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Pablo Maldonado and Miquel Oliu-Barton ∗

November 19, 2012

Abstract

The value of a zero-sum di�erential games is known to exist, under Isaacs con-
dition, as the unique viscosity solution of a Hamilton-Jacobi-Bellman equation. In
this note we provide a new proof via the construction of ε-optimal strategies, which
is inspired in the �extremal aiming� method from [3].

1 Introduction

Let U and V be compact subsets of some euclidean space, let ‖ · ‖ be the euclidean
norm in R

n, and let f : [0, 1]× R
n × U × V → R

n.
Assumption 1:

1a. f is uniformly bounded, i.e. ‖f‖ := sup(t,x,u,v) ‖f(t, x, u, v)‖ < +∞,
1b. ∃c ≥ 0 such that ∀(u, v) ∈ U × V, ∀s, t ∈ [0, 1], ∀x, y ∈ R

n:

‖f(t, x, u, v)− f(s, y, u, v)‖ ≤ c
(

|t− s|+ ‖x− y‖
)

,

The directional game For any (t, x) ∈ [0, 1] × R
n and any ξ ∈ R

n, consider
the one-shot game Γ(t, x, ξ), with actions sets U and V and payo� function:

(u, v) 7→ 〈ξ, f(t, x, u, v)〉.

Let H−(t, x, ξ) and H+(t, x, ξ) be its maxmin and minmax respectively:

H−(t, x, ξ) := max
u∈U

min
v∈V

〈ξ, f(t, x, u, v)〉,

H+(t, x, ξ) := min
v∈V

max
u∈U

〈ξ, f(t, x, u, v)〉.

∗The authors are particularly indebted with Pierre Cardaliaguet, Marc Quincampoix and Sylvain
Sorin for their careful reading and comments on earlier drafts. This work was partially supported by
the Commission of the European Communities under the 7th Framework Programme Marie Curie Initial
Training Network (FP7-PEOPLE-2010-ITN), project SADCO, contract number 264735.
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These functions satisfy H− ≤ H+. If the equality H+(t, x, ξ) = H−(t, x, ξ) holds,
the game Γ(t, x, ξ) has a value.

Assumption 2: ∀(t, x, ξ) ∈ [0, 1]×R
n×R

n, the game Γ(t, x, ξ) has a valueH(t, x, ξ).

1.1 An important Lemma

Introduce the sets of controls:

U = {u : [0, 1] → U, measurable}, V = {v : [0, 1] → V, measurable}.

Let (u,v) ∈ U×V , t0 ∈ [0, 1], (x0, w0) ∈ (Rn)2 and let (u∗, v∗) be a couple of optimal
actions in Γ(t0, x0, x0−w0). De�ne two continuous trajectories in R

n, x : [t0, 1] → R
n

and w : [t0, 1] → R
n, by:

x(t0) = x0, and ẋ(t) = f(t,x(t),u(t), v∗), a.e.

w(t0) = w0, and ẇ(t) = f(t,w(t), u∗,v(t)), a.e.

The following lemma is inspired by Lemma 2.3.1 in [3].

Lemma 1. Under Assumptions 1 and 2, there exists A,B ≥ 0 such that ∀t ∈ [t0, 1]:

‖x(t)−w(t)‖2 ≤ (1 + (t− t0)A)‖x0 − w0‖2 +B(t− t0)
2.

Proof. Notation: let d0 := ‖x0 − w0‖ and d(t) := ‖x(t)−w(t)‖. Then:

d
2(t) = ‖(x0 − w0) +

∫ t

t0

f(s,x(s),u(s), v∗)− f(s,x(s), u∗,v(s))ds‖2. (1.1)

The boundedness of f implies that

‖
∫ t

t0

f(s,x(s),u(s), v∗)− f(s,w(s), u∗,v(s))ds‖2 ≤ 4‖f‖2(t− t0)
2. (1.2)

Claim: For all s ∈ [t0, 1], and for all (u, v) ∈ U × V :

〈x0 − w0, f(s,x(s), u, v
∗)− f(s,w(s), u∗, v)ds〉 ≤ 2C(s)d0 + cd20, (1.3)

where C(s) := c(1 + ‖f‖)(s− t0).
Let us prove this claim. Assumption 1 implies ‖x(s)− x0‖ ≤ (s− t0)‖f‖, and then:

‖f(s,x(s), u, v∗)− f(t0, x0, u, v
∗)‖ ≤ c

(

(s− t0) + ‖f‖(s− t0)
)

= C(s).

