that is not of measure zero. Note that by the definition
of Ω, u∗(t) < u(t) which implies that the integrand
in (A.2) is evaluated for all υ ∈ (u∗(t), u(t)). Also,
since u̇(t) > 0, there exists δ > 0 such that we have
υ ≤ u(t) < u(τ) and u̇(τ) > 0 for all τ ∈ (t, t + γ). It
follows from (A.4) and assumption (A) that for every
ε ∈ (0, δ),
dωε(u(τ))

dτ = f2(ωε(u(τ)), u(τ)) u̇(τ)

≤ f1(ωε(u(τ)), u(τ)) u̇(τ) ∀τ ∈ [t, t+ ε],

and the function y satisfies dy(τ)
dτ = f1(y(τ), u(τ)) u̇(τ)for

all τ ∈ [t, t + ε]. Since ωε(u(t + ε)) = y(t + ε) and
using the comparison principle (in reverse direction),
we get that for every ε ∈ [0, δ), ωε(u(τ)) ≥ y(τ) for all
τ ∈ [t, t+ ε]. Since the two functions ωε(υ) and ω0(υ) for
υ ∈ [u∗(t), u(t)] are two solutions of the same ODE, it
follows that ωε(υ) ≥ ω0(υ) and we get that if it exists:

lim
ε↘0+

1

ε
[ωε(υ)− ω0(υ)] ≥ 0 ∀υ ∈ [u∗(t), u(t)]. (A.6)

In the following, to show the existence of the limit given
in (A.6), we compute a bound on the function ε �→
1
ε [ωε(υ)− ω0(υ)]. Note that for every ε ∈ [0, δ],

|ωε(υ)− ω0(υ)| ≤ |y(t+ ε)− y(t)|+
∫ u(t+ε)

u(t)

|f2(ωε(σ), σ)|dσ

+

∫ u(t)

υ

|f2(ωε(σ), σ) − f2(ω0(σ), σ)|dσ,
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for all υ ∈ [u∗(t), u(t)]. By the locally Lipschitz property
of f2, by the boundedness of f2 and by the boundedness
of ωε on [υ, u(t)] for all ε ∈ [0, δ], we obtain

|ωε(υ)− ω0(υ)| ≤ |y(t+ ε)− y(t)|
+
∫ u(t)

υ
L |ωε(σ)− ω0(σ)| dσ + α|u(t+ ε)− u(t)|,

where α is a bound of f2 on a compact set and L is
the Lipschitz constant of f2 on [ωmin , ωmax ] × [υ, u(t)]
with ωmin := min(ε,σ)∈[0,δ]×[υ,u(t)] ωε(σ) and ωmax :=
max(ε,σ)∈[0,δ]×[υ,u(t)] ωε(σ). With the Gronwall’s lemma
[13], this implies that for every ε ∈ [0, δ] , |ωε(υ) −
ω0(υ)| ≤ exp((u(t)−υ)L)

[
|y(t+ ε)−y(t)|+α|u(t+ ε)−

u(t)|
]
for all υ ∈ [u∗(t), u(t)]. Hence limε↘0+

1
ε |ωε(υ) −

ω0(υ)| ≤ exp((u(t)−υ)L)
[
|f1(y(t), u(t))|+α

]
u̇(t) for all

υ ∈ [u∗(t), u(t)]. Consequently the limit given in (A.6)
exists. It implies that the inequality (A.2) holds for al-
most all u̇(t) > 0 and y(t) < fan(u(t)).

We can use similar arguments to prove that (A.2) is sat-
isfied for almost all u̇(t) < 0.

Finally, when u̇(t) = 0, we simply get limε↘0+
1
ε |ωε(υ)−

ω0(υ)| = 0, by the continuity of the above bound.

To prove the last claim, we need to show that H1 is non-
negative.

It is assumed in the hypotheses that f1 is positive. If
u(t) ≥ 0 and y(t) ≥ fan(u(t)), we have that fan(υ) ≤
y(t) for all υ ∈ [0, u(t)] and fan(υ) ≤ ωΦ(υ, y(t), u(t)) for
all υ ∈ [u(t),Ω(y(t), u(t))] by the definiton of Ω. Hence

H1(y(t), u(t)) =
∫ u(t)

0 y(t)− fan(υ) dυ

+
∫ Ω(y(t),u(t))

u(t) ωΦ(υ, y(t), u(t))− fan(υ) dυ ≥ 0.

On the other hand, if u(t) < 0 and y(t) ≥ fan(u(t)),
we have that y(t) ≤ ωΦ(υ, y(t), u(t)) for all υ ∈ [u(t), 0]
(due to the positivity of f1). Also, by the definition of Ω,
Ω(y(t), u(t)) ≥ 0 implies that fan(υ) ≤ ωΦ(υ, y(t), u(t))
for all υ ∈ [0,Ω(y(t), u(t))]. Similarly, Ω(y(t), u(t)) <
0 implies that fan(υ) > ωΦ(υ, y(t), u(t)) for all υ ∈
[Ω(y(t), u(t)), 0]. Hence

H1(y(t), u(t)) = − ∫ 0

u(t) y(t)− ωΦ(υ, y(t), u(t)) dυ

+
∫ Ω(y(t),u(t))

0 ωΦ(υ, y(t), u(t))− fan(υ) dυ ≥ 0.

For the case y(t) < fan(u(t)), the non-negativity of H1

can be checked using the same routine and using the
positivity of f2.
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[17] R. Ortega, A. Loŕıa, P.J. Nicklasson, H. Sira-Ramı́rez,
Passivity-Based Control of Euler-Lagrange Systems,
Springer-Verlag, London, 1998.

[18] A.K. Padthe, J-H. Oh, D.S. Bernstein, “Counterclockwise
Dynamics of a Rate-independent Semilinear Duhem Model,”
Proc. 44th IEEE Conf. Dec. Contr. and Eur. Contr. Conf.,
Seville, 2005.

[19] A.J. van der Schaft, L2-Gain and Passivity Techniques in
Nonlinear Control, Springer-Verlag, London, 2000.

[20] J. Takacs,“Mathematical proof of the definition of
anhysteretic state”, Physical B, vol. 372, pp. 57–60, 2006.

[21] H.L. Trentelmann, J.C. Willems, “Every storage functions is
a state function,” Systems and Control Letters, vol. 32, pp.
249-259, 1997

[22] A. Visintin, Differential Models of Hysteresis, Springer-
Verlag, New York, 1994.

[23] C.C. de Wit, H. Olsson, K.J. Astrom, P. Lischinsky, “A new
model for control of systems with friction,” IEEE Trans. Aut.
Contr., vol. 40, no. 3, pp. 419–425, 1995.

6


