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Abstract

Hierarchical least-square optimization is of-
ten used in robotics to inverse a direct function
when multiple incompatible objectives are in-
volved. Typical examples are inverse kinemat-
ics or dynamics. The objectives can be given
as equalities to be satisfied (e.g. point-to-point
task) or as areas of satisfaction (e.g. the joint
range). This two-part paper proposes a com-
plete solution to resolve multiple least-square
quadratic problems of both equality and in-
equality constraints ordered into a strict hier-
archy. Our method is able to solve a hierarchy
of only equalities ten time faster than the clas-
sical method and can consider inequalities at
any level while running at the typical control
frequency on whole-body size problems. This
generic solver is used to resolve the redundancy
of humanoid robots while generating complex
movements in constrained environment.

In this first part, we establish the mathemat-
ical bases underlying the hierarchical problem
and propose a dedicated solver. When only equ-
alities are involved, the solver amounts to the
classical solution used to handle redundancy in
inverse kinematics in a far more efficient way. It
is able to handle inequalities at any priority lev-
els into a single resolution scheme, which avoids
the high number of iterations encountered with
cascades of solvers. A simple example is given
to illustrate the interest of our approach. The
second part of the paper focuses on the imple-
mentation of the solver for inverse kinematics
and its use to generate robot motions.

(a) (b)

Fig. 1: Various situations of inequality and equality con-
straints. (a) reaching a distant object while keeping bal-
ance. The visibility and postural tasks are satisfied only if
possible. (b) The target is kept inside a preference area.

1 Introduction

Least squares are a mean to satisfy at best a set
of constraints that may not be feasible. When
the constraints are linear, the least squares are
written as a quadratic program, whose solution
is given for example by the pseudo-inverse. Lin-
ear least squares have been widely used in robot
control in the frame of instantaneous task reso-
lution [De Schutter and Van Brussel, 1988], inverse
kinematics [Whitney, 1972] or operational-space in-
verse dynamics [Khatib, 1987]. These approaches de-
scribe the objectives to be pursued by the robot us-
ing a function depending on the robot configuration,
named the task function [Samson et al., 1991]. The
time derivative of this function depends linearly on

1



the robot velocity, which gives a set of linear con-
straints, to be satisfied at best in the least-square
sense.
When the constraint does not require the use

of all the robot degrees of freedom (DOF), the
remaining DOF can be used to perform a secondary
objective. This redundancy was first emphasized
in [Liégeois, 1977]. Least squares can be used
again to execute at best a secondary objective
using the redundant DOF [Hanafusa et al., 1981],
and by recurrence, any number of constraints
can be handled [Siciliano and Slotine, 1991]. Here
again, the pseudo-inverse is used to compute
the least-square optimum. The same technique
has been widely used for redundant manipulator
[Chiaverini et al., 2008], mobile or underwater
[Antonelli and Chiaverini, 1998] manipulator, multi
manipulator [Khatib et al., 1996], platoon of
mobile robots [Antonelli and Chiaverini, 2006,
Antonelli et al., 2010],visual servoing
[Mansard and Chaumette, 2007b], medical robots
[Li et al., 2012], planning under constraints
[Berenson et al., 2011], control of the dynamics
[Park and Khatib, 2006], etc. Such a hierarchy
is now nearly systematically used in humanoid
animation [Baerlocher and Boulic, 2004] and
robotics [Sian et al., 2005, Mansard et al., 2007,
Khatib et al., 2008].
Very often, the task objectives are defined

as equality constraints. On the opposite,
some objectives would naturally be written
as inequality constraints, such as joints lim-
its [Liégeois, 1977, Chaumette and Marchand, 2001],
collision avoidance [Marchand and Hager, 1998,
Stasse et al., 2008a], singularities avoid-
ance [Padois et al., 2007, Yoshikawa, 1985]
or visibility [Garcia-Aracil et al., 2005,
Remazeilles et al., 2006] (see Fig. 1). A first
solution to account for these tasks is to embed
the corresponding inequality constraint into a
potential function [Khatib, 1986] such as a log
barrier function, whose gradient is projected into
the redundant DOF let free by the first objec-
tive [Liégeois, 1977, Gienger et al., 2006]. The
potential function simultaneously prevents the robot
to enter into a forbidden region and pushes it away

from the obstacles when it is coming closer. The
potential function in fact transforms the inequality
into an equality constraint, that is always applied
even far from the obstacle. However, this last
property prevents the application of this solution for
top-priority constraints.

To ensure that avoidance is realized whatever the
situation (and not only when there is enough DOF),
several solutions have been proposed, that try to
specify inequality objectives as higher-priority tasks.
In [Nelson and Khosla, 1995], a trade-off between
the avoidance and the motion objectives was per-
formed. In [Chang and Dubey, 1995], the joint limit
avoidance was used as a damping factor to stop
the motion of a joint close to the limit. Both so-
lutions behave improperly when the motion objec-
tive and the avoidance criteria become incompati-
ble. In [Mansard and Chaumette, 2007a], the con-
straints having priority were relaxed to improve the
execution of the avoidance constraint, set at a lower
priority level. However, this solution is only valid
far from the target point, and the obstacle may fi-
nally collide at the convergence of the motion task.
In the cases where damping is not sufficient, clamp-
ing was proposed [Raunhardt and Boulic, 2007]. It
was applied for example to avoid the joint limits of
a humanoid [Sentis, 2007]. However, this solution re-
quires several iterations and might be costly. More-
over, it is difficult to relax a DOF that was clamped.
In [Mansard et al., 2009], it was proposed to realize
an homotopy between the control law with and with-
out avoidance. A proper balance of the homotopy
factors ensures that the objectives having priority are
respected. However, the cost of this solution in com-
plex cases is prohibitive.

Alternatively, the inequality constraint
can be included in the least-square program
as it is [Nenchev, 1989, Sung et al., 1996,
Decré et al., 2009]. Such a solution is
very popular for controling the dynamic of
the simulated system [Collette et al., 2007,
Salini et al., 2009, Bouyarmane and Kheddar, 2011].
In [Kanoun et al., 2011], a first solution to account
for inequality constraints in a hierarchy of tasks
was proposed. A simplified version was proposed
in [De Lasa et al., 2010], that improves the compu-
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tation cost but prevent the inclusion of inequality
except at the top priority. In this paper, we propose
a complete solution based on [Kanoun et al., 2011]
to account for inequality at any level of a hierarchy
of least-square quadratic program, while keeping
a low computation cost. The contributions of this
paper are:

• we propose the first method to solve a hierarchi-
cal quadratic program using a single dedicated
solver.

• this solver allows to solve a problem of 40 vari-
ables (the typical size on a humanoid robot con-
trolled in velocity) in 0.2ms when only equality
constraints are set (up to 10 times faster than
the state of the art) and in certified 1ms with
inequalities, which could allow to do real-time
whole-body control at 1kHz.

• we give the analytical computation cost and
prove the continuity and the stability of the con-
trol laws derived from this solver.

• we give a complete experimental study of the
performances of our method against state-of-the-
art solvers and demonstrate its capabilities in the
robotics context.

The two parts of the paper are structured as fol-
lows. The first part establishes the decomposition
and the active-search algorithm dedicated to the hi-
erarchical structure. We first recall the mathematical
bases of the previous works in Sec. 2. Our solution
requires to rewrite the classical hierarchy of equality
constraints [Siciliano and Slotine, 1991] in a more ef-
ficient manner, which is done in Sec. 3. Then, the
algorithm to resolve the hierarchical quadratic least-
square program in the presence of inequalities is pro-
posed in Sec. 4. Finally, a small example is given in
Sec. 5 as an illustration of the use of the solver in
the robotics context. The second part focuses on the
implementation of the solver and its use to generate
motion by inverse kinematics, while providing a more
complete set of experimentations to demonstrate the
performances of the method.

2 Hierarchies of tasks

2.1 Context: the task-function ap-
proach

The task-function approach [Samson et al., 1991] is
an elegant solution to express the objectives to be
performed by the robot and deduce from this expres-
sion the control to be applied at the joint level. Con-
sider a robot defined by its configuration vector q
and whose control input is the joint velocity q̇. A
task function is any derivable function e of q. The
image space of e is named the task space. Its jaco-
bian is denoted J = ∂e

∂q
. The evolution in the task

space with respect to the robot input is given by:

ė = Jq̇ (1)

The objective to be accomplished by the robot can
then be expressed in the task space by giving a ref-
erence task velocity ė∗. Computing the robot input
boils down to solving the following quadratic least-
square program (QP):

Find q̇∗ ∈ Argmin
q̇

‖Jq̇ − ė∗‖ (2)

Such a QP formulation can also be encoutered
to inverse the system dynamics in the operational
space [Khatib, 1987, Collette et al., 2007], compute
a walking pattern [Herdt et al., 2010] or optimize
a linearized trajectory of the robot whole body
[Pham and Nakamura, 2012].

More generically, we consider in this article the case
where a robot needs to satisfy a set of linear equality
constraints Ax = b. In case this set of constraints
is not feasible, it has to be satisfied at best in the
least-square sense:

Find x∗ ∈ Argmin
x

‖Ax− b ‖ (3)

Among the possible x∗, the solution that minimizes
the norm of x∗ is given by the pseudo-inverse:

x∗ = A+b (4)

where A+ is the (Moore-Penrose) pseudo-inverse of
A, which is the unique matrix satisfying the following
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four conditions:

AA+A = A (5)

A+AA+ = A+ (6)

AA+ is symmetric (7)

A+A is symmetric (8)

The set of all the solutions to (3) is given by
[Liégeois, 1977]:

x∗ = A+b+ P x̃2 (9)

where P is a projector on the null space of A (i.e.
such that AP = 0 and PP = P ), and x̃2 is any arbi-
trary vector of the parameter space, that can be used
as a secondary input to satisfy a second objective.

2.2 Hierarchy of equality constraints
[Siciliano and Slotine, 1991]

In this paper, we consider the case where p linear
constraints (A1, b1) ... (Ap, bp) have to be satisfied
at best simultaneously. If the constraints do not con-
flict, then the solution is directly obtained by stacking
them into a single constraint:

Ap =







A1

...
Ap






, bp =







b1
...
bp






(10)

The resulting QP can be solved as before. If the con-
straints are conflicting, a weighting matrix Q is often
used to give more importance to some constraints
with respect to others or to artificially create a bal-
ance between objectives of various physical dimen-
sions:

min
x

(Apx− bp)
TQ(Apx− bp) (11)

Rather than selecting a-priori values of Q, it was
proposed in [Siciliano and Slotine, 1991] to impose a
strict hierarchy between the constraints. The first
constraint (with highest priority) (A1, b1) will be
solved at best in the least-square sense using (4).
Then the second constraint (A2, b2) is solved in the
null space of the first constraint without modifying

the obtained minimum of the first constraint. Intro-
ducing (9) in A2x = b2, a QP in x̃2 is obtained:

min
x̃2

‖A2P1x̃2 − (b2 −A2A
+
1 b1)‖ (12)

The generic solution to this QP is:

x̃∗
2 = (A2P1)

+(b2 −A2A
+
1 b1) + P̃2x̃3 (13)

with P̃2 the projector into the null space of (A2P1)
+

and x̃3 any vector of the parameter space that can
be used to fulfill a third objective. The complete so-
lution solving (A1, b1) at best and (A2, b2) if possible
is:

x∗
2 = A+

1 b1 + (A2P1)
+(b2 −A2A

+
1 b1) + P2x̃3 (14)

where x∗
2 denotes the solution for the hierarchy com-

posed of the two first levels, and P2 = P1P̃2 is the
projector over A2.
This solution can be extended recur-

sively to solve the p levels of the hierar-
chy [Siciliano and Slotine, 1991]:

x∗
p =

p
∑

k=1

(AkPk−1)
+(bk −Akx

∗
k−1) + Ppx̃p+1 (15)

with P0 = I, x0 = 0 and Pk = Pk−1P̃k

the projector into the null space of
Ak [Baerlocher and Boulic, 2004]. x̃p+1 is any
vector of the parameter space that denotes the free
space remaining after the resolution of the whole
hierarchy.

2.3 Projection versus basis multipli-
cation

Given a basis Z1 of the null space of A1 (i.e. A1Z1 =
0 and ZT

1 Z1 = I), the projector in the null space of
A1 can be written P1 = Z1Z

T
1 . In that case, it is easy

to show that

(A2P1)
+ = (A2Z1Z

T
1 )

+ = Z1(A2Z1)
+ (16)

The last writing is more efficient to compute than the
first one due to the corresponding matrix size. Then,
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(15) can be rewritten equivalently under a more effi-
cient form:

x∗
p =

p
∑

k=1

Zk−1(AkZk−1)
+(bk −Akx

∗
k−1) + Zpzp+1

(17)
where Zk is a basis of the null space of Ak and zp+1 is
a vector of the dimension of the null space of Ap. This
observation was exploited in [Escande et al., 2010]
(which constitute a preliminary version of this work)
to fasten the computation of (15).

2.4 Inequalities inside a cascade of
QP [Kanoun et al., 2011]

The problem (3) is an equality-only least-square
quadratic program (eQP). Searching a vector x that
satisfy a set of linear inequalities is straightforward
to write:

Find x∗ ∈ {x, s.t. Ax ≤ b} (18)

If the polytope defined by Ax ≤ b is empty (the set
of constraints is infeasible), then x∗ can be searched
as before as a minimizer in the least-square sense.
The form (3) can be extended to inequalities by in-
troducing an additional variable w, named the slack
variable, in the parameter vector:

min
x,w

‖w ‖ (19)

subject to Ax ≤ b+ w (20)

The slack variable can relax the constraint in case
of infeasibility [Hofmann et al., 2009]. This QP is
named a inequality QP (iQP, by opposition to the
eQP). In the remaining of the paper, we keep this
reduced shape with only upper bound, since it en-
compasses lower bounds Ax ≥ b, double bounds
b− ≤ Ax ≤ b+ and equalities Ax = b by set-

ting respectively −Ax ≤ −b,

[

−A
A

]

x ≤

[

−b−
b+

]

and
[

−A
A

]

x ≤

[

−b
b

]

. Such an iQP can be solved, for

example, using an active-search method (recalled in
App. A).

