
HAL Id: hal-00753689
https://hal.science/hal-00753689

Submitted on 19 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time Control with Parametric Timed Reachability
Games

Aleksandra Jovanovic, Sébastien Faucou, Didier Lime, Olivier Henri Roux

To cite this version:
Aleksandra Jovanovic, Sébastien Faucou, Didier Lime, Olivier Henri Roux. Real-Time Control with
Parametric Timed Reachability Games. 11th International Workshop on Discrete Event Systems, Oct
2012, Guadalajara, Mexico. pp.323-330. �hal-00753689�

https://hal.science/hal-00753689
https://hal.archives-ouvertes.fr

Real-Time Control with Parametric Timed
Reachability Games ?

A. Jovanović ∗∗ S. Faucou ∗∗∗ D. Lime ∗∗ O. H. Roux ∗∗

LUNAM Université.
∗∗ École Centrale de Nantes (e-mail:

aleksandra.jovanovic@irccyn.ec-nantes.fr,
didier.lime@irccyn.ec-nantes.fr, olivier-h.roux@irccyn.ec-nantes.fr).
∗∗∗Université de Nantes (e-mail: sebastien.faucou@univ-nantes.fr)

IRCCyN UMR CNRS 6597

Abstract: Timed game automata are used for solving control problems on real-time systems. A
timed reachability game consists in finding a strategy for the controller for the system, modeled
as a timed automaton. Such a controller says when and which of some "controllable" actions
should be taken in order to reach "goal" states. We deal with a parametric version of timed
game automata. We define parametric timed reachability games and introduce their subclass for
which the existence of a parameter valuation, such that there is a strategy for the controller to
reach the "goal" state, is decidable. We also propose a semi-algorithm to symbolically compute
the corresponding set of parameter valuations.

Keywords: Timed automata, game theory, parameters, control, verification, model-checking

1. INTRODUCTION

Formal methods are widely used in the analysis of time
critical systems. For instance, methods such as model-
checking allow the verification of a system by exploring the
state-space of a (timed) model, e.g. a timed automaton.
A prerequisite for these methods is the availability of a
complete model of the system. Thus, it can be difficult to
use them at early design stages, when the whole system is
not fully characterized.

It is sometimes possible to overcome this problem by
using parameters for modeling values that are not fully
characterized yet. To exploit such models, a parametric
approach in automata theory must be used. The analysis
of a parametric model produces symbolic constraints on
the parameters that ensure the correctness of the system.

Parametric control problem The verification problem for
a given model of the system S and a model of the
specification ϕ, consists in checking whether S satisfies ϕ,
which is often written S |= ϕ and referred to as the model-
checking problem. The parametric model-checking problem
for a parametric system S and a parametric specification
ϕ, consists in checking whether there exists a valuation v
of the parameters such that S satisfies ϕ for this valuation,
which is written JSKv |= JϕKv.

The control problem assumes the system is open i.e. we
can restrict the behaviour of S: some events in S are
controllable and the others are uncontrollable, and we
can sometimes disable controllable actions. The control
problem for a system S and a specification ϕ asks the
following: is there a controller C s.t. S × C |= ϕ ? The
parametric control problem for a parametric system S and
? This work was supported by project ANR-2010-BLAN-0317.

a parametric specification ϕ asks the following: is there a
controller C and a valuation v of the parameters s.t. JSKv×
C |= JϕKv ? The associated parametric controler synthesis
problem asks to compute a witness controller C and the
set of valuations V such that ∀v ∈ V , JSKv × C |= JϕKv.

The control problem can be formulated as a game in which
the controller plays against the environment.

Related Work Parametric timed automaton (PTA) has
been introduced in Alur et al. (1993) as an extension of the
timed automaton, Alur and Dill (1994), that allows the use
of parameters instead of concrete values in the clock con-
straints. The emptiness problem for PTA asks: is the set
of parameter valuations, such that an automaton has an
accepting run, empty? The main result is that this problem
is undecidable in general except for some restricted cases.
In Hune et al. (2002), the authors introduce a subclass
of parametric timed automata, called lower bound/upper
bound (L/U) automata, for which the emptiness problem
is decidable.

Timed game automata (TGA), Maler et al. (1995), were
introduced for solving control problems on real-time sys-
tems. TGA are based on the framework of Ramadge and
Wonham (1989), developed for the control of the discrete
event processes. A timed game automaton is essentially
a timed automaton whose set of actions is partitioned
into controllable and uncontrollable actions. Two players,
a controller and an environment, choose at every instant
one of the available actions from their own sets and the
game progresses. A timed reachability game consists in
finding a strategy for the controller: when and which of the
controllable actions should be taken such that, regardless
of what the environment does, the system ends up in

a desired location. Such timed games are known to be
decidable, Maler et al. (1995); Asarin et al. (1998).

Our Contribution We first define parametric timed game
automata (PGA) and introduce their subclasses for which
we prove the decidability of the emptiness problem for
parametric timed reachability game i.e. the existence of
a parameter valuation, such that there is a strategy for
the controller to reach the "goal" state. We then propose
the extension for the parametric case of the algorithm of
Cassez et al. (2005) for solving timed games. It leads to
a semi-algorithm that symbolically computes the set of
corresponding parameter valuations. We end with a case
study that illustrates the use of the new subclass and
proposed algorithm.