Then, using Cauchy-Schwartz inequality, and the optimality of v∗:

〈x0 − w0, f(s,x(s), u, v
∗)〉 ≤ 〈x0 − w0, f(t0, x0, u, v

∗)〉+ C(s)d0,

≤ H+(t0, x0, x0 − w0) + C(s)d0.

Similarly, Assumption 1 implies ‖w(s)− x0‖ ≤ d0 + (s− t0)‖f‖, and then:

‖f(s,w(s), u∗, v)− f(t0, x0, u
∗, v)‖ ≤ C(s) + cd0.
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Using Cauchy-Schwartz inequality, and the optimality of u∗:

〈x0 − w0, f(s,x(s), u
∗, v)〉 ≥ 〈x0 − w0, f(t0, x0, u

∗, v)〉 − (C(s) + cd0)d0,

≥ H−(t0, x0, x0 − w0)− C(s)d0 − cd20.

The claim follows from Assumption 2. In particular, it holds for (u, v) = (u(s),v(s)).
Note that

∫ t

t0
2C(s)ds = (t− t0)C(t). Thus, integrating (1.3) over [t0, t] yields:

∫ t

t0

〈x0 − w0, f(s,x(s),u(s), v
∗)− f(s,w(s), u∗,v(s))ds〉 ≤ (t− t0)(C(t)d0 + cd20).

(1.4)
Go back to (1.1) using the estimates (1.2) and (1.4). We have proved:

d
2(t) ≤ d20 + 4‖f‖2(t− t0)

2 + 2(t− t0)C(t)d0 + 2c(t− t0)d
2
0.

Finally, use the relations d0 ≤ 1 + d20, C(t) ≤ c(1 + ‖f‖) and (t − t0)C(t) = c(1 +
‖f‖)(t−t0)

2 to obtain the result, withA = 3c+2‖f‖ andB = 4‖f‖2+2c(1+‖f‖).

1.2 Consequences

In this section, we give three direct consequences of Lemma 1. Let d : Rn×P(Rn) →
R denote the usual distance to a set in R

n.

1. Consider some sequence of times Π = {t0 < t1 < · · · < tN} in [0, 1], and let
‖Π‖ := max{tm − tm−1,m = 1, . . . , N}. Let (u,v) ∈ U × V be a �xed pair of
controls. De�ne the trajectories x and w on [t0, tN ] inductively. Let x(t0) = x0,
w(t0) = w0 and suppose that x(t) and w(t) are already de�ned on [t0, tm]. Let
(u∗m, v∗m) ∈ U × V be a couple of optimal actions in Γ(tm,x(tm),x(tm) − w(tm)).
Then, on [tm, tm+1], let x and w be the unique absolutely continuous solutions of:

ẋ(t) = f(t,x(t),u(t), v∗m),

ẇ(t) = f(t,w(t), u∗m,v(t)).

Corollary 1.1. Under Assumptions 1 and 2:

‖x(tN )−w(tN )‖2 ≤ eA(‖x0 − w0‖2 +B‖Π‖).

Proof. For any 0 ≤ m ≤ N , let dm := ‖x(tm)−w(tm)‖. Lemma 1 yields:

d2m ≤ (1 + (tm − tm−1)A)d2m−1 +B(tm − tm−1)
2.