The work in [Siciliano and Slotine, 1991] is limited
to a hierarchy of eQP. In [Kanoun et al., 2011], a
complete solution to extend the hierarchy to inequal-
ity constraints was proposed. The method begins
with minimizing the violation ‖w1 ‖ of the first level
of constraints in a least-squares sense through (19).
This gives a unique optimal value w∗

1 since the cost
function is strictly convex in w1. It proceeds then in
minimizing the violation of the second level of con-
straints in a least-squares sense:

min
x,w2

‖w2 ‖ (21)

subject to A1x ≤ b1 + w∗
1 (22)

A2x ≤ b2 + w2 (23)

The first line of constraints (22) is expressed with
respect to the fixed value w∗

1 obtained from the first
QP, which ensures that the new x will not affect the
first level of constraints and therefore enforces a strict
hierarchy. In that sense, (22) is a strict constraint
while (23) is a relaxed constraint. The same process
is then carried on through all p levels of priority.

2.5 Reduction of the computation
cost [De Lasa et al., 2010]

The solution [Kanoun et al., 2011] makes it possible
to solve hierarchies of iQP. However, it is very slow,
since each constraint k is solved at the iQP of level
k and all the following ones. In particular, the first
constraint is solved p times.

In [De Lasa et al., 2010], a solution is pro-
posed to lower the computation cost by reduc-
ing the generic nature of the problem studied
in [Kanoun et al., 2011]: inequalities are considered
only at the first level, and this level is supposed fea-
sible. This hypothesis reduces the expressiveness of
the method, forbidding the use of weak constraints
such as visibility or preference area. However, this
expressivity reduction enables to obtain very im-
pressive result for walking, jumping or, as shown
in [Mordatch et al., 2012], for planning contacts and
manipulation.

The first iQP of the cascade does not need an ex-
plicit computation, since w∗

1 = 0 by hypothesis. Then
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each level k > 2 is solved in the null space of the levels
2 to k − 1:

min
zk,wk

‖wk ‖ (24)

subject to A1(x
∗
k−1 + Zk−1zk) ≤ b1 (25)

Ak(x
∗
k−1 + Zk−1zk) = bk + wk (26)

where x∗
k−1 is the optimal solution for the k − 1 first

levels, and Zk−1 is the null space of the levels 2 to
k − 1. The solution in the canonical basis after the
kth QP is set to x∗

k = x∗
k−1 + Zk−1z

∗
k. The Zk basis

is computed from Zk−1 and a singular value decom-
position (SVD) of (AkZk−1).

If the first level is empty (or equivalently, if the
bounds are wide enough for never being activated),
this method is equivalent to (17). The global work-
ing scheme of the method [De Lasa et al., 2010] is the
same as [Kanoun et al., 2011] since both rely on a
cascade of QP computed successively for each level of
the hierarchy. The method of [De Lasa et al., 2010]
is faster since each QP is smaller than the previous
one (the dimension of zk decreases with k), while
each QP of [Kanoun et al., 2011] was bigger than the
previous ones (the number of constraints increases).
The method of [De Lasa et al., 2010] requires an ad-
ditional SVD, but this could be avoided since the
SVD or an equivalent decomposition is already com-
puted when solving the corresponding QP.
However, both methods [Kanoun et al., 2011] and

[De Lasa et al., 2010] have the same intrinsic prob-
lem due to the nature of the underlying active search
algorithm1. Basically, it searches for the set of active
constraints, that holds as equality at the optimum.
At each new QP of the cascade, the optimal active
set may be completely different. The active search
may then activate and deactivate a constraint sev-
eral times when moving along the cascade, and the
succession of all these iterative processes appears to
be very inefficient in the end.
Typical examples of this situation are given in Sec-

tion 5 and in the second part of the paper. Consider
a humanoid robot that should keep its center of mass
inside the support polygon, put its right hand in the

1The principle of the active search algorithm is recalled in

App. A.

front and its left hand far in the back: when solving
the right-hand constraint, the center of mass will sat-
urate in the front, which activates the corresponding
constraint. The front constraint is then deactivated
when the left-hand constraint brings the center of
mass on the back, while the back of the support poly-
gon becomes active. The back constraint may even
be deactivated if a last level is added that regulates
the robot posture.

2.6 Strict hierarchies and lexico-
graphic order

By minimizing successively ‖w1‖, ‖w2‖ until ‖wp‖,
the above approaches end up with a sequence of op-
timal objectives

{

‖w∗
1‖, ‖w

∗
2‖, . . . , ‖w

∗
p‖
}

which is it-
self minimal with respect to a lexicographic order: it
is not possible to decrease an objective ‖wk‖ with-
out increasing an objective ‖wj‖ with higher pri-
ority (j < k). Considering a hierarchy between
these objectives or a lexicographic order appear to
be synonyms. The above approaches can therefore be
summarized as a lexicographic multi-objective least-
squares quadratic problem, looking for

lexmin
x,w1...wp

{‖w1‖, ‖w2‖, . . . , ‖wp‖} . (27)

subject to ∀k = 1 : p, Akx ≤ bk + wk

The earliest and most obvious approach to solve
such lexicographic multi-objective optimization prob-
lems is to solve the single-objective optimization
problems successively [Behringer, 1977], exactly in
the same way described above [Kanoun et al., 2011,
De Lasa et al., 2010]. This is a very effective ap-
proach, but in the case of inequality constraints, each
optimization problem requires an iterative process to
be solved, and the succession of all these iterative
processes appears to be very inefficient in the end.

Following the example of the lexicographic sim-
plex method proposed in [Isermann, 1982], our ap-
proach is to adapt the classical iterative processes
for optimization problems with inequality constraints
directly to the situation of lexicographic multi-
objective optimization, resulting in a single iterative
process to solve the whole multi-objective problem at
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once, what appears to be much more efficient. This is
what we are going to develop in the following sections
for the problem (27).

3 Equality hierarchical
quadratic program

3.1 Optimality conditions

At first, we consider an equality-only hierarchical
quadratic least-square program (eHQP). It is writ-
ten as a set of p eQP: at level k, the QP to be solved
is written:

min
xk,wk

‖wk‖ (28)

subject to Akxk = bk + wk (29)

Ak−1xk = bk−1 + w∗
k−1 (30)

where Ak−1, bk−1 and w∗
k−1 are the matrix and vec-

tors composed of the stacked quantities of levels 1
to k − 1 (by convention, they are empty matrix and
vectors for k − 1 = 0). w∗

k−1 is the fixed value ob-
tained from the previous QP. The Lagrangian of this
problem is:

Lk =
1

2
wT

k wk + λT
k (Ak−1xk − bk−1 − w∗

k−1)

+ λT
k (Akxk − bk − wk) (31)

where λk and λk are the Lagrange multipliers corre-
sponding respectively to (30) and (29). Differentiat-
ing the Lagrangian over the primal variables xk, wk

and dual variables λk, λk gives the optimality condi-
tions:

wk = Akxk − bk (32)

Ak−1xk = bk−1 + w∗
k−1 (33)

λk = wk (34)

AT
k−1λk = −AT

kwk (35)

The two first lines give the condition to compute
the primal optimum. From (34), we see that w is
indeed at the same time a primal and a dual variable.
The last equation gives the condition to compute the
dual optimum.

3.2 Complete orthogonal decomposi-
tion

In the first level, (30) and (33) are empty. The
primal optimum is computed by minimizing w1 in
(32), that is to say by a classical pseudo-inverse of
A1. The pseudo-inverse can be computed by per-
forming a complete rank revealing decomposition.
Typically a SVD can be chosen. Alternatively, a
complete orthogonal decomposition (COD) can be
used [Golub and Van Loan, 1996]:

A1 =
[

V1 U1

]

[

0 0
L1 0

]

[

Y1 Z1

]T
= U1L1Y

T
1

(36)
where W1 =

[

V1 U1

]

and
[

Y1 Z1

]

are two or-
thonormal matrices, U1 being a basis of the range
space of A1, Z1 of its kernel and L1 is a lower tri-
angular matrix whose diagonal is strictly nonzero. If
the first level (A1, b1) is feasible, then A1 is full row
rank and U1 is the identity (V1 is empty). In that
case, (36) is the QR decomposition of AT

1 (or LQ
decomposition of A1).

The COD is cheaper to compute than the SVD.
The algorithms to compute it involve a rather simple
serie of basic transformations (Givens or Householder
rotations) and are known to be nearly as robust as
the algorithms computing the SVD (and much eas-
ier to implement). It is one of the classical ways
to solve rank deficient quadratic least-squares prob-
lems [Björck, 1996].

The pseudo-inverse of A1 now only implies the eas-
ily computable inversion of L1:

A+
1 =

[

Y1 Z1

]

[

0 0
L−1
1 0

]

[

V1 U1

]T
= Y1L

−1
1 UT

1

(37)
The optimal solution x∗

1 is obtained by

x∗
1 = A+

1 b1 = Y1L
−1
1 UT

1 b1 (38)

Rather than computing the explicit pseudo-inverse,
the optimum should be computed by realizing a for-
ward substitution of L1 on UT

1 b1.
The corresponding slack variable is:

w∗
1 = A1x

∗
1 − b1 = U1U

T
1 b1 − b1 = −V1V

T
1 b1 (39)
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3.3 Hierarchical complete orthogonal
decomposition

Consider now the second level of the hierarchy (28)
(k = 2). As in Sec. 2.3, condition (33) can be rewrit-
ten using (38) and (39) as:

x2 = x∗
1 + Z1z2 (40)

where z2 is any parameter of the null space of A1.
Condition (32) is then written:

w2 = (A2Z1)z2 − (b2 −A2x
∗
1) (41)

=
[

A2Y1 A2Z1

]

[

Y T
1 x∗

1

z2

]

− b2 (42)

because Y1Y
T
1 x∗

1 = x∗
1. The matrix A2 is in fact

separated in two parts along the Y1, Z1 basis: the
first part A2Y1 corresponds to the coupling between
the two first levels. The corresponding part of the
parameter space has already been used for the level
1 and can not be used here. The second part A2Z1

corresponds to the free space that can be used to
solve the second level.
The optima x∗

2 and w∗
2 are obtained by performing

the pseudo-inverse of A2Z1 using its COD:

(A2Z1) =
[

V2 U2

]

[

0 0
L2 0

]

[

Ỹ2 Z̃2

]T
(43)

The basis W2 =
[

V2 U2

]

provides a decomposition
of the image space of A2 along its range space and the
orthogonal to it. The basis

[

Y2 Z2

]

= Z1

[

Ỹ2 Z̃2

]

is in fact another basis of the null space of A1 that
also provides a separation of the kernel of A2. In
particular, Z2 is a basis of the null space of both A1

and A2 that can be used to perform the third level.
The optimum x∗

2 is finally:

x∗
2 = x∗

1 + Z1(A2Z1)
+(b2 −A2x

∗
1) + Z2z3 (44)

= x∗
1 + Y2L

−1
2 UT

2 (b2 −A2x
∗
1) + Z2z3 (45)

=
[

Y1 Y2 Z2

]





Y T
1 x∗

1

Y T
2 x̃∗

2

z3



 (46)

where x̃∗
2 = Y2L

−1
2 UT

2 (b2 −A2x
∗
1) is the contribution

of the second level to the optimum and z3 is any

parameter of the null space Z2 used to perform the
following levels. The optimum w∗

2 is directly obtained
using (42). This can be written using the two basis
V2, U2 and Y1, Y2, Z2:

w∗
2 =

[

V2 U2

]

[

N2 0 0
M2 L2 0

]





Y T
1 x∗

1

Y T
2 x∗

2

z3



− b2 (47)

with M2 = UT
2 A2Y1 and N2 = V T

2 A2Y1 the cou-
pled part of A2 corresponding respectively to its fea-
sible space U2 and its orthogonal, and using Y T

2 x̃∗
2 =

Y T
2 x∗

2. When the projected matrix A2Z1 is full
row rank, V2 and N2 are empty. If the ranks
of A2 and A2Z1 are the same, then N2 is zero.
This case is sometimes called a kinematic singularity
[Chiaverini, 1997]. Alternatively, the rank of A2 can
be greater than A2Z1. In that case, N2 is nonzero,
and the singularity is caused by a conflict with the
level having priority. This case is sometimes called
an algorithmic singularity [Chiaverini, 1997].

In (47) a decomposition of the matrix A2 appears,
that can be written generically for any k ≥ 2:

Ak =
[

Vk Uk

]

[

Nk 0 0
Mk Lk 0

]

[

Y k−1 Yk Zk

]T

(48)

= WkHkY
T
k (49)

with Nk = V T
k AkY k−1, Mk = UT

k AkY k−1, Y k−1 =
[

Y1 . . . Yk−1

]

and Hk =

[

Nk 0
Mk Lk

]

. Similarly to

the second level, Nk is empty if AkZk−1 is full row
rank; it is zero if the rank deficiency is inherent to
the level (kinematic singularity) and nonzero if the
rank deficiency is due to a conflict with a level hav-
ing priority (algorithmic singularity). In that third
cases, the stronger the norm of a column of Nk, the
stronger the coupling of the unfeasible part with the
corresponding higher level. The strongest columns of
Nk can then indicate the conflicting levels that pre-
vent the realization of level k.

Stacking all the decompositions (48) for the k first
levels, a single decomposition of Ak is recursively ob-
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tained by:

[

Ak−1

Ak

]

=

[

W k−1 0
0 Wk

]





Hk−1 0 0
Nk 0 0
Mk Lk 0



 [Y k−1 Yk Zk]
T

= W kHkY
T
k (50)

The complete form for the p levels is finally:







A1

...
Ap






=







W1

. . .

Wp









































0 0 0 0 0

L1
0 0 0 0

N2

M2

0 0 0 0

L2
0 0 0

...
...

...
...

Np

Mp

0 0

Lp
0



































Y T

with Y =
[

Y p Zp

]

.