2. PARAMETRIC TIMED GAMES

2.1 Basic Definitions

Parametric constraints Let X = {x1, ...xm} be a finite
set of variables modeling clocks. R is the set of real
numbers, Q the set of rational numbers, and Z the set of
integers. A clock valuation is a function w : X 7→ R≥0

assigning a non-negative real value to each clock. Let
P = {p1, ...pn} be a finite set of parameters. A parametric
clock constraint c is an expression of the form c ::= xi −
xj v p | xi v p | c∧c, where xi, xj ∈ X, v∈ {≤, <}, and p
is a linear expression of the form k0 +k1p1 + ...+knpn with
k0, ...kn ∈ Z. A parameter valuation is a function v : P 7→
Q assigning a rational value to each parameter. For any
parametric clock constraint c and any parameter valuation
v, we note JcKv the constraint obtained by replacing each
parameter pi by its valuation v(pi). A pair (w, v) of a clock
valuation and a parameter valuation satisfies a parametric
constraint c, notation (w, v) |= c, if the expression c[w, v],
obtained by replacing each parameter pi with v(pi) and
each clock xi with w(xi), evaluates to true. We denote
by G(X) the set of parametric constraints over X, and
G′(X) a set of parametric constraints over X of the form
c′ ::= xi v p | c′∧c′. If w is a clock valuation and t ∈ R≥0,
we write w+ t for the valuation assigning w(x) + t to each
clock. For R ⊆ X, w[R] denotes a valuation assigning 0 to
each clock in R and w(x) to each clock in X\R.
Note that given an arbitrary order on X∪P , any valuation
(w, v) can be identified to a point in R|P |+|X|, and the set
of valuations (w, v) such that some parametric constraint
c is true is then a convex polyhedron in that space.

Parametric Timed Automata Parametric clock con-
straints are used as guards and invariants in parametric
timed automata.
Definition 1. A Parametric Timed Automaton (PTA) is a
tuple A = (L, l0, X,Σ, P, E, I), where L is a finite set of
locations, l0 ∈ L is an initial location, X is a finite set of
clocks, Σ is a finite alphabet of actions, P is a finite set of
parameters, E ⊆ L×Σ×G(X)× 2X ×L is a finite set of
transitions, and I : L 7→ G′(X) is a function that assigns
an invariant to each location.
Definition 2. (Semantics of a PTA). The concrete seman-
tics of a PTA A under a parameter valuation v, notation
JAKv, is the labeled transition system (Q, q0,→) over Σ ∪
R≥0 where:

• Q = {(l, w) ∈ L× (X 7→ R≥0) | (w, v) |= I(l)}
• q0 = {(l, w0) ∈ Q | l = l0 ∧ w0 : X 7→ 0}
• the transition relation→ is defined as: ∀(l, w), (l′, w′) ∈
Q, t ≥ 0 and a ∈ Σ:

delay transition: (l, w)
t−→ (l, w′) if w′ = w + t

action transition: (l, w)
a−→ (l′, w′) if ∃g ∈ G(X),

R ⊆ X : l
a,g,R−−−→ l′ and (w, v) |= g and w′ = w[R]

A run of a parametric timed automaton A under a pa-
rameter valuation v, is a sequence of alternating de-
lay and action transitions in the semantics of JAKv.
Runs((l, w), JAKv) denotes the set of runs starting in (l, w),
and Runs(JAKv) denotes the set of runs starting in the
initial state (l0, w0). If ρ is a finite run, we denote by last(ρ)
the last state of ρ.

A state (l, w) is said to be reachable if there exists a finite
run ρ ∈ Runs(JAKv) such that last(ρ) = (l, w).

L/U Automata A parameter pi occurs positively (resp.
negatively) in a parametric constraint xi − xj ∼ k0 +
k1p1 + ... + knpn, with ∼∈ {≤, <}, if ki > 0 (resp.
ki < 0). A lower bound (resp. upper bound) parameter
of a parametric timed automaton A is a parameter that
only occurs negatively (resp. positively) in the parametric
constraints of A.
Definition 3. (L/U automaton Hune et al. (2002)). A L/U
automaton is a parametric timed automaton where every
parameter is either a lower or an upper bound parameter.

Let A be a non-parametric timed automaton. Weaken-
ing the guards and invariants in A (decreasing the lower
bounds and increasing the upper bounds on clocks) yields
an automaton whose reachable states include those of A,
and strengthening the guards and invariants in A (increas-
ing the lower bounds and decreasing the upper bounds on
clocks) yields an automaton whose reachable states are a
subset of those of A. Following this fact, decidability of the
reachability-emptiness problem (existence of a parameter
valuation such that a certain state in the automaton is
reachable from the initial state) has been established for
L/U automata (detailed proof in Hune et al. (2002)).

2.2 Parametric Timed Games

We now extend the previous definitions to obtain a more
powerful formalism that allows us to express control prob-
lems. To this end we will parametrize the classical notion
of timed games.
Definition 4. A Parametric (Timed) Game Automaton
(PGA) G is a parametric timed automaton with its set
of actions Σ partitioned into controllable (Σc) and uncon-
trollable (Σu) actions.

As for PTA, for any PGA G and any parameter valuation
v, we obtain a timed game automaton JGKv by replacing
each parametric constraint c in the guards and invariants
by JcKv.

In a timed game, each of the two players acts within its
set of actions according to a strategy. The game being
symmetric, we only give the definitions for Player 1 (the

controller playing with actions in Σc). Since we consider
only reachability properties, as in Maler et al. (1995);
Cassez et al. (2005), invariants restrict the behavior of the
automaton but never force a player to move.
Definition 5. (Strategy). A strategy F over JGKv is a par-
tial function from Runs(JGKv) to Σc ∪ {delay} such that

for every finite run ρ, if F(ρ) ∈ Σc then last(ρ)
F(ρ)−−−→ q

for some state q = (l, w), and if F(ρ) = delay, then there
exists some d > 0 such that for all 0 ≤ d′ ≤ d, there exists
some state q such that last(ρ)

d′−−→ q.

