Camassa-Holm type equations for axisymmetric Poiseuille pipe flows

Abstract : We present a study on the nonlinear dynamics of a disturbance to the laminar state in non-rotating axisymmetric Poiseuille pipe flows. The associated Navier-Stokes equations are reduced to a set of coupled generalized Camassa-Holm type equations. These support singular inviscid travelling waves with wedge-type singularities, the so called peakons, which bifurcate from smooth solitary waves as their celerity increase. In physical space they correspond to localized toroidal vortices or vortexons. The inviscid vortexon is similar to the nonlinear neutral structures found by Walton (2011) and it may be a precursor to puffs and slugs observed at transition, since most likely it is unstable to non-axisymmetric disturbances.
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00752999
Contributeur : Denys Dutykh <>
Soumis le : mercredi 20 mars 2013 - 06:44:08
Dernière modification le : lundi 21 mars 2016 - 11:33:19
Document(s) archivé(s) le : vendredi 21 juin 2013 - 04:12:41

Fichiers

FF_DD-IUTAM-2013-R1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Francesco Fedele, Denys Dutykh. Camassa-Holm type equations for axisymmetric Poiseuille pipe flows. Procedia IUTAM, cElsevier, 2013, 9, pp.16-24. <10.1016/j.piutam.2013.09.003>. <hal-00752999v3>

Partager

Métriques

Consultations de
la notice

304

Téléchargements du document

74