If all the levels are feasible, all the matrices Ak

and AkZk−1 are full row rank and all the Nk matri-
ces are empty. In this case, the decomposition is a
COD of Ap. If there is no conflict between the levels,
all the Nk are zero. In this case, it is only a matter
of row permutations to turn the above decomposition
into a perfect COD of the matrix Ap, involving an in-
vertible lower triangular matrix. This decomposition,
which has been designed to enforce a strict hierarchy
between different priority levels, looks close to a clas-
sical COD and is indeed a COD in particular cases.
For this reason, we propose to call this decomposition
a Hierarchical Complete Orthogonal Decomposition
(HCOD) of the matrix Ap.

3.4 Primal optimum and hierarchical
inverse

3.4.1 Computing x∗
p

We have seen in (45) that the primal optimum of the
second level x∗

2 is directly computed from H2 and x∗
1.

Using the same reasoning, the optimum of level k,
given by (17), is computed using Hk:

x∗
k = x∗

k−1+YkL
−1
k UT

k (bk −Akx
∗
k−1)+Zkzk+1 (51)

The least norm solution for x∗
k is obtained for every

zi+1 = 0, what we suppose from now on. As ob-
served in this equation, the optimum of each level
k is computed using the level k of the HCOD and
the optimum of level k− 1. By recurrence, x∗

p can be
computed directly using the HCOD, by reformulating
(51) in the following way:

x∗
p = A‡

pbp (52)

where A‡
p is defined by a matrix recursion:

A‡
k =

[

(I − YkL
−1
k UT

k Ak)A
‡
k−1 YkL

−1
k UT

k

]

(53)

Or more simply, with the HCOD:

A‡
p = Y p H

‡
p W

T
p (54)

with

H‡
k =

[

H‡
k−1 0 0

−L−1
k MkH

‡
k−1 0 L−1

k

]

(55)

From this last form, we can see that the optimum is
structured by layer, following the hierarchy of prob-
lems. This structure is more evident when the op-
timum is computed in the Y basis. The primal op-
timum in the Y basis is denoted y∗

k
= Y T

k x
∗
k. The

contribution x∗
k − x∗

k−1 of the level k to the primal

optimum is denoted y∗k = Y T
k (x∗

k − x∗
k−1) (= Y T

k x∗
k

since Y T
k x∗

k−1 = 0). Then (51) can be rewritten as:

y∗
k
=

[

y∗
k−1

y∗k

]

(56)

where y∗k = L−1
k (UT

k bk−Mky
∗

k−1
). Each component k

of the optimum vector y∗
p
= (y∗1 , . . . , y

∗
p) corresponds

to the contribution of the level k of the hierarchy. The
study of y∗

p
is thus very informative to understand the

obtained x∗
p: for example the hierarchy levels that

induce large contributions in x∗
p directly appear in

y∗
p
.

3.4.2 Moore-Penrose conditions of A‡
p

The obtained matrix A‡
p respects three of the four

conditions of Moore-Penrose (5)-(8). First, H‡
pHp
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is easily shown to be equal to the identity matrix
(by recurrence, starting from H‡

1H1 = L−1
1 L1 = I).

Then:

A‡
pAp = Y pY

T
p =

p
∑

k=1

YkY
T
k (57)

This matrix product is obviously symmetric: A‡
p re-

spects (8). From this result, the condition (5) is easily
demonstrated:

ApA
‡
pAp = W pHpY

T
p Y pY

T
p = Ap (58)

With the same argument, (6) is also respected. The
last condition (7) is not respected in general:

HkH
‡
k =





Hk−1H
‡
k−1 0 0

NkH
‡
k−1 0 0

0 0 I



 (59)

Since H‡
k−1 is full row rank, the term NkH

‡
k−1 is zero

iff Nk is zero, that is to say if level k does not con-
flict with the above hierarchy. If all the N1...Nk are
zero, the fourth property (7) is then also respected:
A‡

p is strictly the pseudo-inverse of Ap and the op-
timum (51) enforcing a strict hierarchy between the
different priority levels appears to be equal to a clas-
sical least-squares solution to Akx = bk regardless of
any hierarchy.
In general, the matrix A‡

p respects only three of
the four properties of Moore-Penrose. This matrix is
a reflexive generalized inverse of Ap. It has been de-
signed to enforce a strict hierarchy between different
priority levels and looks close to a pseudo-inverse.
For this reason, we propose to call this matrix the
hierarchical inverse of the matrix Ak.

3.4.3 Damped inverse

The hierarchical inverse computes the
same solution than the classical method
[Siciliano and Slotine, 1991] and is thus subject
to the same singularities [Chiaverini, 1997]. These
singularities are studied in the second part (see
[Escande et al., 2012], Sec. 4.3). A singularity is
reached when one of the diagonal element of a
Lk becomes zero. The corresponding row is then
moved from Mk to Nk. In the neighborhood of the

singularity, the diagonal element of Lk is small and
can produce a large response in x∗

k. This is gener-
ally a desirable feature in numerical optimization
(since it corresponds to an accurate solution of a
ill-conditionned problem) but is often undesirable
in robotics. In that case, a damped inverse of Lk

can be used [Wampler, 1986, Deo and Walker, 1992,
Sugihara, 2011]:

L†η
k = (LkL

T
k + η2I)−1LT

k =

[

Lk

ηI

]+
[

I 0
]

(60)

3.4.4 Computing the w∗
p

For each level k, the slack variable is directly obtained
from x∗

k using (32). By replacing Ak byWkHkY
T
k and

x∗
k by (56), we obtain:

w∗
k = VkNky

∗

k−1
− VkV

T
k bk (61)

= VkV
T
k (Akx

∗
k−1 − bk) (62)

The slack of level k does not depend on the optimum
x∗
k of the same level. It is equal to the projection of

bk into the orthogonal to the range space, from which
the contribution of the previous levels is subtracted.
In particular, if there is no conflict between the levels,
the slack is directly obtained by projecting bk. Of
course, if level k is not in singularity (intrinsically or
due to the previous levels), Vk is empty and the slack
is zero. A singular point is obtained when Vk is not
empty but Akx

∗
k−1 = VkV

T
k bk: in that case, the level

is conflicting with the previous ones, but it is exactly
realized by the contribution of the above hierarchy.

Finally, the algorithm to compute x∗
p and w∗

p is
summarized in Alg. 1.

3.5 Transposed hierarchical inverse
and dual optimum

At level k, the dual optimum is given by (35), recalled
here:

AT
k−1λk = −AT

kwk

A solution (the least-square one) to this second opti-
mality condition can be obtained with the hierarchi-
cal inverse:

λk = −A‡T
k−1A

T
kw

∗
k (63)
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Algorithm 1 Primal eHQP

1: function eHQP primal(Ap, bp)
2: Input: HCOD of Ap, bp
3: Output: x∗

p, w
∗
p minimizing (28)

4: y∗
0
:= []

5: for k in 1:p do

6: e = UT
k bk −Mky

∗

k−1

7: w∗
k = Vk(Nky

∗

k−1
− V T

k bk)

8: e := L−1
k e

9: y∗
k
:= [ y∗

k−1
; e ]

10: end for

11: x∗
p = Y py

∗

p
, w∗

p = (w∗
1 , ..., w

∗
p)

12: return x∗
p, w

∗
p

Indeed, we can verify that this solution satisfies the
condition (35). Setting λk and w∗

k in (35) and using
(57), we obtain:

AT
k−1λk = −AT

k−1A
‡T
k−1A

T
kw

∗
k = −Y k−1Y

T
k−1A

T
kw

∗
k

(64)

This last form is equal to AT
kw

∗
k since, from (48) and

(61), we have:

AT
kw

∗
k = Y k−1N

T
k (Nky

∗

k−1
− V T

k bk) (65)

For each level k, there is a multiplier λk that cor-
responds to all the level of higher priority. There is
no real sense in stacking the multipliers of each lev-
els. They can be summarized under a pseudo matrix
structure:

Λp =



















w∗
1

1λ2
1λ3 . . . 1λp−1

1λp

w∗
2

2λ3 . . . 2λp−1
2λp

w∗
3 . . . 3λp−1

3λp

...
...

w∗
p−1

p−1λp

w∗
p



















(66)

where jλk (j < k) denotes the components of the
multipliers λk of the level k for the constraints of
level j and the empty spaces for j > k express the
absence of multipliers on above levels.
There is no direct formulation to compute the

whole Λp. Alternatively, the multipliers of each level

have to be computed iteratively. The solution (63)
gives the matrix formulation of the Lagrange mul-
tipliers of level k. To compute the multipliers, it is
more efficient to avoid the explicit computation of the
hierarchical transpose inverse. Using (53), (63) can
be rewritten:

λk =







1λk

...
k−1λk






=

[

−A‡T
k−2(A

T
kw

∗
k +AT

k−1
k−1λk)

−Uk−1L
−T
k−1Y

T
k−1A

T
kw

∗
k

]

(67)
By recurrence, the components jλk of the multipliers
of level k can be computed starting from j = k − 1
down to 1.

jλk = −UjL
−T
j Y T

j

(

k−1
∑

i=j+1

AT
i

iλk+AT
kw

∗
k

)

(68)

Using the HCOD structuration of the AT
i

iλk, the
sum on the right part can be computed for a reduced
cost. The algorithm is given in Alg. 2. The cumu-
lative variable ρ is used to propagate the recursion
across the k levels. At the end of any iteration j, the
following property is respected:

ρ(j) = Y T
j

(

k−1
∑

i=j+1

AT
i

iλk +AT
kw

∗
k

)

(69)

In line #7, ρ(j+1) is separated in two parts following

the separation of Aj+1 =

[

Aj

Aj+1

]

. The first part of

the vector is used to satisfy (69) while the second
part gives jλk using (68).

While the primal algorithm 1 computes the primal
optima x and w for all the levels at the same time, the
dual algorithm 2 can only achieve the computation
of w and λ for one level at a time. Both algorithms
can compute w naturally. If both are used, then a
choice has to be made on where to really perform the
computation of w∗.

3.6 Conclusion

In this section, we proposed a complete solution to
compute the primal and dual solutions of a hier-
archical quadratic least-square program with only
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Algorithm 2 Dual eHQP of level k

1: function eHQP dual(Ap, bp, x
∗, k)

2: Input: HCOD of Ap, bp, Primal optimum x∗,
level k

3: Output: w∗
k and λk satisfying (32) and (35)

4: e = Nky
∗

k
− Vkbk

5: w∗
k = Vke

6: ρ = −NT
k e

7: for j=k-1 downto 1 do

8:

[

ρ
ρ

]

:= ρ

9: r := L−T
j ρ

10: jλk := Ujr
11: ρ := ρ−MT

j r
12: end for

13: return w∗
k, λk

equality constraints. The solved problem is in fact
nothing more than the problem already solved in
[Siciliano and Slotine, 1991]. The proposed solution
enables much faster computation, thanks to the use
of a COD instead of a classical SVD but also mainly
because of the form Zk−1(AkZk−1)

+ that is much
more efficient than the classical (AkPk−1)

+. The un-
derlying structures that we have emphasized are also
interesting by themselves, for the information they
reveal on the problem structure: the HCOD can be
used to study the conflicts between the level of the
hierarchy, and the optimum y∗ reveals the hierarchy
structure of the optimal solution. Finally, we have
proposed a solution to compute the Lagrange multi-
pliers of the hierarchical problem. These multipliers
also provide a lot of information about the problem
organization: for example, if one level is not properly
satisfied because of a conflict, the multipliers can help
to select which level to remove to enhance its reso-
lution. Lagrange multipliers are also mandatory for
the active-search algorithm proposed in the next sec-
tion.

4 Inequality hierarchical
quadratic program

We now consider the hierarchical problem (27) sub-
ject to inequality constraints.

4.1 Available options and principle

The two main classes of algorithms to find the opti-
mum of a quadratic cost function over inequality con-
straints are the interior-point methods (IPM) and the
active-search algorithms. IPM convert the quadratic
problem with inequality constraints into a non-linear
parametric problem without inequality, and iterates
a deterministic number of times toward the opti-
mum [Nemirovski, 1994].

On the opposite, active-search algorithms iterate to
find the set of constraints that hold as equalities at
the optimum, named the active set. Convergence in
finite time is certified by making sure that the objec-
tive function is strictly decreasing at each iteration.
This approach led to the simplex method in the case
of linear programming [Dantzig and Thapa, 2003] or
active-set methods in the case of quadratic program-
ming. The number of iterations is non-deterministic,
but can be small if a good initial guess of the opti-
mal active set is known. Such a knowledge is more
difficult to use with IPM. For example, in sequen-
tial quadratic programming, active searches are often
preferred to IPM due to this property. In robotics
the optimal active set is slowly evolving over time,
what makes active-search algorithm more suitable
than IPM.

Active-search methods are themselves divided
mainly in two classes. The primal active search starts
with a feasible solution (which is sometimes costly to
compute), and maintains the feasibility over all the
iterations. The dual active search does not need a fea-
sible start, but the feasibility is only met at the opti-
mum. Primal algorithm is interesting in the perspec-
tive of real-time implementation, since it can be inter-
rupted at any time and returns a consistent solution.
This property will be explored in the second part of
the paper (see [Escande et al., 2012], Sec. 4.4).

In this section, we propose to extend the classical
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primal active-search algorithm (recalled in App. A) to
compute the optimal active set and the correspond-
ing optimum of a HQP with inequalities (or iHQP
by opposition to the eHQP). To avoid the unneces-
sary iterations encountered in [Kanoun et al., 2011,
De Lasa et al., 2010], the active sets of all the hierar-
chical levels are computed at the same time. We first
propose a rewriting of the classical active search for
an iQP. From this reformulation, the original iHQP
algorithm will be established.