A strategy therefore tells each player, given the history of
the game, whether to play one of its actions or to wait
(delay). We consider only memory-less strategies, where
F(ρ) only depends on the current state last(ρ), and which
are sufficient for timed reachability games, Asarin et al.
(1998), and, as we will show, for our parametric extension.

It should be noted that the uncontrollable actions cannot
be relied on to reach the desired state: the controller has
to be able to reach the desired locations by itself.

An example, shown in Figure 2, and a case-study, pre-
sented in Section 5, illustrate the strategy to reach a
desired location.

The restricted behaviour of JGKv when the controller
plays the strategy F against all possible strategies of the
environment is defined by the notion of outcome.
Definition 6. (Outcome). Let G be a PGA, v be a parame-
ter valuation, and F be a strategy over JGKv. The outcome
Outcome(q,F) of F from state q is the subset of finite runs
in Runs(q, JGKv) defined inductively as:

• the run with no action q ∈ Outcome(q,F)

• if ρ ∈ Outcome(q,F) then ρ′ = ρ
δ−−→ q′ ∈

Outcome(q,F) if ρ′ ∈ Runs(q, JGKv) and one of the
following three condition holds:
(1) δ ∈ Σu,
(2) δ ∈ Σc and δ = F(ρ),
(3) δ ∈ R≥0 and ∀0 ≤ δ′ < δ, ∃q′′ ∈ S s.t.

last(ρ)
δ′−−→ q′′ ∧ F(ρ

δ′−−→ q′′) = delay.
• for an infinite run ρ, ρ ∈ Outcome(q,F), if all the
finite prefixes of ρ are in Outcome(q,F).

As we are interested in reachability games, we want to
consider only the runs in the outcome that are “long
enough” to have a chance to reach the goal: a run ρ ∈
Outcome(q,F) is maximal if it is either infinite or there
is no delay d and no state q′ such that ρ′ = ρ

d−−→ q′ ∈
Outcome(q,F) and F(ρ′) ∈ Σc (the only possible actions
from last(ρ) are uncontrollable actions), or ρ is an infinite
run. We note MaxOut(q,F) the set of maximal runs for
state s and strategy F .
We can now define the notion of winning strategy.
Definition 7. (Winning strategy). Let G = (L, l0, X,Σ

c ∪
Σu, P, E, I) be a PGA and goal ∈ L. A strategy F
is winning for the location goal if for all runs ρ ∈
MaxOut(q0,F), where q0 = (l0, w0), there is some state
(goal, w) in ρ.

Similarly, a state s is winning (for the controller) if it
belongs to a run in the outcome of a winning strategy.

In the parametric case, non-existance of a winning strategy
can be solved by the modification of a model, as illustrated
in the case-study, Section 5.
Definition 8. Emptiness problem for parametric timed
reachability game for PGA is the problem of determining
whether the set of parameter valuation, such that there is
a strategy for the controller to reach the desired state, is
empty.

The emptiness problem for PTA is known to be unde-
cidable, Alur and Dill (1994). As PGA extend PTA, the
following theorem stands.
Theorem 1. The emptiness problem for parametric timed
reachability game for PGA is undecidable.

We accordingly extend the subclass of L/U automata of
Hune et al. (2002) to define a subclass of parametric game
automata for which this problem is decidable.

3. L/U REACHABILITY TIMED GAMES

The parameters are partitioned into two sets. The first set
P l contains parameters that are used as lower bounds in
the guards on the controllable transitions and as upper
bounds in the guards of the uncontrollable transitions.
The parameters from the other set, Pu, are used as
upper bounds in the controllable and lower bounds in
the uncontrollable transitions. This is a natural way of
making the controller more powerful by restricting possible
behaviors of the environment (and vice-versa). We assume
that invariants are non-parametric constraints.
Definition 9. (L/U game automata). A L/U game automa-
ton G = (L, l0, X,Σ

c ∪ Σu, P, E, I) is a parametric game
automaton in which:

• the set of parameters P is partitioned as P l and Pu;
• each parameter p ∈ P l occurs only negatively (resp.

positively) in the guards of controllable (resp. uncon-
trollable) transitions;
• each parameter p ∈ Pu occurs only positively (resp.

negatively) in the guards of controllable (resp. uncon-
trollable) transitions;
• for each location l, I(l) contains no parameter.

We will now prove that the existence of a parameter
valuation, such that the controller has a winning strategy,
is decidable for L/U games.

Let (λ, µ) represent a parameter valuation such that λ
applies to lower bound parameters, and µ applies to upper
bound parameters. Let G[(0,∞)] represent the (extended)
parameter valuation of G such that each parameter pui ∈
Pu is set to ∞, and each parameter pli ∈ P l is set to 0. In
this way we obtain a timed game automaton, for which the
existence of a winning strategy is known to be decidable.
Lemma 1. Let G be a L/U game automaton. There exists
a parameter valuation (λ, µ) such that a goal state is
enforceable in JGK(λ,µ) with a strategy F , if and only if
a goal state is enforceable in G[(0,∞)] using the same
strategy F .

Proof. We are searching for the value for upper bound
parameters such that all runs of a given strategy F remain
winning. For lower bound parameters, zero valuation is a

possible solution. Note that each run of a winning strategy
necessarily reaches a goal state in finite time and with a
finite number of discrete actions.

To find the upper bound value, we introduce in the system
a new clock x0 that serves only to measure the time elapsed
from the start. Consider first the untimed runs of F .
Since there is a finite number of edges, there is a finite
number of possible untimed runs. For each of those runs we
measure its sufficient duration in a timed case of G[(0,∞)].
A sufficient duration is obtained when the uncontrollable
transitions are taken as late as possible in each state (which
means just before we should take a supposed controllable
transition in that state) and the controllable transitions
are taken when F says. Since F is winning, each run i will
reach a goal location at some time xi0 = Ti.