Then, by induction: d2N ≤ exp(A
∑N

m=1 tm− tm−1)(d
2
0+B

∑N
m=1(tm− tm−1)

2). The

result follows, since tN − t0 ≤ 1 and
∑N

m=1(tm − tm−1)
2 ≤ ‖Π‖.

2. For any (t0, x0) ∈ [0, 1] × R
n and (u,v) ∈ U × V, let x = x[t0, x0,u,v] be the

unique absolutely continuous solution in [t0, 1] of:

x(t0) = x0, and ẋ(t) = f(t,x(t),u(t),v(t)), a.e.

That is, x[t0, x0,u,v] is the trajectory induced by the initial position (t0, x0) and
the controls (u,v). For any u ∈ U , let x[t0, x0, u,v] be the trajectory induced by
(t0, x0,v) and the constant control u ≡ u.

De�ne two properties for sets W ⊂ [t0, 1]× R
n.
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• P1: For any t ∈ [t0, 1], W(t) := {x ∈ R
n | (t, x) ∈ W} is closed and nonempty.

• P2: For any (t, x) ∈ W and any t1 ∈ [t, 1]:

sup
u∈U

inf
v∈V

d(x[t, x, u,v](t1),W(t1)) = 0,

where d is the usual distance in R
n.

Corollary 1.2. Let W ⊂ [t0, 1]×R
n satisfy P1 and P2. Under Assumptions 1 and

2, there exists v∗ ∈ V such that, ∀t ∈ [t0, 1], ∀u ∈ U :

d2(x[t0, x0,u, v
∗](t),W(t)) ≤ (1 + (t− t0)A)d2(x0,W(t0)) +B(t− t0)

2.

Proof. Let w0 ∈ argminw∈W(t0)‖x0 − w‖ be some closest point (which exists by
P1). Let (u∗, v∗) be optimal in Γ(t0, x0, x0 − w0). By P2, ∀ε > 0, ∃vε such that
wε(t) := x[t0, w0, u

∗,vε](t) satis�es d(wε(t),W(t)) ≤ ε. The triangular equality
implies d(x(t),W(t)) ≤ ‖x(t)−wε(t)‖+ ε. Taking the limit, as ε → 0:

d2(x(t),W(t)) ≤ lim
ε→0

‖x(t)−wε(t)‖2,

where ‖x(t) −wε(t)‖2 ≤ (1 + (t − t0)A)‖x0 − w0‖2 + B(t − t0)
2 for any ε > 0, by

Lemma 1, and where ‖x0 − w0‖ = d(x0,W(t0)) by de�nition.

3. Putting Corollaries 1.1 and 1.2 together, one obtains the following result.

Corollary 1.3. Let W ⊂ [t0, 1] × R
n satisfy P1 and P2, let Π = {t0 < · · · < tN}

be a sequence of times, and let x0 ∈ W(t0). Under Assumptions 1 and 2, there exist

v∗0, . . . , v
∗
N−1 ∈ V such that, for v ≡ v∗m, on [tm, tm+1], and for all u ∈ U :

d2(x[t0, x0,u,v](tN ),W(tN )) ≤ eAB‖Π‖.

2 Di�erential Games

For any (t0, x0) ∈ [0, 1]×R
n, consider now the zero-sum di�erential with the following

two-controlled dynamic

x(t0) = x0, and ẋ(t) = f(t,x(t),u(t),v(t)), a.e. on [t0, 1].

De�nition 2.1. A strategy for player 2 is a map β : U → V such that, for some

�nite partition t0 < t1 < · · · < tN = 1 of [t0, 1], ∀u1,u2 ∈ U :

u1 ≡ u2 a.e. on [t0, tm] =⇒ β(u1) ≡ β(u2) a.e. on [t0, tm+1 ∧ 1].