4.2 Dedicated active search for the
two first levels

We consider the reduced case with only two levels and
the first level strictly feasible (case (27) with p = 2
and w∗

1 = 0):

min
x,w2

‖w2‖ (70)

subject to A2x ≤ b2 + w2 (71)

A1x ≤ b1 (72)

This iQP can be solved using a classical active-search.
However, this would not take into account the specific
form of the variable w2. Indeed, the slack variable
w2 is one of the variable to be optimized. Theoreti-
cally, it has the same meaning as the variable x. In
practice, its specific role in the constraint equations
can be taken into account to reduce the amount of
computation. In particular, an algorithm computing
the solution of (70) can be used directly to compute
the optimum of a problem without slacks with no ef-
ficiency lost. We propose below a modified version
of the classical active-search algorithm (recalled in
App. A). This algorithm is an intermediary result
that will be used to build and justify the hierarchical
algorithm proposed in the following section.

4.2.1 Algorithm principle

For a given x, a constraint Ar, br is satisfied if
Arx ≤ br, violated if Arx > br and saturated if
Arx = br. The algorithm maintains a set of con-
straints that are saturated (for level 1) or should be
minimized (for level 2) and thus hold as equalities.

This set is called the active set and is denoted by
S. For a given active set S, the associated eHQP
is obtained by selecting the rows of S. The two
first algorithms are trivially adapted and denoted by
eHQP primal(Ap, bp,S) and eHQP dual(Ap, bp,S).
The algorithm starts from an initial feasible point.
At each iteration, the corresponding eHQP is solved,
and depending on the result, the active set is modi-
fied. See App. A for details.

First, the initial point needs only to satisfy (72),
since for any x, it is easy to build w2 so that (71)
is satisfied. Among the possible w2, the initial one
is chosen with zeros on the components correspond-
ing to inactive constraints. This property is kept
along the iterations: the inactive components of w2

are null. It is preserved at each step (73). It is of
course preserved when activating any constraint and
deactivating a constraint of A1. When deactivating
a constraint of A2, the corresponding w2 (which is
also the Lagrange multiplier due to (34)) is strictly
negative. Then setting it to zero keeps the constraint
satisfaction while strictly decreasing the cost func-
tion. With this simple modification of the classical
algorithm, the inactive slacks are kept to 0 during all
the algorithm.

By recurrence over the algorithm iterations, it is
straightforward to show that all the constraints of
the second level A2x

(i) ≤ b2 are satisfied or active.
For the active component, the slack variable satisfies

w
(i)
2 = A2x

(i) − b2. From these observations, we see
that it is not necessary to keep track of w2 since it is
nothing more than the residue of the constraints of
the second level corresponding to the current x(i).

Based on these observations, a dedicated version of
the classical active-search algorithm that computes
the optimum of (70) is proposed. It is summarized
in Alg. 3 and detailed below.

4.2.2 Initialization

The algorithm starts with an initial point x(0) satis-
fying the strict level (72) and an initial guess of the

active set of the second level S
(0)
2 . The active set for

the first level is deduced from x(0).
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Fig. 2: An example of execution in two dimensions. The
initial point is x

(0). The iterations of the algorithm are
denoted by x

(1)
...x

(7). The optimum is finally reached in
x
(7). The constraints of the first levels are always re-

spected, and the path is slidding along these constraints.
From x

(3), all the constraints of level 2 are satisfied or
active. The first deactivation then occurs. The details of
the execution are given in App. B.

4.2.3 Step length

The active-search then maintains a value of the pa-
rameter x(i) and the active set S(i). At each itera-
tion, the algorithm first computes the optimum x(∗i)

of eHQP associated to S(i). The current parameter
is then moved toward x(∗i):

x(i+1) = x(i) + τ(x(∗i) − x(i)) (73)

The length τ of this step is computed for each con-
straint component by component. The minimum is
then selected.
For the strict level A1, τ is chosen to prevent inac-

tive constraints of the first level from becoming vio-
lated:

τ1,r =
b1,r −A1,rx

(i)

A1,r(x(∗i) − x(i))
(74)

with A1,r and b1,r the rth row of A1 and b1. If the
minimal τ corresponds to τ1,r, the corresponding con-
straint is activated.
Similarly for the relaxed level, if x(i) respects

A2,rx
(i) ≤ b2,r, the step length is computed to satu-

rate the constraint. If x(i) does not respect A2,rx
(i) ≤

b2,r, the constraint was not satisfied at the previ-
ous step. A full step τ = 1 can be performed. As
previously, the constraint r is activated if τ2,r is the
minimum. If several constraints correspond to the
minimum, only one of them should be arbitrarily ac-
tivated.

In summary, τ2,r is chosen as:

τ2,r =

{

b2,r−A2,rx
(i)

A2,r(x(∗i)−x(i))
if A2,rx

(i) ≤ b2,r

1 otherwise
(75)

The step-length algorithm is summarized in Alg. 4.

4.2.4 Positivity of the multiplier

If no constraint needs to be activated, it means that
the optimum is reached if S(i) is the optimal active
set. This is checked by looking at the components of
the Lagrange multipliers. The multiplier of the strict
level is λ given by (63). The multiplier of the relaxed
level is w2. If the active set is optimal, then all the
components of λ and w2 are non negative. If one of
them is negative, the constraint corresponding to the
lowest component of the multipliers is deactivated.

4.2.5 Algorithm termination and proof of

convergence

The algorithm stops at the first iteration where no
constraint needs to be activated or deactivated. The
current value of the parameter x(i) is the (primal)
optimum of the iHQP. The current value of S(i) gives
the optimal active set.

When starting the iterative process, some of the
constraints of A2 may be inactive but also not sat-
isfied. After a finite number of iterations (bounded
by the total number of constraints of the problem),
all the constraints of A2 are satisfied or active. This
is the end of a serie of iterations where only activa-
tions have occured. During this serie, the Lagrange
multipliers are never computed: there cannot be any
deactivations while some constraints of A2 are still
violated. The behavior of the algorithm is then the
same as the classical active-search algorithm and thus
is ensured to converge.
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Algorithm 3 Active search for a strict and a relaxed
constraints

1: Input: - x(0) such that A1x
(0) ≤ b1

2: - S
(0)
2 an initial guess for the active set of

A2

3: Output: x∗ minimizing (70)
4: x = x(0)

5: S = {r s.t. A1,rx0 = b1,r}
⋃

S
(0)
2

6: repeat

7: −−Compute the next optimum−−
8: x∗ = eHQP primal (A2, b2,S)

9: −−Compute the step length using Alg. 4−−
10: τ ,activate,cst = step length(A2, b2, x, x

∗)
11: x := x+ τ(x∗ − x)

12: −−If necessary, increase the active set−−
13: if activate then

14: S := S
⋃

{cst}
15: continue

16: end if

17: −−If necessary, decrease the active set−−
18: w, λ = eHQP dual (A2, b2, 2,S)
19: ν, cst = min{λ,w}
20: if ν < 0 then

21: S := S \ {cst}
22: end if

23: until not activate and ν > 0
24: return x∗ := x

4.3 Hierarchical active search

The main loop of Alg. 3 is composed of two sets of
instructions: the first one (lines #7 to #15) concerns
the activation of needed constraints, while the second
one (lines #16 to #21) deals with the deactivation to
obtain the optimal active set. The first part of the
loop is incrementally building an active set such that
all the constraints are activated or satisfied. It can
be observed that the hierarchical relation between the
levels has strictly no importance in this first part. In-
deed, any value can be applied in the null space of
the last level without disturbing the algorithm. Con-
sequently, it is possible to search for the active set of
all the levels at the same time.

Algorithm 4 Computation of the step length of
Alg. 3

1: function step length (A, b, x0, x1)
2: Input: Constraint A, b, current point x0, target

optimum x1

3: Output: step length τ , activation boolean acti-
vate, constraint reference cst

4: activate := False
5: for each row r of A do

6: if Arx0 ≤ br then

7: τ [r] = br−Arx0

Ar(x1−x0)
if Ar(x1 − x0) 6= 0 else 1

8: else

9: τ [r] = 1
10: if Arx1 > br then

11: activate := True; cst := r
12: end if

13: end if

14: end for each

15: τmin := min {τ, 1}
16: if τmin < 1 then

17: activate := True; cst := argmin{τ}
18: end if

19: return τ , activate, cst

However, the same remark is not possible in the
second part of the loop. Indeed, the previous section
has shown that the primal optimum can be computed
for all the levels at the same time. There is how-
ever no direct solution to compute all the Lagrange
multipliers at once, and each level must be explored
successively to compute the corresponding multiplier.

These two remarks are used to build the hierarchi-
cal active search detailed below and summarized in
Alg. 5.

4.3.1 Algorithm principle

The proposed algorithm is composed of two loops:
an inner loop that first enforces then maintains the
property that all the constraints should be activated

or satisfied. And an outer loop that explores all the
levels in ascending order to search for the correspond-
ing optimal active set by removing unnecessary con-
straints.
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4.3.2 Initialization

The algorithm starts with an initial guess of the ac-
tive set of all the levels. It does not need an initial
parameter x(0) since none of the levels (even the first
one) is guaranteed to be feasible. It then starts with
the arbitrary value x(0) = 0.

4.3.3 Step length and activation

At each new inner iteration, the algorithm first com-
putes the optimum of the eHQP associated to the
current active set. It then computes the step length
following the same rules as in the previous algorithm
using (75) at all the levels.
Depending on the initial guess S(0) and the corre-

sponding eHQP optimum, some of the inactive con-
straints may be violated. In that case, the activation
loop will first make some full steps τ = 1, while each
time adding one violated constraint into the active
set. The number of such steps is bounded by the
number of rows of Ap. At the end of these steps, all
the constraints should be activated or satisfied. This
property is then maintained throughout all the fol-
lowing iterations.

4.3.4 Positivity of the multipliers and deac-

tivation

When all the necessary constraints have been acti-
vated, the multipliers of the first level are computed
(it was not necessary to test them before). As be-
fore, the active set is optimal with respect to the first
level if none of the multiplier components is strictly
negative. Otherwise, the constraint corresponding to
the lowest component is deactivated, and a new inner
iteration is started.
In [Kanoun et al., 2011], it was observed that, if

one of the constraint of the first level is not satis-
fied (the slack variable is then strictly positive), this
constraint can be changed into an equality for all the
following levels, to avoid undesirable future deacti-
vations. Similarly, when the first optimal active set
is found, the multipliers of the second level can be
computed and checked, but without deactivating a
constraint whose slack at the first level was positive.
The active set is optimal with respect to the second

level if all the components of the multipliers are non
negative or corresponds to a positive slack of the first
level.

A constraint of the second level whose slack is
positive will also be kept active for all the fol-
lowing levels. For the same reasons as observed
in [Kanoun et al., 2011], if one of the constraints of
the first level corresponds to a strictly positive com-
ponent of the multiplier of the second level, this con-
straint can be locked to prevent any future deactiva-
tion.

In summary, the outer loop explores each level
starting from the first one. At each level, it com-
putes the multipliers. If a constraint is strictly neg-
ative and does not correspond to a strictly positive
component of the multipliers of the previous levels, it
is deactivated. When no more constraint needs to be
deactivated, the constraint corresponding to strictly
positive components of the multipliers are stored in
the set F of locked constraints.

4.3.5 Algorithm termination and proof of

convergence

The outer loop terminates after a fixed number of
iterations when all the p levels have been explored.
At this point, the active set is such that all the con-
straints are active or satisfied, and it is optimal for
each of the levels.

As in the previous algorithm, the inner loop starts
by a series of full step τ = 1 until all the constraints
are active or satisfied. Then, for a given iteration
k of the outer loop, suppose that the active set of
the levels k + 1 to p is constant: the inner loop be-
haves similarly to the previous algorithm and thus
converges. In practice, the active set of the upper
levels is not constant, but it can only be increased,
and then can vary a finite number of times (bounded
by the number of rows of the levels k+1 to p), which
ensures the termination of the inner loop.

4.4 Lexicographic optimization

The algorithm deactivates a constraint if there exists
a level k for which the component of the multiplier
corresponding to the constraint is negative, while it
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Algorithm 5 Hierarchical active search

1: Input: Initial guess S(0)

2: Output: x∗ minimizing (27)
3: x = 0 ; S = S(0)

4: F = ∅
5: for k = 1 : p do

6: repeat

7: −−Compute the next optimum−−
8: x∗ = eHQP primal (Ap, bp,S)

9: −−Compute the step length using Alg. 4−−
10: τ ,activate,cst = step length(Ap, bp, x, x

∗)
11: x := x+ τ(x∗ − x)

12: −−If necessary, increase the active set−−
13: if activate then

14: S := S
⋃

{cst}
15: continue

16: end if

17: −−If necessary, decrease the active set−−
18: w, λ = eHQP dual (Ap, bp, k,S)
19: λF := 0
20: ν, cst = min{λ,w}
21: if ν < 0 then

22: S := S \ {cst}
23: continue

24: else

25: F := S
⋃

{cst, λcst > 0}
⋃

{cst, wcst > 0}
26: break

27: end if

28: until not activate and ν > 0
29: end for

30: return x∗ := x

is zero for all the multipliers of level j < k. Consider
the pseudo-matrix Λp in (66), recalled here:

Λp =















w∗
1

1λ2 . . . 1λp−1
1λp

w∗
2 . . . 2λp−1

2λp

...
...

w∗
p−1

p−1λp

w∗
p















(66)

A constraint is deactivated iff the corresponding row
of Λp has one strictly negative component on column

k preceded by only zeros for the columns j < k. In
other words, the row is smaller than zero in the lexi-
cographic sense:

Λp =
[

0 ... 0 −α × × ... ×
]

≺ 0 (76)

Using this notation, Alg. 5 can be rewritten on the
exact same form than Alg. 3, using a lexicographic
test on Λp instead on lines #18-#19.

If a lexicographical writing of Alg. 3 is simpler, it
is more efficient from a computational point of view
to execute Alg. 5 since it avoids computing the whole
Λp at each iteration.

