Camassa-Holm type equations for axisymmetric Poiseuille pipe flows

Abstract : We present a study on the nonlinear dynamics of a disturbance to the laminar state in non-rotating axisymmetric Poiseuille pipe flows. The associated Navier-Stokes equations are reduced to a set of coupled generalized Camassa-Holm type equations. These support singular inviscid travelling waves with wedge-type singularities, the so called peakons, which bifurcate from smooth solitary waves as their celerity increase. In physical space they correspond to localized toroidal vortices or vortexons. The inviscid vortexon is similar to the nonlinear neutral structures found by Walton (2011) and it may be a precursor to puffs and slugs observed at transition, since most likely it is unstable to non-axisymmetric disturbances.
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger
Contributeur : Denys Dutykh <>
Soumis le : mercredi 20 mars 2013 - 06:44:08
Dernière modification le : jeudi 11 janvier 2018 - 06:12:26
Document(s) archivé(s) le : vendredi 21 juin 2013 - 04:12:41


Fichiers produits par l'(les) auteur(s)




Francesco Fedele, Denys Dutykh. Camassa-Holm type equations for axisymmetric Poiseuille pipe flows. Procedia IUTAM, cElsevier, 2013, 9, pp.16-24. 〈10.1016/j.piutam.2013.09.003〉. 〈hal-00752999v3〉



Consultations de la notice


Téléchargements de fichiers