We take the maximal value, Tmaxi , for the upper bound
parameters, and 0 for the lower bound parameters. In
this valuation, no matter what the environment does, all
guards will be satisfied so that we can take the controllable
actions at the supposed time. Hence, all runs of the
strategy F remain winning. �

Based on Lemma 1, we can formulate the following theo-
rem.
Theorem 2. The emptiness problem for parametric timed
reachability game for L/U game automata is decidable.

If we think in terms of control it may not be very realistic
to be allowed to forbid uncontrollable transitions using the
values of their parameters. It may actually even seem a bit
far-fetched to parametrize uncontrollable actions at all. A
consequence of the previous result however, is that for the
subclass of L/U game automata with no parameter in the
guards of uncontrollable transitions, the problem of the
emptiness of the set of valuations such that the controller
has a winning strategy is decidable too.

In the context of games however, having a game as
symmetric as possible, including parametrization of guards
makes sense. We will now explore the case in which we
nonetheless impose that the parameter valuations never
set the guards of the uncontrollable transitions to false:
we can restrict their behaviour but not to the point of
uniformly forbidding the transition.

Consequently, all the guards on the uncontrollable tran-
sitions that contain a parameter as a lower (resp. upper)
bound have to contain a constant as a non-strict upper
(resp. lower) bound. Non-strict inequalities are mandatory
so that a clock can take the value equal to the constant as
a single time point in the emptiness test. The guards on
the controllable transitions have no other restriction than
the L/U condition.

We also limit the parametric linear expression in the con-
straints of uncontrollable transitions to just one parame-
ter.
Definition 10. (Restricted L/U game automata). A restricted
L/U game automaton is a L/U game automaton in which
the guards of the uncontrollable transitions are constraints
of the form k ≤ x ≤ Ka or Ka ≤ x ≤ k, where x ∈ X,
a ∈ P , k ∈ Q and K ∈ Z.

We will now establish the decidability of the emptiness
problem for this subclass of L/U game automata. Recall
that the parameters pui ∈ Pu (resp. pli ∈ P l) are used
as the lower (resp. upper) bounds in the guards on the
uncontrollable transitions. Let min(pui) be the minimal
constant that appears as an upper bound in the guards
containing pui as a lower bound, andmax(pli) be a maximal
constant that appears as a lower bound in the guards con-
taining pli as an upper bound. Let Gr[max,min] represent
a valuation of G that assign 0 (resp.∞) to each lower (resp.
upper) bound parameter that appears only in controllable
transitions, and max(pli) (resp. min(pui)) to every other pli
(resp. pui) bound parameter.
Lemma 2. Let Gr be a restricted L/U game automaton.
There is a parameter valuation (λ, µ) such that a goal state
is enforceable in JGrK(λ,µ) with a strategy F , if and only
if the goal state is enforceable in Gr[max,min] using the
same strategy F .

Proof. Again we look for the value for upper bound
parameters appearing only in the guards on controllable
transitions. Parameter valuations (λ, µ), that assign values
max(pli) andmin(pui) to parameters pli and pui , that do not
appear in controllable transition guards, is a solution. For
those parameters, plk and puk , that appear only in guards
of controllable transitions, valuations (λ, µ) assign 0 and
Tmaxi , respectively, where the value Tmaxi is obtained from
Gr[max,min] as in the proof for Lemma 1. �

Similarly, the next theorem follows Lemma 2.
Theorem 3. The emptiness problem for parametric timed
reachability game for restricted L/U game automata is
decidable.

The use of L/U game automata is shown in the case-study,
5, presenting a copper annealing controller.

4. SYMBOLIC STATE-SPACE EXPLORATION

For timed reachability games, a strategy for the controller
is synthesized using the backwards algorithm for solving
timed games, Maler et al. (1995). We now define the
needed operations.

Let X ⊆ Q and a ∈ Σ. The action predecessor
of X, Preda(X) = {(l, w) | ∃(l′, w′) ∈ X, (l, w)

a−−→
(l′, w′)}, is extended for the controllable and uncontrol-
lable action predecessors of X in a timed game automa-
ton: cPred(X) =

⋃
c∈Σc Predc(X) and uPred(X) =⋃

u∈Σu Predu(X), respectively. The action successor is
defined as follows Posta(X) = {(l′, w′) | ∃(l, w) ∈
X, (l, w)

a−−→ (l′, w′)}.
Timed successors and timed predecessors of X are defined
by X 1= {(l, w + d) | (l, w) ∈ X ∧ (w + d) |= I(l)},
X $= {(l, w − d) | (l, w) ∈ X}, respectively.
We also define a safe-timed predecessors operator Predt(X1, X2).
A state (l, w) is in Predt(X1, X2) if from (l, w) we can
reach (l′, w′) ∈ X1 by time elapsing and along the path
from (l, w) to (l′, w′) avoid X2, formally:

Predt(X1, X2) = {q′ ∈ Q | ∃d ∈ R≥0 s.t. q d−→ q′, q′ ∈
X1 and Post[0,d](q) ⊆ Q\X2}, where Post[0,d](q) = {q′ ∈
Q | ∃t ∈ [0, d] s.t. q t−→ q′}

The controllable predecessors operator is defined as follow:

π(X) = Predt(X ∪ cPred(X), uPred(X))

In practice, the analysis of timed automata is based on
the exploration of a finite graph, the simulation graph.
The nodes of the simulation graph are symbolic states
S = (l, Z), where l ∈ L and Z is a subset of a clock-
space RX≥0 defined by a clock constraint, called zone.
Relation −→ defines the edges of the simulation graph as
(l, Z)

a−−→ (l′, Z ′), if there is a transition (l, a, g, R, l′) ∈ E,
and Z ′ is a zone successor by an edge of Z.