4.5 Least-square solution

The eHQP algorithm gives the least-square solution
among all the solutions of same cost, when zp+1 is
set to 0. However, this is not the case of the iHQP
since some constraints might be uselessly active. In-
deed, there is no mechanism to deactivate the un-
necessary constraints if they are not disturbing the
optimum. To force the deactivation of the unneces-
sary constraints, an artificial last level can be added
by setting Ap+1 = I and bp+1 = 0 that is to say:

x = 0 (77)

This constraint will always be rank deficient, but its
satisfaction at best in the least-square sense ensures
that the constraints that artificially increase the norm
of x are deactivated: the optimal active set is unique
and the the returned optimum is the least-square one.

4.6 Conclusion

Based on the hierarchical decomposition, we have
proposed an active-search algorithm that solves the
iHQP problem. On the contrary to the cascade of QP
used in [Kanoun et al., 2011, De Lasa et al., 2010],
this algorithm computes the active set of all the level
of the hierarchy at the same time. It thus solves the
complete hierarchical problem at once, avoiding the
back-and-forth effects encoutered with cascades and
sparing the cost of computation.

One of the costly computation of the algorithm is
the HCOD. This should be computed once at the
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start of the loop. Then, the initial decomposition
can be updated to follow the changes of the ac-
tive set. This will be detailed in the second part
[Escande et al., 2012].

5 Example of use

We now briefly illustrate with a small example the
use of our solver to generate a motion with a hu-
manoid robot. At each control cycle of the robot,
the motion objectives are written as a set of linear
equalities and inequalities as formulated in (1). The
robot velocity is then computed by inverse kinemat-
ics. A more detailed description will be given in the
second part of the paper (see [Escande et al., 2012],
Sec. 5.2). In the presented motion, the robot HRP-2
is walking beside a companion robot and should keep
it below an umbrella carried in its right hand. The
objectives to satisfy are

• ejl: avoid the joint limits

• epg: track the center-of-mass and flying foot ref-
erences issued from a walking pattern genera-
tor [Kajita et al., 2003, Stasse et al., 2008b]

• eθ: keep the angle of the umbrella stick below a
fixed threshold

• eumb: keep the companion below the umbrella

• efov: look at the companion head

• eθmin: minimize the stick angle

The task ejl, eθ, eumb and efov are expressed as in-
equalities. The constraints corresponding to eθ and
eθmin have the same left side, but the first one en-
ables a motion within the given boundaries while the
second one tries to prevent any motion by regulating
the stick at the vertical. The order of the tasks in the
hierarchy follows the list order. The obtained motion
is summarized by Figures 3 to 5.
At the beginning, HRP-2 is close to its compan-

ion (see Fig. 3-(a)): all the constraints can be satis-
fied and the companion is safely below the umbrella.
HRP-2 has then to step on the right (following a set
of given footprints) to avoid an obstacle, which pre-
vents him from staying close to the companion (see
Fig. 3-(b)). The task eumb cannot be executed while

(a) (b)

Fig. 3: Walking with an umbrella: snapshots from a top
view. (a) the robot manages to keep its companion below
the umbrella (b) the robot does not manage to accomplish
the secondary task while following the references of the
walking pattern generator.
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first brings the umbrella to satisfy this objective. When
going around the obstacle, the task regulating the angle
of the umbrella stick is violated first (T = 5.8s), followed
quickly by the FOV task (T = 5.9s). One second later, the
task keeping the companion below the umbrella is also vi-
olated (T = 6.3s). The angle of the stick then reaches the
minimum limit (T = 8.1s). This fourth task having prior-
ity over the three others, the angle is blocked. Finally, the
robot reaches a region where the tasks are feasible (from
T = 15s).
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satisfying the other tasks. Fig. 4 shows the evolu-
tion of the errors of the four tasks of least priority:
the task eθmin is first relaxed at T = 5.8s, quickly
followed by efov and eumb. When the angle of the
stick reaches the maximal value authorized by eθ, it
stops and remains constant. The robot then contin-
ues to walk, with the umbrella slightly tilted and as
close as possible to the companion. The tasks become
satisfied again as soon as the robot reaches a feasi-
ble region. The walking task and the joint limits are
satisfied during all the motion, as shown in Fig. 5.

This example illustrates both the hierarchy and the
interest of inequalities objectives: when the set of
objectives is infeasible, some are perfectly satisfied,
while the others, less important, are successively re-
laxed to keep a safe behavior. This enables to im-
plement in particular avoidance behavior (the joint
limits were never violated) and preference area (such
as the umbrella shadows) or postural tasks (such as
the tilt angle of the stick).

6 Conclusion

In this first part of the paper, we have proposed a
method to solve a hierarchical least-square quadratic
problem. First, we have focused on the subprob-
lem where only equalities are involved. In that
case, the optimal solution corresponds to what is
classically computed in inverse kinematics when
handling redundancy by successively projecting the
next problem in the null space of the previous
ones [Siciliano and Slotine, 1991]. We described a
dedicated matrix decomposition, the HCOD, that re-
veals the structure of the problem and can be used
to explain the obtained optimum, for example for au-
tomatic supervision. With this decomposition, the
optimum is obtained using a single inversion. It can
also be used to compute the optimum of the dual
problem.

Subsequently, we have used this first solver to
build an active-search algorithm that solves the whole
problem involving inequalities. Contrary to previous
methods [Kanoun et al., 2011, De Lasa et al., 2010]
that use a cascade of QP, our algorithm solves the
problem for all the levels of the hierarchy at the same

time. This avoids activations and deactivations en-
countered when using a cascade, which is undesirable
for computation-time reasons but also to avoid nu-
merical instability and bad numerical behavior of the
algorithm in general.

In the second part of the paper
[Escande et al., 2012], we focus more on practi-
cal implementation of the solver. In particular,
a method to compute the HCOD and to update
it along the active-search iterations is detailed.
The theoretical properties of the solver are given
(complexity, continuity, stability). And a strong
experimental setup demonstrates the interest of the
approach.

A Some basics on the active
search

The classical active-search algorithm to solve an iQP
is quickly recalled. We consider the following generic
least-square form:

min
χ

‖Aχ− b‖ (78)

subject to Cχ ≤ d (79)

As in the rest of the paper, only upper bounds are
considered here.

A.1 Algorithm principle

For a given χ, a row i of (79) is satisfied if Ciχ ≤ di,
violated if Ciχ > di and saturated if Ciχ = di. The
constraint (79) defines a polytope in the parameter
space. When the optimum of the unconstraint cost
function is outside of this polytope, the optimum of
the constrained QP is on the border of the polytope,
i.e. at the saturation of a subset of (79), named the
optimal active set. The active search iterates on a
candidate active set, denoted by S, until it finds the
optimal one. The constraints of S are said to be ac-

tive. For a given S, an associated eQP can be defined
by considering only the active constraints as equali-
ties. If we know the optimal active set, the optimum
of the iQP is obtained by solving the associated eQP.
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This algorithm could be used directly to compute
the optimum of a QP with a slack variable, such as
the one defined in (70), using χ = (x,w2), but in
a less optimal manner than with our method. The
algorithm is summarized in Alg. 6 and detailed below.

A.2 Initialization

The active search starts with a feasible point χ(0) that
satisfies (79) and an initial guess of S(0) (for exam-
ple, the set of all the saturated constraints at χ(0)).
The initial point χ(0) is not trivial and requires an
iterative process, called Phase I, to be solved (typ-
ically a simplex). It will not be detailed here since
this first phase of the algorithm is not necessary with
the hierarchical formulation.

A.3 Step length

At each iteration i, the algorithm computes the opti-
mum χ(∗i) of the eQP associated to the current active
set. It then moves the current χ(i) toward the eQP
optimum:

χ(i+1) = χ(i) + τ(χ(∗i) − χ(i)) (80)

If any constraint is reached during the move, then τ is
chosen to saturate the most constraining constraint,
which is added to the active set Si. The algorithm
starts a new iteration.

A.4 Positivity of the multipliers

Otherwise, a full step τ = 1 is performed. In that
case, χ(i) is optimal if the active set is optimal, which
is true if the Lagrange multipliers are all nonnega-
tive (this is one of the Karush-Kuhn-Tucker iQP op-
timality conditions [Boyd and Vandenberghe, 2004]).
If any multiplier is negative, the current active set is
suboptimal and the corresponding constraint need-
lessly prevents to come closer to the optimum. The
constraint corresponding to the multiplier with low-
est value is removed from the active set S(i) and the
algorithm starts a new iteration.

Algorithm 6 Classical active search

1: Input: χ(0) s.t. Cχ(0) ≤ d
2: Output: χ∗ minimizing (78)
3: S0 = {k s.t. Ckχ

(0) = dk}
4: χ,S := χ(0),S0

5: repeat

6: −−Compute eQP optimum−−
7: χ∗ = C+

S dS + ZC(AZC)
+(b−AC+

S dS)

8: −−Compute the step length−−
9: ∀i /∈ S, τi =

Ciχ−di

Ci(χ−χ∗)

10: τ, cst = min{1, τi}
11: χ := χ+ τ(χ∗ − χ)

12: −−If necessary, increase the active set−−
13: if τ < 1 then

14: S := S
⋃

{cst}
15: continue

16: end if

17: −−If necessary, decrease the active set−−
18: λ = −C+T

S AT (Aχ− b)
19: ν, cst = min{λ}
20: if ν < 0 then

21: S := S \ {cst}
22: end if

23: until τ = 1 and ν ≥ 0
24: return χ∗ := χ

A.5 Algorithm termination and con-
vergence

Finally, the loops ends when both τ = 1 and all the
multipliers components are nonnegative. The con-
vergence of the loop in a finite time can be proven
by showing the strict decrease of the cost function at
each iteration [Boyd and Vandenberghe, 2004].

B A simple example of active

search

Fig. 2 gives an example of execution of Alg. 3 in 2
dimensions. The problem to solve is composed of
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two levels. The first (strict) level is:

1a :
x

10
− y ≤ −0.55 (81)

1b : x− y ≤ 1.5 (82)

The second (relaxed) level is:

2a : x ≥ 2.5 (83)

2b : x+ y ≥ 2 (84)

The algorithm starts at the initial point x(0) =
[−0.5, 1.5], which satisfies the constraints 1a and 1b

of the first level, but not the constraints 2a and 2b

of the second level. All constraints are inactive. For
each step of the algorithm, we give the optimum of
the eHQP x(∗i), the step, the change in the active set
and the active set at the end of the iteration S(i).

• computation of x(1): we have x(∗0) = [0, 0] but
1a prevents a full step and is activated. S(1) =
{1a}

• x(2): x(∗1) is the projection of [0, 0] on 1a. A
full step is taken, but the current point x is still
outside of 2a and 2b. Both could be activated.
2b is chosen (arbitrarily, due to the constraint
order). S(2) = {1a, 2b}

• x(3): x(∗2) is the intersection of the two active
constraints. A full step is taken, but x still vio-
lates 2a, which is activated. S(3) = {1a, 2a, 2b}.
From this point, all the constraints are satisfied
or active.

• x(4): x(∗3) is the point on the boundary of 1a
at the least-square distance of 2a and 2b. A
full step is taken and no constraint is activated.
The Lagrangian of the first level is null since x
is on 1a. The Lagragian of the second level cor-
responding to 2b (i.e. w∗

2) is negative: 2b is
deactivated. S(4) = {1a, 2a}

• x(5): x(∗4) is at the intersection of 1a and 2a,
but 1b prevents to perform a full step and is
activated. S(5) = {1a, 1b, 2a}

• x(6): we have x(∗5) = x(5). A full step of length
0 is taken. The Lagrange multiplier is com-
puted, and is negative on the component cor-
responding to 1a: the constraint is deactivated.
S(6) = {1b, 2a}.

• x(7): x(∗6) is the intersection of 1b and 2a. A
full step is taken and all Lagrange multipliers
are positive: the optimum is found.
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Abstract

Hierarchical least-square optimization is of-
ten used in robotics to inverse a direct function
when multiple incompatible objectives are in-
volved. Typical examples are inverse kinemat-
ics or dynamics. The objectives can be given
as equalities to be satisfied (e.g. point-to-point
task) or as areas of satisfaction (e.g. the joint
range). This two-part paper proposes a com-
plete solution to resolve multiple least-square
quadratic problems of both equality and in-
equality constraints ordered into a strict hier-
archy. Our method is able to solve a hierarchy
of only equalities ten time faster than the clas-
sical method and can consider inequalities at
any level while running at the typical control
frequency on whole-body size problems. This
generic solver is used to resolve the redundancy
of humanoid robots while generating complex
movements in constrained environment.

In the first part of the paper, we proposed
a dedicated numerical solver to solve equality-
only and inequality hierarchical least-square
quadratic problems. In this second part, we
detail the implementation of the solver and its
application to inverse kinematics. In particular,
we explicit the solver complexity and prove the
continuity and the stability of the resulting con-
trol laws. Finally, we experimentally demon-
strate its efficiency in the context of generating
robot motions.

(a) (b)

Fig. 1: Various situations of inequality and equality con-
straints. (a) Obstacle avoidance, joint limits and support
polygon. (b) Reaching an object behind an obstacle while
ensuring the robot balance. The visibility is only ensured
if possible.

1 Introduction

Dealing with multiple contradictory objectives is a
classical situation with redundant robots. In that
case, imposing a hierarchy between the objectives can
be an elegant solution to handle the conflicts while
ensuring a safe behavior, by setting important ob-
jectives at the top of the hierarchy. A typical situ-
tation is the design of a control law on a humanoid
robot: manipulation tasks should be perfomed only
within the stability region of the robot, while postu-
ral or observation tasks can be only partially realized
(see Fig. 1).

Hierarchy of constraints expressed as linear
equalities has been addressed early [Liégeois, 1977,
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Hanafusa et al., 1981, Siciliano and Slotine, 1991].
Inequality-based objectives were first taken into
account at the lowest-priority level using potential
fields [Khatib, 1986]. However, some top-priority
objectives in robotics are often expressed as in-
equalities (e.g. joint limits or obstacles avoidance).
In [Kanoun et al., 2011], it was proposed to build
a hierarchy of equalities and inequalities using a
cascade of least-square quadratic problems (QP).
However, the computation cost of the proposed
method prevented any application for on-board
robot control. A cheaper solution also based on QP
cascades was proposed in [De Lasa et al., 2010] in a
simplified case: inequalities are considered only at
the first priority level, which is restrictive for simple
case (e.g. Fig. 1-(a), the gaze is directly expressed
as an inequality and set up as a third-priority
objectives).

