A Bayesian Tactician

Gabriel Synnaeve 1, * Pierre Bessiere 2
* Auteur correspondant
1 E-MOTION - Geometry and Probability for Motion and Action
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
Abstract : We describe a generative Bayesian model of tactical attacks in strategy games, which can be used both to predict attacks and to take tactical decisions. This model is designed to easily integrate and merge information from other (probabilistic) estimations and heuristics. In particular, it handles uncertainty in enemy units' positions as well as their probable tech tree. We claim that learning, being it supervised or through reinforcement, adapts to skewed data sources. We evaluated our approach on StarCraft1: the parameters are learned on a new (freely available) dataset of game states, deterministically re-created from replays, and the whole model is evaluated for prediction in realistic conditions. It is also the tactical decision-making component of a competitive StarCraft AI.
Type de document :
Communication dans un congrès
Computer Games Workshop at ECAI 2012, Aug 2012, Montpellier, France. pp. 114-125, 2012


https://hal.archives-ouvertes.fr/hal-00752868
Contributeur : Gabriel Synnaeve <>
Soumis le : vendredi 16 novembre 2012 - 15:31:50
Dernière modification le : mercredi 28 septembre 2016 - 16:19:49

Fichier

BayesianTactician.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00752868, version 1

Collections

Citation

Gabriel Synnaeve, Pierre Bessiere. A Bayesian Tactician. Computer Games Workshop at ECAI 2012, Aug 2012, Montpellier, France. pp. 114-125, 2012. <hal-00752868>

Exporter

Partager

Métriques

Consultations de
la notice

800

Téléchargements du document

414