These strategies are called nonanticipative strategies with delay (NAD) in [1], in
contrast to the classical nonanticipative strategies. The strategies for player 1 are
de�ned in a dual manner. Let B (resp. A) the set of strategies for Player 2 (resp.
1). For any pair of strategies (α, β) ∈ A × B, [1] establishes the following crucial
result: there exists a unique pair (u,v) ∈ U ×V such that α(v) = u, and β(u) = v.
Denote by x[t0, x0, α, β] the trajectory induced by the pair (u,v).
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Let g : Rn → R some function. The di�erential game with initial time t0, initial
state x0, and terminal payo� g is denoted by G(t0, x0). Introduce the upper and
lower value functions:

V −(t0, x0) := sup
α∈A

inf
β∈B

g(x[t0, x0, α, β](1)),

V +(t0, x0) := inf
β∈B

sup
α∈A

g(x[t0, x0, α, β](1)).

The inequality V − ≤ V + holds everywhere. If V −(t0, x0) = V +(t0, x0), the game
G(t0, x0) has a value. Notice that its lower and upper Hamiltonian of are precisely the
maxmin and the minmax of the directional games de�ned in Section 1. Consequently,
Assumption 2 is precisely Isaacs' condition.
Assumption 3: g is c-Lipschitz continuous, i.e. |g(x)−g(y)| ≤ c‖x−y‖, ∀x, y ∈ R

n.

2.1 Existence and characterization of the value

Let φ : [t0, 1]× R
n → R be a real function satisfying the following properties:

(i) x 7→ φ(t, x) is lower semicontinuous, ∀t ∈ [t0, 1],

(ii) ∀(t, x) ∈ [t0, 1]× R
n, ∀t1 ∈ [t, 1]:

φ(t, x) ≥ sup
u∈U

inf
v∈V

φ
(

t1,x[t, x, u,v](t1)
)

,

(iii) φ(1, x) ≥ g(x), ∀x ∈ R
n.

For any ℓ ∈ R, de�ne the ℓ-level set of φ by:

Wφ
ℓ = {(t, x) ∈ [t0, 1]× R

n | φ(t, x) ≤ ℓ}, (2.1)

Lemma 2. For any ℓ ≥ φ(t0, x0), the ℓ-level set of φ satis�es P1 and P2.

Proof. Note that Wφ
ℓ (t0) is nonempty, since x0 ∈ Wφ

ℓ (t0). (i) implies that Wφ
ℓ (t)

is a closed set, ∀t ∈ [0, 1]. On the other hand, by (ii) for all (t, x) ∈ [t0, 1] × R
n,

t1 ∈ [t, 1], u ∈ U , and n ∈ N
∗, there exists vn ∈ V such that:

φ(t, x) ≥ φ
(

t1,x[t, x, u,vn](t1))−
1

n
. (2.2)

The boundedness of f implies that xn := x[t, x, u,vn](t1) belongs to some compact
set. Consider a subsequence (xn)n such that limn→∞ φ(t1, xn) = lim infn→∞ φ(t1, xn),
and such that (xn)n converges to some x̄ ∈ R

n. Then, taking the limit, as n → ∞,
in (2.2) implies, using (i) and ℓ ≥ φ(t, x):

φ(t1, x) ≤ lim
n→∞

φ(t1, xn) ≤ φ(t, x) ≤ ℓ.

Hence x ∈ Wφ
ℓ (t1), and infn∈N∗ d

(

x[t, x, u,vn](t1),Wφ
ℓ

)

= 0. In particular, Wφ
ℓ (t1)

is nonempty, and P1 and P2 hold.
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2.1.1 Extremal strategies in G(t0, x0)

Let Π = {t0 < · · · < tN = 1} be partition of [t0, 1], let ‖Π‖ = max{tm − tm−1, m =
1, . . . , N}, and let Wφ ⊂ [t0, 1]× R

n be the φ(t0, x0)-level set of φ.

De�nition 2.2. An extremal strategy β = β(φ,Π) is de�ned inductively: suppose

β is already de�ned on [t0, tm] and let xm = x[t0, x0,u, β](tm). Then, ∀u ∈ U :
• If xm ∈ Wφ(tm), set β(u)(s) = v, for any v ∈ V , ∀s ∈ [tm, tm+1).