In the first part of the paper [Escande et al., 2012],
we proposed a dedicated method to solve hierarchi-
cal problems without using a cascade of QP. For this
purpose, we first proposed a matrix decomposition,
named HCOD, dedicated to the hierarchical struc-
ture of the problem. Using this decomposition, the
hierarchical problem with only equality constraints
is solved in a single inversion. Based on the reso-
lution of the equality problem, a dedicated active-
search algorithm was proposed, that solves the gen-
eral problem while avoiding the large number of iter-
ations typically encoutered when using a cascade of
solvers. Moreover, the intermediary theoretical study
emphasizes the underlying hierarchical structure of
the problem and allows a better understanding that
could be used for automatic supervision or automatic
task sequencing.

The contributions and organization of this second
part are the followings:

• we give the method to compute the HCOD and
to modify it when the active set increases or de-
creases in Sec. 3.

• we compute the complexity of the hierachical
solvers and prove the continuity of the solver
optimum and the stability of the subsequent
inverse-kinematics based control law in Sec. 4.

• we experimentally show in Sec. 5 the solver effi-
ciency and its use in the robotics context to gen-
erate whole-body motions of a humanoid robot.

2 Background

In the first part of the paper, we proposed a solution
to solve the following hierarchical problem:

lexmin
x,w1...wp

{‖w1‖, ‖w2‖, . . . , ‖wp‖} . (1)

subject to ∀k = 1..p, Akx ≤ bk + wk

where p is the number of levels of the hierarchy, and
for any k = 1..p, Ak and bk define the linear objec-
tives to be satisfied at best in the least-square sense.
This problem is formally defined by a cascade of p
QP:

min
xk,wk

‖wk‖ (2)

subject to Akxk ≤ bk + wk (3)

Ak−1xk ≤ bk−1 + w∗
k−1 (4)

where Ak−1, bk−1 and w∗
k−1 are the matrix and vec-

tors composed of the stacked quantities of levels 1
to k − 1 (by convention, they are empty matrix and
vectors for k − 1 = 0). w∗

k−1 is the fixed value ob-
tained from the QP of level k − 11. To solve this
hierarchical least-square quadratic problem (HQP),
it was previously proposed in [Kanoun et al., 2011,
De Lasa et al., 2010] to use the cascade formulation
by iteratively calling p times a QP solver. Such a
cascade execution has some bad properties that are
experimentally highlighted in Sec. 5. Instead, we pro-
posed in the first part a hierarchical solver that is
quickly recalled below.

2.1 Equality hierachical quadratic

program

First, a subproblem of the HQP composed only
of equality (eHQP) is solved (see the details

1For clarity purpose and without loss of generality, the
problem is formulated with upper-bound constraints only. Effi-
cient implementations would make explicit lower bounds, dou-
ble bounds and equality (twin bounds) constraints. See App. D
for details.
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in [Escande et al., 2012], Sec. 3). The resolu-
tion of an eHQP is classical in inverse kinemat-
ics and dynamics, and was first formalized in
[Siciliano and Slotine, 1991]. In the first part, we
proposed a theoretical study that emphasizes the
underlying mathematical structures and accelerates
the resolution of this problem. We also gave a so-
lution to compute the optimum of the dual prob-
lem. This method is based on the hierarchical com-
plete orthogonal decomposition of the matrix Ak (see
[Escande et al., 2012], Sec. 3.3):

[

Ak−1

Ak

]

=

[

W k−1 0 0
0 Vk Uk

]





Hk−1 0 0
Nk 0 0
Mk Lk 0



[Y k−1 Yk Zk]
T

= W k

[

Hk 0
][

Y k Zk

]T
= W k Hk Y T

k (5)

where Wk =
[

Vk Uk

]

, Zk is a null-space basis of Ak,

Lk is full rank lower triangular and Wk, Lk,
[

Yk Zk

]

is the complete orthogonal decomposition of AkZk−1:

AkZk−1Z
T
k−1 = Wk

[

0 0
Lk 0

]

[

Yk Zk

]T
(6)

The number of rows of Ak is denoted by mk. The
rank of AkZk−1 is denoted rk ≤ mk. The rank of Ak

is denoted rk =
∑k

j=1 rj .
Based on this decomposition, the hierarchical in-

verse of Ak is defined by (see [Escande et al., 2012],
Sec. 3.4):

A‡
p = Y pH

‡
kW

T
p (7)

where H
‡
k is defined by the following recurrence:

H
‡
k = Y p

[

H
‡
k−1 0 0

−L−1
k MkH

‡
k−1 0 L−1

k

]

WT
p (8)

The optimum of the eHQP is then simply:

x∗
p = A‡

pbp (9)

Or, using again the HCOD, x∗
p = Y py

∗

p
, with

y∗
k
=

[

y∗
k−1

y∗k

]

(10)

and y∗k = L−1
k (UT

k bk−Mky
∗

k−1
). The associated opti-

mal w∗
k can be simply computed using the difference

w∗
k = Akx

∗
p − bk. A less expensive reformulation can

also be expressed using the HCOD. The computation
of the primal optimum is recalled in Alg. 1 of the first
part of the paper2.

For a given level k, the Lagrange multiplier as-
sociated with (4) is denoted by λk. The multi-
plier associated to (3) is simply wk. Then, λk can
be computed using the hierarchical inverse by (see
[Escande et al., 2012], Sec. 3.5):

λk = −A
‡T
k−1A

T
kw

∗
k (11)

Once more, a cheaper reformulation can be obtained
using the HCOD and is summarized in Alg. 2.

All the multipliers can be summarized under a
pseudo matrix structure:

Λp =















w∗
1

1λ2 . . . 1λp−1
1λp

w∗
2 . . . 2λp−1

2λp

. . .
...

...
w∗

p−1
p−1λp

w∗
p















(12)

where jλk (j < k) denotes the components of the
multipliers λk of the level k for the constraints of
level j, and the empty spaces for j > k express the
absence of multipliers on above levels. On the con-
trary to the primal variable x∗

p, there is no direct
formulation to compute the whole dual variable Λp.
Consequently, the multipliers of each level have to be
computed iteratively.

2.2 Hierarchical active search

The inequality hierarchical program (iHQP by oppo-
sition to the eHQP) defined in (1) is solved using an
active-search algorithm: if we know the set of inequal-
ity constraints that hold as equalities at the optimum,
then the resolution of the iHQP simply involves the
resolution of the eHQP composed of the active set of
constraints. The active-search algorithm iteratively
searches the optimal active set. It starts with an ar-
bitrary initial guess (an empty set, if no better guess

2All the algorithms being given in the first part of the paper,
they will be simply referenced by their number.
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is available). At each iteration, it computes the op-
tima of the primal and dual eHQP associated to the
current active set, and deduces one constraint to be
added or removed to/from the active set.
In the first part of the paper

([Escande et al., 2012], Sec. 4.3), we proposed
in Alg. 5 an adaptation of the classical active-search
algorithm that solves the whole hierarchical problem
inside a unified loop by searching for the active set
of all the levels of the hierarchy at the same time.

3 Decomposition computation

and modification

In this section, we present a complete solution to
compute the HCOD of a matrix A. This solution
is based on iterative orthogonal transformations, the
Householder reflections and the Givens rotations (re-
called in App. B). The algorithm presented in the
previous sections uses the HCOD to compute the pri-
mal x and dual λ optima at each active-search itera-
tion.
However, the decomposition is costly and should

be avoided if possible. It has to be computed once
for the initial active set at the first iteration. At the
next iterations when one element of the active set is
added or removed, the initial HCOD only needs to be
updated to fit with the current active set. While the
computation of the HCOD is cubic in the matrix size,
the update is quadratic and keeps a low computation
cost for the active search even when several iterations
are needed. A complete solution to apply such an
update is presented in the two last subsections.

3.1 Computation of the HCOD

3.1.1 Right basis Y

The HCOD is computed iteratively for each level k.
We suppose that the expression of Ak in the basis
[

Y k−1 Zk−1

]

is computed. A rank-revealing LQ de-
composition of AkZk−1 is first performed: the row of
largest norm of AkZk−1 is selected and permuted at
the top of the matrix by a permutation matrix Π1.
The Householder reflection Q1 nullifying the tail of

this row is built using (47) and applied to the mk −1
last rows of AkZk−1 using (46). The result of this
first reflection can be written:

AkZk−1 = Π1











l1 0 . . . 0
×

K1
...
×











QT
1 (13)

The reflection Q1 is also applied to the levels Ak+1

to Ap. The same process is iteratively applied to
the remaining matrix K1, until all the rows of the
remaining matrix are null. The result can be written:

AkZk−1 = Π















LR

0 . . . 0
...

...

LN

0 . . . 0















QT (14)

with Π =
∏rk

i=1 Πi, Q =
∏rk

i=1 Qi and rk the rank of
AkZk−1 (i.e. the size of LR). This decomposition of
AkZk−1 is available in many classical linear algebra
software by applying a column-pivoting QR decom-
position on the transpose (e.g. QR in matlab, xGE-
QPF in LAPACK, ColPivHouseholderQr in Eigen).
Q is a transformation of Zk−1 that reveals the rank
of level k and gives the component Yk of the right
basis:

[

Yk Zk

]

= Zk−1Q (15)

The matrix Q is not expressed explicitly but as a
structured product of rk Householder reflections Qi,
whose vectors vi are of decreasing support size. Fi-
nally, the obtained basis Y =

[

Y p Zp

]

is expressed
as a structured matrix of rp Householder reflections.
Each reflection i corresponds to a vector v whose sup-
port size is n − i and does not modify the i first
columns of Ap. If needed, the coefficients of the ma-
trix Y can be explicitly computed by applying the
reflections on the identity matrix In.

3.1.2 Left bases Wk

For each stage k, the matrix LN has now to be nul-
lified by applying a transformation on the left side
of the decomposition. We can suppose that LN has
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only one row (the same procedure is then applied for
each rows of LN ). Each component i of the row LN

starting from the last one is nullified by applying a
Givens rotation pivoting around the row i of LR. The
result of the ith rotation can be written:

Π W (i)



























× 0 0
...

. . .

× · · · lri
...

...
...

. . .

× · · · × · · · ×

× · · · lni 0 · · · 0 · · · 0



























QT

where the double arrow represent the next Givens
rotation to be applied. The matrix Wk is built recur-
sively using the following series of Givens rotations:

W (i) = W (i−1)G[rk − i, rk + 1, θi] (16)

where θi is chosen to nullify lni, i.e. the ith column

starting from the right of the matrix W (i−1)T
[

LR

LN

]

.

The recursion starts with W (0) = Π and stops with
Wk = W (rk).

The left part AkY k has been already computed
when applying the Householder reflections Qi on Ak.
The matrices Mk and Nk are computed by applying
the rk Givens rotations to AkY k. Finally, the rows
of the matrix corresponding to LR and LN can be
exchanged by applying a last permutation. The de-
composition at level k is then written:

Ak = Wk

[

Nk 0 0
Mk Lk 0

]

Y (17)

with Wk a product of Givens rotations and permuta-
tions and Y a product of Householder reflections.

3.2 Decomposition update

We now present the HCOD update, i.e. how to
add one constraint at level k. The next section will
present the removal of a constraint.

3.2.1 Update properties

We consider the HCOD W p,Hp,Y of the matrix Ap.
One row Aup is added in the level k. The first part of
the update consists in finding a proper decomposition
of this matrix for level k, mainly by applying a series
of Givens rotations Yup on the right. The second part
consists in propagating Yup on the levels j > k.

The stack of Ak and Aup can be written:

[

Ak

Aup

]

=

[

Wk 0
0 1

]









Nk

Mk

0 0 · · · 0 · · · 0

Lk
0 · · · 0 · · · 0

AupY 0 · · · 0









Y T

(18)
The update procedure depends on the number of 0
of the tail of the new row.

The insertion of Aup in Ak can increase the rank of
the HCOD (i.e. rp) of 1 or let the rank unchanged.
Similarly, the rank of level k can increase of 1 or stay
unchanged. Finally, the ranks of the upper levels can
only decrease or stay unchanged since they are not
augmented by any rows. In conclusion, at most one
matrix from k+1 to p can lose at most one rank, all
the other rank being kept unchanged. The level that
loses one rank is denoted k̂. If the updated matrix k

does not change its rank, all the following rank will
stay constant too. This case can be seen as k̂ = k.

The rank loss means that Aup is linked with A
k̂

(i.e. Aup is a linear combination of the rows of A
k̂
).

Consequently, AupY
T is null on the columns corre-

sponding to levels k̂ to p and its support equal to
AupY k̂

. The row of level k̂ that has the same number
of nonzero elements (abusively named the rank of the
decomposition row) as AupY is denoted by r̂.

3.2.2 Case 1. Aup is linked with Ak

The simplest case to update is if there is at least as
much 0 in the tail of the new row than on the last
row of Hk:

[

Ak

Aup

]

=

[

Wk 0
0 1

]









Nk

Mk

0 0 0

Lk
0 0

AupY 0 0









Y T (19)
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This means that the new row is linked with Ak. The
decomposition is completed by nullifying the part of
AupY k̂

below Lk using a left basis Wup as explained
in Section 3.1.2. As a result, the decomposition of
level k can be written:

[

Ak

Aup

]

=

[

Wk 0
0 1

]

Wup









Nk

Mk

0 0 0

Lk
0 0

Nup 0 0 0









Y T

(20)
with Nup = WT

upAupY and Wup computed with (16).
The update is completed for level k by reordering the
rows of Hk and the corresponding columns of Wk.
Since there is no effect on the level j > k, the update
of the whole HCOD is completed.

3.2.3 Case 2: Aup is not linked with Ak

The first step of the update is to turn AupY into a
new row ofHk. This can be done directly by applying
a set of Givens rotations on the right to nullify the
elements starting from the last nonzero one using the
previous element as a pivot.