4.1 Algorithm for Solving Timed Games Cassez et al.
(2005)

In Cassez et al. (2005), the authors present a symbolic
on-the-fly algorithm for solving timed reachability games,
which is based on the simulation graph and given in
Figure 1. This algorithm consists of a forward computation
of the simulation graph and a backward propagation of
information of winning states (the states from which there
is a strategy to reach the goal location). The Waiting set
represents a list of edges in the simulation graph waiting
to be explored. The Past set contains all symbolic states
that have already been encountered. The winning status
of a symbolic state S is represented by Win[S], a subset
of the symbolic state S which is currently known to be
winning. The dependency set of S, Depend[S], contains a
set of edges (predecessors of S), which must be re-added
to Waiting set when a new information about Win[S] is
obtained. Whenever an edge e = (S, α, S′) is considered
with S′ belonging to Passed, it is added to a dependency
set of S′ in order that a possible future information about
additional winning states of S′ may be back propagated
to S. Since zones are used as underlying data structure,
all the steps of the algorithm are carried out efficiently.
Finally, upon the termination of the algorithm, set Win∗

contains all the winning states of the simulation graph.

4.2 Extension for parameter synthesis

The algorithm of Cassez et al. (2005), being on-the-fly,
stops as soon as the initial state becomes winning. In
the parametric case we are rather interested in computing
all the conditions on parameters such that there exists
a winning strategy to reach the goal state. That is why
our extension of the algorithm removes the condition (of
the while loop) S0 ∈ Win[S0], and it is not on-the-
fly. Also, we have chosen to “parametrize” the algorithm
of Cassez et al. (2005), instead of the plain backwards
fixpoint computation of Maler et al. (1995), because the
added forward exploration pre-constrains the parameters,
with conditions allowing for the reachability of symbolic
states, and therefore makes the backward propagation
more efficient.

Parametric Symbolic States To modify this algorithm so
as to compute parameter valuations, we use an extended
notion of symbolic state in which we have a location and a
parametric zone Z - a polyhedron constraining both clocks
and parameters together, i.e., a set of pairs (w, v) satisfying
a parametric clock constraint.

Initialization:
Passed← {S0} where S0 = {(l0,0)} 1;
Waiting ← {(S0, α, S′) | S′ = Postα(S0) 1};
Win[S0]← S0 ∩ ({Goal} ×RX≥0);

Depend[S0]← ∅;

Main:
while ((Waiting 6= ∅) ∧ (S0 /∈Win[S0])) do
e = (S, α, S′)← pop(Waiting);
if S′ /∈ Passed then
Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S ∩ ({Goal} ×RX≥0);

Waiting ←Waiting ∪ {(S′, α, S′′) | S′′ = Succα(S′)};
if Win[S′] 6= ∅ then Waiting ←Waiting ∪ {e};
endif

else (* reevaluate *)
Win∗ ← Predt(Win[S] ∪

⋃
S

c−→T
Predc(Win[T]),⋃
S

u−→T
Predu(T\Win[T])) ∩ S;

if (Win[S] (Win∗) then
Waiting ←Waiting ∪Depend[S];
Win[S]←Win∗;

endif
Depend[S′]← Depend[S′] ∪ {e};

endif
endwhile

Fig. 1. Symbolic On-the-fly Algorithm for Timed Reacha-
bility Games, Cassez et al. (2005)

The algorithm requires some specific operations on sym-
bolic states. We straightforwardly extend them for this
extended notion of symbolic state.
Definition 11. (timed successors, timed predecessors, reset).
Let Z be a set of valuations (w, v) for the clocks and the
parameters. We define:

• timed successors Z 1= {(w′, v) | ∃t ≥ 0 ∧ ∃(w, v) ∈
Z s.t. w′ = w + t}
• timed predecessors Z $= {(w′, v) | ∃t ≥ 0∧∃(w, v) ∈
Z s.t. w′ = w − t ∧ ∀xi ∈ X, w(xi) ≤ 0}
• reset Z[R] = {(w′, v) | ∃(w, v) ∈ Z s.t. w′ = w[R]}

Note that if the set of parameters is empty, we have exactly
the usual definition of timed successors, timed predecessors
and reset.

Let JZKv define a (non-parametric) zone obtained from a
parametric zone Z for a fixed parameter valuation v.
Lemma 3. For any set of valuations on both clocks and
parameters Z:

JZ 1Kv = JZKv 1 (1)
JZ $Kv = JZKv $ (2)

JZ[R]Kv = JZKv[R] (3)

Here we state only the proof for timed successors, since
the other two are done in the same way.

Proof. We will prove both inclusions:
1. JZ 1Kv ⊆ JZKv 1

Suppose that w′ ∈ JZ 1Kv. Then (w′, v) ∈ Z 1 and
by definition of a timed successor, ∃t ≥ 0 such that
w′ = w + t and (w, v) ∈ Z. Therefore w ∈ JZKv, and
then {w} 1⊆ JZKv 1. Since w′ = w+ t ∈ {w} 1, we finally
have w′ ∈ JZKv.