• If xm /∈ Wφ(tm), let wm ∈ argminw∈Wφ(tm)‖xm − wm‖ be some closest point,

and let v∗m be some optimal action in the directional game Γ(tm, xm, xm−wm).
Set β(u)(s) = v∗m, ∀s ∈ [tm, tm+1).

These strategies are inspired by the extremal aiming method of Krasovskii and
Subbotin (see Section 2.4 in [3]). Notice that β is de�ned up to some selection rule
since V , the set of closest points and the set of minimizers may have more than one
element.

Proposition 2.1. Under Assumptions 1, 2 and 3, ∃C ≥ 0 such that:

g(x[t0, x0,u, β(u)](1)) ≤ φ(t0, x0) + C
√

‖Π‖, ∀u ∈ U ,

for any extremal strategy β = β(φ,Π).

Proof. Wφ satsi�es P1 and P2 by Lemma 2. Applying Corollary 1.3:

d2(xN ,Wφ(tN )) ≤ eAB‖Π‖.

Now, by (iii), and since tN = 1:

Wφ(tN ) = {x ∈ R
n| φ(1, x) ≤ φ(t0, x0)} ⊂ {x ∈ R

n| g(x) ≤ φ(t0, x0)}.

Let wN ∈ argminw∈Wφ(1)‖xN − w‖ be some closest point. By Assumption 3:

g(xN ) ≤ g(wN ) + c‖xN − wN‖ ≤ φ(t0, x0) + cd(xN ,Wφ(tN )).

The result follows, recalling that xN = x[t0, x0,u, β(u)](1). Explicitly, C = c
√
eAB.

Proposition 2.1 applies to any function satisfying (i), (ii) and (iii). Consequently,
under Assumptions 1, 2 and 3:

V +(t0, x0) ≤ inf{φ(t0, x0) | φ : [t0, 1]× R
n → R satisfying (i), (ii), (iii)}. (2.3)

Theorem 2.3. Under Assumptions 1, 2 and 3, the di�erential game G(t0, x0) has

a value, characterized as:

V(t0, x0) = min
φ satisfying
(i),(ii),(iii)

φ(t0, x0). (2.4)

The strategies β(V,Π) are asymptotically optimal for player 2, as ‖Π‖ → 0.
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Proof. By (2.3), it is enough to prove that V − satis�es (i), (ii) and (iii), where
(iii) is immediate. Assumption 1, and Gronwall's lemma imply that ∀t ∈ [t0, 1],
∀(u,v) ∈ U × V, and ∀x, y ∈ R

n:

∥

∥x[t0, x,u,v](t)
)

− x[t0, y,u,v](t)
)
∣

∣ ≤ ec(t−t0)‖x− y‖.

Assumption 2 gives then, ∀(u,v) ∈ U × V , and ∀x, y ∈ R
n:

∣

∣g
(

x[t0, x,u,v](1)
)

− g
(

x[t0, y,u,v](1)
)∣

∣ ≤ cec(1−t0)‖x− y‖.

Thus, by standard arguments, x 7→ V −(t, x) is cec-Lipschitz continuous ∀t ∈ [t0, 1]
and, in particular, V − satis�es (i). On the other hand, (ii) is a weak version of the
classical dynamic programming principle (see [2], for nonanticipative strategies, and
[1] for NAD strategies, de�ned above): ∀(t, x) ∈ [t0, 1]× R

n, ∀t1 ∈ [t, 1]:

V −(t, x) = sup
α∈A

inf
v∈V

V −
(

t1,x[t, x, α(v),v](t1)
)

.

Finally, let β(V,Π) be an extremal strategy. By Corollary 2.1:

g
(

x[t0, x0,u, β(V,Π)(u)](1)
)

≤ V(t0, x0) + C
√

‖Π‖, ∀u ∈ U .

Consequenly, for any ε > 0, β(V,Π) is ε-optimal for su�ciently small ‖Π‖.
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