Y (i)
up = Y (i−1)

up G[r̂ − i− 1, r̂ − i, θi] (21)

where θi is chosen to nullify the corresponding el-

ement of Aup Y Y
(i−1)
up . The recursion starts with

Y
(i)
up = I and stops with Yup = Y

(r̂−rk)
up . The up-

dated matrix at level k can then be written:

[

Ak

Aup

]

=

[

Wk 0
0 1

]









Nk

Mk

0 0 0

Lk
0 0

AupY X 0









Y T
upY

T

(22)
where X is the edge of the new triangle formed by
Lk and the added line. The left part of the new row
(i.e. AupY k̂−1) is not modified by Yup. X is nonzero
(otherwise, it corresponds to the case 1). This de-
composition then gives the update for level k (i.e.
of Wk, Mk, Nk and Lk). The update can now be
propagated to the next levels.

3.2.4 Propagation of Yup

The propagation of Yup and the consequent modi-
fications of the levels k + 1 to p are applied itera-

tively from level k + 1. For each row with a 0 tail
h = [× · · · × 0 0 · · · 0 ], the multiplication with Yup

keeps all the 0 of the tail, except the first one, due to
(21):

hYup = [× · · · ×X ′ 0 · · · 0 ] (23)

where X ′ is at the position of the first 0 of the tail
of h. X ′ is nonzero in the general case but is zero
if the rank of h is greater than r̂, once more due to
(21). Consequently, the shape of the decomposition
at level i after application of Yup is:

Ai = Wi





















Ni

Mi

ν1 0 0
... 0 0
νm−r 0 0

Li

d1

dr

...
...

0 0





















Y T
upY

T

with (d1, ..., dr) a set of ri component forming a upper
bidiagonal on Li and (ν1, ..., νm−r) a column vector
of mi − ri components. For all lines j with a rank
greater or equal to r̂, dj is zero.

It is possible to distinguish three cases, whether
the rank loss happens before, after or at the current
level i.

3.2.5 Case 2.1: rank loss after the level i

In the first case, the HCOD for levels i−1 and i looks
like:



































Ni−1

Mi−1

0

Li−1
0 0

Ni

Mi

ν1 0 0
... 0 0
νm−r 0 0

Li

d1

dr

...
...

0 0



































(24)

with all the dj nonzero. From this structure, the
update of the decomposition of level i is directly ob-
tained.
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3.2.6 Case 2.2: rank loss at the current level i

The structure of the decomposition is similar to the
previous one, but there is l zero components in the
begining of dj : the row l of Hi has the same support
size as AupY . By reordering Li to put the row l

at the bottom row and reordering accordingly Wi,
the decomposition can be put under the form (19).
Following, the last row can be nullified by the set of
Givens rotations Wup, as described in Sec. 3.2.2.

3.2.7 Case 2.3: rank loss before level i

In that case, the total rank of the HCOD at the pre-
vious level ri−1 did not change, and the levels i − 1
and i have the following structure:

































Ni−1

Mi−1

0

Li−1
0 0

Ni

Mi

ν1 0 0
... 0 0
νm−r 0 0

Li

d1

dr

...
...

0 0

































(25)

However, since the rank loss occurred in one of the
previous levels, the Yup does not modify the columns
corresponding to Li. Following, the νj and dj are
zero, and the given decomposition is directly the up-
date of the current level.

3.3 Decomposition downdate

When one constraint is deactivated, the correspond-
ing row of Ap is removed. The modification of the
HCOD to correspond to the new Ap is called down-

date (by opposition to the update).

3.3.1 Removing one row of Hk

Without loss of generality, we can consider the case
where the last row of the level k should be removed
(a permutation is first applied otherwise). The gen-
eral idea is to find a rotation Wdw so that WkWdw is

unitary on the row to be removed:

WkWdw =











0

WA

...
0

0 · · · 0 1











(26)

The rotation Wdw can be built as a product of Givens
rotations:

Wdw =

mk−1
∏

i=1

G[i+ 1, i, θi] (27)

where θi is chosen to nullify the ith component of the
row of W to be removed. The result on Hk can be
written:

Ak=WkWdw





























Ni

Mi

0 0 0
... 0 0
0 0 0
d1 0 0

Li

dr

...
...

0 0

Mdw Ldw 0 0





























Y T

The last row of Hk and the last row and column of
Wk are then removed. If all the d1 ... dr are nonzero,
then the obtained form is a proper HCOD. Other-
wise, the resulting Lk is upper Hessenberg and can
be corrected by using a serie Ydw of Givens rotation
applied on the right side, as in the update case.

3.3.2 Propagation of Ydw

We now consider the level i > k. After application of
Ydw, the HCOD of levels i− 1 and i looks like:































Ni−1

Mi−1

0 0 0

Li−1

Ni

ν1...
νm−r

Mi

0 0

Li

0































(28)
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• Case 2.1: If all the ν1 . . . νm−r are null, then the
triangle part of Hi is upper Hessenberg. The process
already explained for Hk is applied on Hi and the
obtained Ydw is propagated to Hi+1.

• Case 2.2: Otherwise, we can suppose without loss
of generality that νm−r is nonzero (the correspond-
ing row is linked to the row removed from level k).
The rank of level i is increased by one. The decom-
position is finalized by simply nullifying the nonzero
ν1 . . . νm−r−1 by applying Givens rotations on the left
of Hi.

• Case 2.3: after Case 2.2, the propagation of Ydw

on the levels i + 1 and further will not modify the
corresponding L matrix, which concludes the HCOD
modification.

A complete implementation of the decomposition
and the updates, along with HQP resolutions, is pro-
posed in App. D.

3.4 Structured versus explicit matrix

The cost of a single elementary transformation is
much lower when it is kept as a structured matrix.
Then, the explicit computation Y is not needed.
However, when n Householder reflections are in-
volved, the cost of a multiplication by Y is the same
for an explicit or a structured expression. This is typ-
ically the case after a full HCOD, since the problem
is often fully constrained and thus involves n reflec-
tions. Then, after any update or downdate, Y also
implies a set of Givens rotations. To avoid an in-
crease of the cost of Y along the active-set iterations,
we transform in practice Y to an explicit matrix at
the end of the first HCOD.

Similarly, the Wk are given as a set of Givens ro-
tation. However, some coefficients of Wk need to be
explicitly computed during a downdate (in (26)). For
simplicity, we also compute the explicit form of Wk,
except when the level k is full rank (Wk is then the
identity).

4 Implementation considera-

tions

In this section, we give some results and techniques
about the effective implementation of the solver. We
first characterize the computation cost of both the
eHQP and iHQP solvers. When the solver is used to
compute the robot control, one instance of the prob-
lem is solved at each control cycle. In that case, we
prove under some conditions the continuity of the
control law when some constraints become active.
This continuity can be used to reduce the compu-
tation cost. Finally, we prove the overall stability of
the control scheme when the solver is used to execute
an inverse kinematics.

4.1 Complexity

We roughly characterize the cost of the HCOD de-
composition, of the eHQP resolution knowing the
HCOD and of the whole iHQP algorithm.

4.1.1 Cost of a HCOD

We first consider a matrix A of sizem×n. The LQ de-

composition of A = LQ requires
∑min(m,n)

i=1 (n− i) ≈
nm Givens rotations, each of them being applied on
A and Q. The cost to obtain L is then nm2 elemen-
tary operations, while the cost for Q is mn2.

A COD
[

V U
]

[

0 0
L 0

]

[

Y Z
]T

starts with a LQ

before applying a QL on the obtained AY . The cost
of the QL is (m − r)r2 to obtain L and (m − r)m2

to obtain W =
[

V U
]

. The total cost of the COD
is roughly n2m + nm2 + (m − r)m2. When m is
much smaller than n (typically for A1), the cost is in
O(mn2) while when m and n have the same magni-
tude order (typically for Ap), the cost is in O(2n3).

We now consider the set of p matrices Ak, each of
them being of sizemk×n, and of rank in the hierarchy
rk = rk − rk−1. The size of Ap is m =

∑

mk. For
simplicity, we consider that all the decompositions
are computed using a series of Givens rotations, and
that all the basis are computed explicitly into a dense
format.

8



The HCOD can be computed by a serie of COD.
For each COD, the coefficients of the intermediary
bases Zk are not necessary: only the Ak+1Zk are
needed. The Yk and Zk are kept as product of ele-
mentary transformations. The number of operations
to get the right part of the decomposition Y is the
same as for getting the right part of decomposition of
the COD. The QL decompositions Wk are then made
for each level k independently, and the cost is each
time the same as for the QL of the COD of Ak. The
total cost is then:

cHCOD = n2m+ nm2 +

p
∑

k=1

(mk − rk)m
2
k (29)

The cost is less than the COD of Ap but more than its
QR. Of course, if all the matrices are full-row rank,
the three costs are the same.

4.1.2 Cost of the eHQP

We consider now the two algorithms 1 and 2. Since
w∗

p can be computed in both, we remove the redun-
dant computations from Alg. 1.

The computation involved by the primal optimum
amounts to the forward substitution of the stacked
Ukbk by the triangular matrix formed of the Mk and
Lk. The cost is

∑

mkrk for computing the Ukbk and
then r2p for the forward substitution. The total cost

is roughly r2p.

The computation of the multipliers of level k is sim-
ilar: it is the backward substitution of the ρ, whose
own cost is negligible with respect to the cost of the
substitution. The cost is then r2k. The cost to com-
pute Λp is then

∑

r2k ≈ r3p which is similar to the
cost of the whole HCOD.

In conclusion, if the proposed method is used to
compute only the primal optimum of a eHQP, the
cost is similar to the cost of the inversion of a full-rank
system of the same size using a QR decomposition
and a forward substitution.

If both primal and dual optima are needed (for
example in the active search), the computation of the
multipliers Λp is costly and should be parsimoniously
realized.

4.1.3 Cost of the HQP active search

Two supplementary operations are executed during
the active search: the computation of the step length
and the HCOD update.

Consider first the update. A new row is added at
level k, with r̂ nonzero elements in AupY p. There is
then r̂−rk Givens rotation to execute and propagate,
first on the least-priority levelsHk+1 . . . Hp (for a cost
of (r̂ − rk)

∑p
j=k+1 mj) and, second on the basis Y

(for a cost of (r̂ − rk)n). If r̂ < rp, there is also one
level j that becomes rank-deficient and for which an
update of Wj is needed, for a cost of 2r2j . The total

cost is then in O(n2 +mn).
Using the same reasoning, the cost of a downdate

is also O(n2 +mn).
Finally, denoting by sk ≥ mk the total number

of constraints of level k (i.e. active and inactive),
the step length computation for each level requires
the multiplication of the rows of Ak for the sk −mk

inactive constraints. The cost is
∑

k n(sk − mk) =
n(s−m) with s =

∑

k sk.

The cost of the active search depends of course on
the number of iterations in the inside loop (the num-
ber of iterations of the outside loop being bounded).
If during an iteration a constraint is activated, the it-
eration implies the computation of the primal, of the
step and an update. If the iteration is concluded with
a deactivation, it implies the primal, the step, the
dual and the update. Finally, due to the outer loop
of Alg. 5 there are p iterations that do not activate
nor deactivate any constraints. We denote by NU

and ND the number of activations and deactivations
of the algorithm. The total cost is easily deduced
from the above list and Table 1.

If we suppose additionally that the hierarchical
problem constraints the whole parameter space (m =
n) and if we smooth the differences between the level
for the dual computation and the updates (approxi-
mate costs are given on the third column of Table 1),
the total cost is:

casearch = 2n3 + (3NU + 4ND + 2p)n2

+ (NU +ND + p)n(s− n)

In particular, the minimum cost of the active search

9



operation cost approx.

QR nm2 + n2m 2n3

COD n2m+ nm2 + (m− r)m2 2n3

HCOD n2m+nm2+
∑

(mk−rk)m
2
k 2n3

Primal x∗
p r2p n2

Dual w∗
k, λk r2k n2

Dual Λp

∑p
k=1 r

2
k pn2

Update n2 +mn 2n2

Step τ n(s−m) n(s−n)

Table 1: Computation cost for each operation of the ac-
tive search. The approximations are given for n = m and
k = p

is obtained for NU = ND = 0:

casearch = 2n3 + np(n+ s)

In that last cost, compared to a standard QP, the
hierarchy brings the p factor in the last term. This
is mainly due to the bidimensional structure of the
multipliers Λp.

Without surprise, the cost of the active-search
strongly depends on the number of activations and
deactivations NU +ND that are needed to reach the
optimal active set. If a good approximation of the op-
timal active set is known, then the total cost of the
active search can be significantly decreased. In par-
ticular, if a similar problem has already been solved,
then the obtained optimal active set can be reused
for the current problem. This reuse of a part of the
solution of a slightly different problem is called warm

start and is detailed in the following three sections.
We first define this notion of similar problem.

4.2 Parametric optimization

We now consider that HQP, that varies continuously
with respect to a given parameter t:

lexmin
x,w1...wp

{‖w1‖, ‖w2‖, . . . , ‖wp‖} . (30)

subject to ∀k = 1 : p, Ak(t)x ≤ bk(t) + wj

with Ak(t) and bk(t) continuous function of a real pa-
rameter t ∈ R. This problem is denoted by HQP(t).

We study the continuity of the two functions:

O : t → O(t) = {x, ∀x′, Apx 4 Apx
′} (31)

x∗ : t → x∗(t) = min
x∈O(t)

{‖x‖} (32)

where b1 4 b2 denotes the lexicographic order corre-
sponding to the hierarchy. O(t) is the optimal set of
the HQP(t) and x∗(t) is the least-square element of
O(t) (unique since O(t) is convex).

4.3 Continuity of the parametric op-

timum

First, the eHQP optimum is known to be continuous
outside of the singular regions. This is formalized by
the following result. The functions giving the rank of
the projected matrices are denoted by:

rk : t → rk(t) = rank(Ak(t))− rank(Ak−1(t)) (33)

Theorem 4.1. Consider a eHQP of the form (30).
For a given t0, if the maps r1...rp are constant on a

neighborhood of t0, then O(t) and x∗(t) are continu-

ous at t0.