2. JZKv 1⊆ JZ 1Kv

Suppose that w′ ∈ JZKv 1. Then ∃t ≥ 0 such that w′ = w+
t and w ∈ JZKv, i.e., (w, v) ∈ Z. By definition of a timed
successor, this is exactly (w′, v) ∈ Z 1 or, equivalently,
w′ ∈ JZ 1Kv. �

For the union, intersection and difference set operations
we only state the lemma:
Lemma 4. For any set of valuations on both clocks and
parameters Z1 and Z2:

JZ1 ∪ Z2Kv = JZ1Kv ∪ JZ2Kv (4)

JZ1 ∩ Z2Kv = JZ1Kv ∩ JZ2Kv (5)

JZ1\Z2Kv = JZ1Kv\JZ2Kv (6)

The zone successor by an edge, Z ′ = Succα(Z), in the sim-
ulation graph, is obtained, for a transition (l, a, g, R, l′) ∈
E, by intersecting a source zone Z with the corresponding
transition guard g, reseting clocks in reset set R, letting
time elapse, and intersecting with target location invari-
ants. The result, Z ′, is a zone as well, since zones are closed
under intersection, reset, and timed successor operations.
Definition 12. (Zone successor). A zone successor by an
edge, Z ′ = Succα(Z), is defined as:

Succα(Z) = (Z ∩ g)[R] 1 ∩ I(l′) (7)

Using previous lemmas we can modify the zone successor
operator for the parametric zones.
Lemma 5. For any set of valuations on both clocks and
parameters Z:

JSuccα(Z)Kv = Succα(JZKv) (8)

Proof. Following Lemma 3 and Lemma 4 :
JSuccα(Z)Kv = J(Z ∩ g)[R] 1 ∩ I(l′)Kv = J(Z ∩ g)[R] 1Kv ∩
J I(l′)Kv = J(Z ∩ g)[R]Kv 1 ∩J I(l′)Kv = J(Z ∩ g)Kv[R] 1
∩JInv(l′)Kv = (JZKv∩JgKv)[R] 1 ∩JI(l′)Kv = Succα(JZKv)
�

Now we can modify, in the same manner, the operators
needed for solving timed games.
Lemma 6. For any set on valuation on both clocks and
parameters Z:

JPreda(Z)Kv = Preda(JZKv) (9)

Proof.

We will prove both inclusions:
1. JPreda(Z)Kv ⊆ Preda(JZKv)

Suppose that w ∈ JPreda(Z)Kv. Then (w, v) ∈ Preda(Z)
and by definition of action predecessor, ∃w′ such that
(l, w)

a−−→ (l′, w′) and (w′, v) ∈ Z. Therefore w′ ∈ JZKv,
and then w ∈ Preda(JZKv).

2. Preda(JZKv) ⊆ JPreda(Z)Kv
Suppose that w′ ∈ Preda(JZKv). Then ∃w such that
(l′, w′)

a−−→ (l, w) and w ∈ JZKv, i.e., (w, v) ∈ Z.
By definition of action predecessor, we have (w′, v) ∈
Preda(Z), which gives us w′ ∈ JPreda(Z)Kv. �

The safe-timed predecessors operator can be expressed as
(detailed proof in Cassez et al. (2005)):
Predt(Z1, Z2) = (Z1 $ \Z2 $) ∪ ((Z1 ∩ Z2 $)\Z2) $ (10)

Lemma 7. For any set of valuations on both clocks and
parameters Z1 and Z2:

JPredt(Z1, Z2)Kv = Predt(JZ1Kv, JZ2Kv) (11)

The proof is similar to the one of Lemma 5, and it applies
to a safe-timed predecessor expressed by equation (10).

Now we have all the necessary operations modified for
the parametric symbolic state-space, and we can prove
the correctness of the parametric algorithm. Upon the
termination of our semi-algorithm the following theorem
stands:
Theorem 4. For a PGA G, and a desired state goal, there
exists a winning strategy for a parameter valuation func-
tion v if and only if (l0, w0) ∈ JWin[S0]Kv.

Proof. Win(G) is a set of winning states in G. The
iterative process of the algorithm is given by Win0 = goal
andWinn+1 = π(Winn). We have thatWin0 = JWin0Kv,
because goal = {goal×RX≥0}, and therefore is not affected
by a parameter valuation function.

We apply a timed predecessors operator in a paramet-
ric domain and by Lemma 7 we have: π(JWinnKv) =
Jπ(Winn)Kv = JWin(n+1)Kv. The least fix point obtained
is JWin∗Kv, and JWin∗Kv = JWin(G)Kv (proved in Maler
et al. (1995)).

A state (l, w) is winning if it belongs to JWin(G)Kv, thus
there is a winning strategy for G if (l0, w0) ∈ JWin(G)Kv.

An invariance property of the algorithm for solving timed
games Cassez et al. (2005), WinJSKv ⊆ Win(JGKv), has
been proven in Cassez et al. (2005). We can adapt the
proof for the parametric case and show that JWin[S]Kv ⊆
JWin(G)Kv, for some S = (l, Z), where Z is a paramet-
ric zone. We have that WinJSKv = JWin[S]Kv, because
Win[S] ⊆ S. By the induction hypothesis, we may assume,
in the non-parametric case, that WinJS′Kv ⊆ WinJGKv,
when S

a−−→ S′. Zone Z ′, of the state S′, is the suc-
cessor of the zone Z. Since we have, by Lemma 5, that
Succα(JZKv) = JSuccα(Z)Kv, we may also assume that
JWin[S′]Kv ⊆ JWin[G]Kv. Then, by the monotonicity
of Predt it follows that JWin∗Kv ⊆ J(π(Win(G))Kv ⊆
JWin(G)Kv. Then, the property holds when we update
JWin∗Kv ← JWin[S]Kv.

If S = S0 and (l0, w0) ∈ JWin[S0]Kv then (l0, w0) ∈
JWin∗Kv, hence, there is a strategy to reach a goal state
in JGKv, and it can be extracted from JWin∗Kv. �

The termination of our parametrization of the algorithm
of Cassez et al. (2005) is not guaranteed. In the case of
termination however, if the initial state belongs to a set
of winning states, the correct set of constraints on the
parameters is obtained and a winning strategy can be
extracted from the set of winning states.

