A Dataset for StarCraft AI & an Example of Armies Clustering

Abstract : This paper advocates the exploration of the full state of recorded real-time strategy (RTS) games, by human or robotic players, to discover how to reason about tactics and strategy. We present a dataset of StarCraft games encompassing the most of the games' state (not only player's orders). We explain one of the possible usages of this dataset by clustering armies on their compositions. This reduction of armies compositions to mixtures of Gaussian allow for strategic reasoning at the level of the components. We evaluated this clustering method by predicting the outcomes of battles based on armies compositions' mixtures components
Type de document :
Communication dans un congrès
Artificial Intelligence in Adversarial Real-Time Games 2012, Oct 2012, Palo Alto, United States. pp 25-30, 2012
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger


https://hal.archives-ouvertes.fr/hal-00752893
Contributeur : Gabriel Synnaeve <>
Soumis le : vendredi 16 novembre 2012 - 15:51:15
Dernière modification le : vendredi 12 octobre 2018 - 01:18:12
Document(s) archivé(s) le : samedi 17 décembre 2016 - 11:17:59

Fichiers

workshop.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00752893, version 1
  • ARXIV : 1211.4552

Collections

Citation

Gabriel Synnaeve, Pierre Bessiere. A Dataset for StarCraft AI & an Example of Armies Clustering. Artificial Intelligence in Adversarial Real-Time Games 2012, Oct 2012, Palo Alto, United States. pp 25-30, 2012. 〈hal-00752893〉

Partager

Métriques

Consultations de la notice

823

Téléchargements de fichiers

349