Example We consider the same example as in Cassez
et al. (2005), but we parametrize the model in order to
obtain a L/U game automaton (Figure 2). It has one clock
x, controllable (ci) and uncontrollable (ui) actions and two
parameters a and b: a appears positively in the guards of
the controllable transitions c1 and c4 and negatively in
the guard of the uncontrollable transition u1; b appears
positively in the guard of the uncontrollable transition u3.

Init loc1

loc2 Goal

loc3

loc4

x > a;u1

x < 1

u2

x := 0

x ≤ a; c1

x ≥ 2; c2

x < b
u3

c3

x ≤ a
c4

Fig. 2. A L/U Game
Automaton

Init
x ≥ 0

loc1
x > a

loc2
x ≥ 0

Goal
x ≥ 2

loc3
x ≥ 0

loc4
x ≥ 0

u1

u2

c1

c2

u3

c3

c4

Fig. 3. Simulation graph
of PGA of Figure2

The reachability game consists in finding a strategy for
the controller that will eventually ends up in the location
Goal.

We will now explain how the algorithm works. Although
the algorithm of Cassez et al. (2005) is an interleaved
combination of a forward computation and a backward
propagation, for the sake of simplicity, we will start from
a simulation-graph and show the back-propagation of
winning states.

After the computation of a simulation graph, shown in
Figure 3, the backward algorithm starts from the symbolic
winning subset (Goal, x ≥ 2). By a controllable action (c2)
predecessor, we obtain (loc2, x ≥ 2). Computing the timed
predecessors removes the constraint x ≥ 2, and computing
the controllable predecessors adds x ≥ b in order not to
end-up in loc3 by u3. The resulting state is (loc2, x ≥ b).
One of the controllable transitions taking us to loc2 is c4.
A controllable action predecessor (c4) adds a constraint
x ≤ a. A constraint on the parameters derived in this
state is a ≥ b. This contraint is back-propagated to the
preceding states. The (safe) timed predecessors give us the
state (loc4, x ≥ 0 ∧ a ≥ b).
We obtain successively the following sets of winning states:
(loc3, x ≥ 0 ∧ a ≥ b), (loc2, (x ≥ b) ∨ (x ≥ 0 ∧ a ≥ b)) and
(Init, (x ≤ a)∧

(
(x < 1∧a ≥ b)∨x ≥ 1

)
∧
(
(x ≥ b)∨(x ≥ 0∧

a ≥ b)
)
. The last one simplifies to (Init, (x ≤ a ∧ a ≥ b)).

4.3 Winning Strategy

In this section we show how to extract the winning strategy
from the set of winning states.
Theorem 5. If there exists a winning strategy for the
parametric timed game automaton G, then there exists
a memory-less winning strategy for G.

Proof. If there exists a winning strategy for the paramet-
ric timed game automaton then there exists a parameter
valuation v such that this winning strategy exists. For this
parameter valuation v, we obtain a timed game automaton
JGKv, for which the winning strategy obtained by the
algorithm is memory-less, since it suggests to a controller
to either delay or take a controllable action in each state,
Maler et al. (1995). �

Thanks to this theorem, it is easy to extract the memory-
less winning strategy from the set of winning states as
follows: a controllable action predecessor give us the state
from which a corresponding controllable action should be
taken, while timed predecessor further gives us the state
where we should delay.

Let us go back to the previous example. The set of states
(loc2, x ≥ 2) is the controllable action predecessor from
(Goal, x ≥ 2) by action c2. Then the winning strategy is: in
all states (loc2, x ≥ 2) the controllable transition c2 should
be taken immediately, and in (loc2, x ≥ 0), we should
delay until x ≥ 2. The controllable action predecessor from
loc2 takes us to a state (loc4, x ≥ b ∧ x ≤ a), deriving a
constraint a ≥ b. From that state an action c2 should be
taken immediately, and timed predecessor gives the state
(loc4, x ≥ 0, a ≥ b) in which we should delay until x ≥ b.
Since we can not influence the uncontrollable transitions
if we end-up in loc4, controllable transition c4 should be
taken as soon as x ≥ b is satisfied, and with the condition
a ≥ b we are sure that u3 cannot be fired again.

Notice that the order of exploration of the winning states
leads to different winning strategies. As an example, apply-
ing controllable predecessor from (loc2, (x ≥ b) ∨ (x ≥ 0 ∧
a ≥ b)) to Init can lead to both strategies from Init:

(1) doing c1 in all states (Init, x) with x ≤ a;
(2) delaying in all states (Init, x) with x < b and x ≤ a

and doing c1 for all states with x ≥ b and x ≤ a
(recall that b ≤ a).

Thus, a whole winning strategy consists in:

• doing c1 in all states (Init, x) with x ≤ a
• delaying in all states (loc2, x) with x < 2
• doing c2 in all states (loc2, x) with x ≥ 2
• doing c3 in all states (loc3, x)
• delaying in all states (loc4, x) with x < b
• doing c4 in all states (loc4, x) with x ≥ b and x ≤ a
(recall that b ≤ a).

5. CASE STUDY

Let us consider the Copper Annealing Controller depicted
in Figure 4. Annealing, in metallurgy and materials sci-
ence, is a heat treatment wherein a material is altered,
causing changes in its properties such as strength and
hardness. It is a process that produces conditions by
heating to above the critical temperature, maintaining a
suitable temperature, and then cooling.

The parametric timed automaton shown in Figure 4 has
two clocks x and y, two parameters a and b, controllable
(ci) and uncontrollable (ui) actions. Action c1 stops the
heater to maintain the temperature. Actions c2 and c3
start and stop the cooler, respectively. The copper is
observed by sensors that produce uncontrollable actions:
u1 is raised when the copper could be softer: it should be
heated a bit more; u2 is raised when the copper is too hard:
the process must stop; u3 is raised when the copper is soft
enough: it should be cooled as soon as possible; u4 is raised
when the copper is too soft: the process must stop.

The parameter a means that a heating stage is followed
by a maintaining stage whose duration is at least 10 time

Heat

Maintain Bad2

CoolGoal Bad3

Bad1

y ≤ 100

y ≤ 200

y ≤ 300

x ≤ b ∧ y ≤ 100;u1 x ≥ b ∧ x ≤ a+ 10;
x := 0, c1

y ≤ 50;u2

x ≤ b;u4

y ≥ 100;u2

x ≥ a;u3
y ≥ 200; c2

y ≥ 280; c3

Fig. 4. A Copper Annealing Controller model

units longer than the heating duration. The parameter b
comes from the dynamics of the system. For a copper wire
heated during at least b time units, the values given by
sensors u1 and u4 are relevant and guaranteed during b
time units after the end of the heating stage.

The reachability game consists in finding a strategy, that
will eventually end up in the location Goal. Actually, for
this model, we obtain that there is no winning strategy for
this game since it is impossible to prevent the transition
u1 from the locality Maintain and then the locality Bad1

is always reachable after some loops (c1.u1)∗ followed by
u2.

Then the model of the controller must be corrected. Since
heating a bit more the copper, when it is possible, is not
necessary, we can delete the transition u1 (another way
would consist in controlling the transition from Maintain
to Heat when action u1 occurs by adding a locality and
two controllable actions). Thus, there exists a winning
strategy if and only if (b < 100) ∧ (a > 40) ∧ (a > b)
and the set of winning states obtained by the algorithm is:

• (Heat, (x ≥ 0) ∧ (y ≥ 0) ∧ (y < 100) ∧ (b < 100) ∧
(a > 40) ∧ (a > b)),
• (Maintain, (x ≥ 0) ∧ (y > 50) ∧ (y ≤ 200) ∧ (b ≤ y −
x ≤ a+ 10) ∧ (y − x < 100) ∧ (a > b)),
• (Cool, (x > b) ∧ (0 ≤ y ≤ 300) ∧ (b ≤ y − x ≤ a +

10) ∧ (y − x < 100)),
• (Goal, y ≥ 280∧ (b ≤ y−x ≤ a+10)∧ (y−x < 100)).

Intuitively, the condition b < 100 allows to avoid Bad1

by ensuring that the locality Heat can be left before
the condition y ≥ 100 becomes true; the condition a >
40 allows to avoid Bad2 by ensuring that the locality
Maintain can be reached with y > 50 and the condition
a > b allows to avoid Bad3. A winning strategy extracted
from the winning set consists in:

• delaying in all states (Heat, x, y) with y ≤ 50 or x < b
• doing c1 in all states (Heat, x, y) with y > 50 and
x ≥ b
• delaying in all states (Maintain, x, y) with y < 200
• doing c2 in all states (Maintain, x, y) with y = 200
• delaying in all states (Cool, x, y) with y < 280
• doing c3 in all states (Cool, x, y) with 280 ≤ y

6. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced parametric timed game
automata and their subclasses (L/U and restricted L/U
game automata), for which the emptiness problem of
parametric timed reachability game is decidable. We have
also adapted the algorithm for solving timed games from
Cassez et al. (2005) for the parametric case. When the ini-
tial state is winning, a set of constraints on the parameters
is obtained together with a set of winning states.

Although the subclass of PGA proposed might seem overly
restricted, in practice it is not rare that only one or two
values are parametrized and we search for all their possible
valuations, as shown in our case-study.

Our model can be put in use for deciding timed alter-
nating simulation in parametric domain, which serves to
model real-time controller synthesis problems. Simulation
can also be accompanied by a logical characterization,
Bozzelli et al. (2009): if TGA A is simulated by TGA
B then whenever a formula holds in A, it also holds in
B. In Bulychev et al. (2009), a notion of weak alternating
simulation, that preserves controllability with respect to
ATCTL, between two timed game automata has been
introduced. Problem of checking given notion of simulation
has been reduced to solving timed reachability game and
an on-the-fly algorithm for solving this game is proposed.
In the parametric case, this algorithm could give the con-
straints on the parameters such that the weak alternating
simulation holds between two timed game automata (for
example, an abstract model and its refinement).

REFERENCES

Alur, R. and Dill, D. (1994). A theory of timed automata.
Theoretical Computer Science B, 126, 183–235.

Alur, R., Henzinger, T.A., and Vardi, M.Y. (1993). Para-
metric real-time reasoning. In ACM Symposium on
Theory of Computing, 592–601.

Asarin, E., Maler, O., Pnueli, A., and Sifakis, J. (1998).
Controller synthesis for timed automata. In Proc. IFAC
Symposium on System Structure and Control. Elsevier.

Bozzelli, L., Pinchinat, S., and Legay, A. (2009). On timed
alternating simulation for concurrent timed games. In
FSTTCS 2009, Leibniz Int. Proceedings in Informatics.

Bulychev, P., Chatain, T., David, A., and Larsen, K.
(2009). Efficient on-the-fly algorithm for checking al-
ternating timed simulation. In FORMATS ’09, 73–87.

Cassez, F., David, A., Fleury, E., Larsen, K., and Lime, D.
(2005). Efficient on-the-fly algorithms for the analysis of
timed games. In CONCUR’05, volume 3653 of LNCS.

Hune, T., Romijn, J., Stoelinga, M., and Vaandrager, F.
(2002). Linear parametric model checking of timed
automata. Journal of Logic and Algebraic Programming,
52-53, 183–220.

Maler, O., Pnueli, A., and Sifakis, J. (1995). On the
synthesis of discrete controllers for timed systems. In
STACS ’95.

Ramadge, P.J.G. and Wonham, W.M. (1989). The control
of discrete event systems. Proceedings of the IEEE,
77(1), 81–98.