Proof. The result is straightforward using the fact
that the pseudo-inverse map A → A+ is con-
tinuous inside the set of constant rank of A

[Ben-Israel and Greville, 2003].

When the rk(t) are not constant, the solution maps
are not continuous in general. The only case where
the continuity is not ensured is when passing inside a
singular region and only at the region border. Inside
the singularity, the optimum remains continuous.

Consider now the full problem (30) with inequali-
ties. It is possible to show that, apart from these dis-
continuities due to the singularity of the eHQP, the
continuity of the optimum is ensured. S∗(t) denotes
the optimal active set of HQP(t) corresponding to
x∗(t). For a given active set S, the eHQP associated
to (30) is denoted by eHQP(t,S) and the optimum
of this eHQP is denoted by x∗

S(t). We then have the
following result:

Theorem 4.2. At a given t0, if t → x∗
S∗

t0

(t) is con-

tinuous, then x∗(t) is continuous.
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Proof. If the optimal active set is constant in a neigh-
borhood of t0, the result is straightforward using
Th. 4.1. We then consider the case where the active
set changes on t0: ∀t > t0,S(t) 6= S(t0). We sup-
pose that the active set of level k is increased by one
constraint Aupx ≤ bup in t > t0 (the case with mul-
tiple activations or deactivations follows naturally).
Since (Aup, bup) is active for any t > t0 of a neigh-
borhood, it means the optimum lies on this constraint
at t0: Aupx

∗
p(t0) = bup. Both active sets S(t0) and

S+ = S(t0)
⋃

{(Aup, bup)} give the same x∗
p. Using

the continuity of the eHQP associated to S+ the con-
tinuity of x∗(t) toward x∗(t0) is straightforward.

The continuity of the solution before and after the
update can be understood by looking at the structure
of y∗

p
in the four cases of Sec.3.2: the HCOD update

may keep rk constant or increase it, and in the second
case, may decrease the rank of level j > k or increase
the total rank rp.

In the first case, only the continuity of
y∗k is questionable. It is ensured by the
continuity of the partitioned generalized in-
verse [Ben-Israel and Greville, 2003]:

[

A

C

] [

b

d

]

→
d→CA+b

A+b (34)

for any A, b, C. The continuity of the y∗j , j > k fol-
lows, using recursively the continuity of y∗

j−1
and the

continuity of the eHQP.
If both rk and rp increase, the update adds a new

column Yup in Yk. This vector belongs to the null
space of the HCOD at t0: Y T

upY p(t0) = 0. This case
is then equivalent to considering that (Aup, bup) was
added as a new least-priority level p + 1 of the hier-
archy. The y∗

p
is continuous using Th. 4.1. And y∗p+1

is continuously evolving from 0 using (34).
Finally, the key case is when the rank increase at

level k and causes a rank loss at level j > k. It means
that Yup belongs to Yj(t0). In that case, the DOF cor-
responding to Yup was allocated to the level j before
t0. At t0, the constraint Aupx ≤ bup is reached. The
DOF is then reallocated to the level k. The reallo-
cation is performed when the optimum is exactly on
the constraint, thus causing no discontinuity. This
case is depicted in Fig. 2.

Fig. 2: Continuity and stability: when the system ap-
proaches a boundary, the optimum continuously changes
to a pure motion along the boundary, until it finally sta-
bly stops on the limit. The optimum does not fight against
the reference required by the equality constraint of level 2.

4.4 Warm start and real-time imple-

mentation

On-board a robot, the solver is used at discretized
times t,t+1,... Thanks to the continuity, the optimum
of time t nearly satisfies the feasible constraints of
time t + 1. A good initial guess for the active set of
time t+ 1 is thus the optimal active set of time t. In
most of the cases, this is enough to reach the optimum
in only one iteration. From time to time, the active
set changes: in most cases few additional activations
and deactivations are sufficient. However, one cannot
guarantee the number of necessary iterations to reach
the optimum. In particular, a minor modification
of one optimum can trigger a cascade of activations-
deactivations in pathological cases.

In these pathological cases, it is possible to force
the solver to stop after an arbitrary number N of it-
erations. It is then not ensured that the optimum is
reached and three sub-optimal cases arise depending
on what happened during the last iteration: if τ was
less than 1 (case of Alg. 4#17), it means that all the
feasible constraints are satisfied, but the optimum of
the corresponding eHQP is not reached yet. If an
update was triggered with τ = 1 (case of Alg. 4#11),
it means that some of the constraints might still be
unsatisfied and inactive. In that case, the residue
of these constraints could be improved by activating
them using some more iterations. Lastly, if a down-
date was triggered, the eHQP optimum is reached
but not the optimal active set. With more iterations,
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some unnecessary constraints could be relaxed, that
would free some DOF to improve the solution.
Thanks to the continuity property, it is possible

to show that the obtained final point x(N) is at a
distance to the optimum x∗ proportional to the sam-
pling of the control. If the optimal active set was
not reached at t + 1, the search will restart at t + 2
from the intermediary active set obtained after the
N iterations of time t+ 1.

By using the previous active set as a warm start
and bounding the number of iterations, the solver will
find the optimum in real time in most of the case,
and otherwise will respect the real-time constraint
by spreading the search of the optimal active set over
several iterations.

4.5 Stability

We consider now the practical case of the inverse
kinematics: the robot velocity q̇ is computed as the
optimal solution of a HQP, where the constraints are
defined by a set of p tasks:

ėk = Jk q̇ (35)

∀k ∈ SI , ėk ≤ bk (36)

∀k ∈ SE , ėk = ė∗k (37)

where SI

⋃

SE is a partition of the set {1 . . . p} of the
p first integers: SI are the task levels that are defined
by a limit bk and SE are the task constraints to follow
a given velocity ė∗k. When the task function ek is an
error between a reference and a current sensor value,
the task reference ė∗k is often given to drive the error
to 0:

ė∗k = −κkek (38)

where κk > 0 is a gain used to tune the convergence
speed. Finally, we suppose that 0 is an acceptable
solution for all the tasks of SI , i.e. ∀k ∈ Si, bk > 0.
The robot input q̇ is then computed as the result of
a HQP:

lexmin
q̇,w1...wp

{‖w1‖, ‖w2‖, . . . , ‖wp‖} . (39)

subject to (35),(36), (37). In this section, we briefly
prove that the use of a HQP keeps the same proper-

ties of control stability than in other classical inverse-
kinematics approaches. We define by eE the stack of
all equality constraints:

eE =







ek1

...
ekE






(40)

for SE = {k1 . . . kE}, and by JE the associated jaco-
bian.

Theorem 4.3. The control law defined by (39) is

stable in the sense of Lyapunov. It is asymptotically

stable iff JE is full row rank and none of the equality-

constraint levels of the HCOD are rank deficient.

The idea of this theorem is illustrated in Fig. 2:
if the optimum is inside the bounds (36), then the
close-loop inverse-kinematics eHQP is known to be
stable [Antonelli, 2009]. Otherwise, the system will
smoothly stop on the boundary. The inequality pre-
vents the robot to come closer to the objective but
does not imply an unstable behavior. The stability is
kept even if the boundaries prevent the system to be
asymptotically stable. The complete proof is given in
App. C.

If the robot is not inside the confidence area (then
some bk are not positive), then the corresponding task
components can be seen as equalities that bring the
robot inside the area, which ensures the stability dur-
ing the transition phase.

5 Experiments

We first present in Sec. 5.1 the computation times ob-
tained with both eHQP and iHQP out of any robotics
application. Then the iHQP solver is used in the
following sections to perform an inverse-kinematics
control scheme on a humanoid robot.

5.1 Computation time

5.1.1 Equality-only HQP

We first experimentally check the computation time
needed to compute the primal optimum of a eHQP
using the three following methods:
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(a) MP with a SVD (b) MP with a COD (c) MZ (d) MH

Fig. 3: Comparison of the computation time of the eHQP primal optimum using four methods. (a) Using MP with
a SVD (b) Using MP with a COD (c) Using MZ with a COD (d) Using MH. Various problems A with n = 100,
m =

∑
mi = 120, r =

∑
ri = 80 are resolved using varying number of levels p on a 2.5GHz PC processor. The

computation time is plotted wrt p. The plots display the time measured for the decomposition of AP and AZ only
(D), for the decomposition and the inversion (D+I), and for decomposition, inversion and projection (total cost). In
(a) and (b) (D) is nearly equal to (D+I).In (d), the projection consists in translating y∗ in the canonical basis, which
is plotted but is negligible.

• MP : using iterative pseudoinversion
and explicit projector Pk, as proposed in
[Siciliano and Slotine, 1991] (recalled in Eq.
(15) of the first part)

• MZ : using iterative pseudoinversion and the
basis of the null space Zk (recalled in Eq. (17)
of the first part)

• MH : using the hierarchical inverse (9).

Since the pseudoinverses and projectors of
MP are generally computed using a SVD
[Baerlocher and Boulic, 2004] which is well known
for being slower than a COD, the same MP is
computed twice, once with a SVD and the second
time with a COD. A set of eHQP problems is
resolved. These solvers are run on a set of problems
whose size parameters (number of columns, of rows
and total rank) are the same but whose number p of
levels of the hierarchy varies. The computation costs
are presented in Fig. 3.

For all methods, the cost increases for small p.
The hierarchy induces very little extra cost, even for
large p, and no significant cost at all when using our
method. As expected, the SVD is very expensive
compared to the COD. Apart from the additional
cost due to the SVD, the total cost is similar for MP

and MZ but is differently distributed: MP spends
more time in the decomposition while MZ spends
more time in computing Z. Finally, by working with
y∗ directly and using only one basis Y for all the de-
composition, MH is the most efficient. Most of the
time is spent in the decomposition. Inverting L and
translating y∗

p
into x∗ are negligible. The method

is approximately six times faster than the classical
SVD-based MP (and up to ten times for small p).

5.1.2 Active search

Similarly, the hierarchical active search Alg. 5
is compared to the cascade of QP used in
[Kanoun et al., 2011]. The results are shown in Fig-
ures 4 and 5. The computation cost increases with
the number p of levels when using a cascade of QP,
while it remains constant with Alg. 5 as shown in
Fig. 4. This is due to an increase of the number of
iterations of the active-search loops used in the cas-
cade, as shown in Fig. 5. Indeed, the cascade acti-
vates a set of constraints at level k that may not be
necessary at level k+1 and activates it again at level
k + 2. These back-and-forth decisions are avoided
when considering all the levels at the same time.
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Fig. 4: Computation cost of the iHQP resolution using a
cascade of QP [Kanoun et al., 2011] or a our HQP solver
(Alg. 5). A set of hierarchical problems is solved, whose
size parameters are the same (n = 100, m = 150, r = 80)
but whose number p of levels varies. The computation
time is plotted wrt p. The time increases with the number
of levels when using a cascade, while it is nearly constant
with our solver. A little overhead appears for high p and
is due to the computation of Λp. For p = 1, the cost are
exactly the same.
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Fig. 5: Number of activations and deactivations using a
cascade of QP and a our solver for the same problems as
in Fig. 4. The number increases with p for the cascade of
QP and remains constant for the HQP solver.

5.2 Robotic setup

The solver has been experimentally tested to perform
an inverse kinematics with the HRP-2 robot. The
robot has 36 DOF whose first six are not actuated.
When considering only the kinematics, a classical so-
lution is to replace the underactuation by a contact
constraint of equivalent size, typically constraining
the six parameters of position and orientation of one

contacting foot. The underactuation is then resolved
while the dynamic of the robot is negligible. All the
QP resolved in the following have a parameter size
n = 36. The robot is controlled at 200Hz.

Two sets of tasks are considered. The first set aims
at regulating to 0 an error depending on the robot
configuration. The task function is then given by:

e(q,Ω) = s(q)− s∗(Ω) (41)

where the task function e depends on the robot con-
figuration and other parameters of the universe Ω as
an error between a current measurement s(q) and a
desired value of it s∗. The functions used in the fol-
lowing are the end-effectors position and orientation
of the right hand erh, left hand elh and feet erf , elf .
Both feet are controlled together on the ground by
stacking the two last tasks efeet = (erf , elf ). The
center of mass (COM) is controlled to a given point
by ecom. The orientation of one vector attached to
the robot (for example, having the hand around a
stick but able to rotate around the stick axis) is con-
trolled by regulating the cross product:

eθ = u(q)× u∗(Ω) (42)

where u is the vector attached to the robot to
be placed on u∗. More details about these clas-
sical task functions can be found in [Sentis, 2007,
Kanoun, 2009]. The regulation of the error is real-
ized by the proportional correction (38). The linear
constraint is finally:

Jq̇ = ė∗ −
∂e

∂Ω
Ω̇ (43)

where J = ∂e
∂q

is the robot task Jacobian.
The second set of tasks defines a bound on a func-

tion of the robot configuration:

el(Ω) ≤ e(q) ≤ eu(Ω) (44)

This constraint is homogeneous to the configuration.
The linear constraint is obtained by the first-order
Taylor approximation:

κ

∆t
(el(Ω)− e(q)) ≤ Jq̇ ≤

κ

∆t
(eu(Ω)− e(q)) (45)
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where κ is the time horizon (in number of
control iteration) used as a gain modifier
[Faverjon and Tournassoud, 1987].
Several task functions e can be used to obtain var-

ious behaviors. The joint-limit task ejl bounds the
robot configuration q by a set of fixed value. The
task esupp keeps the COM in the support polygon.
The field-of-view (FOV) task efov considers the pro-
jection of an object on the image plane and bounds
it by the image border. The collision avoidance is
enforced by the task ecoll by imposing the distance
between a body of the robot and an object to be
positive. In that case, the pair of bodies and object
to check has to be specified (no systematic collision
checking was performed here, it should be consid-
ered in the future [Stasse et al., 2008]). Once more,
details about these classical functions can be found
in [Sentis, 2007, Kanoun, 2009].

5.3 Experiment A: grasping using

conditional visual guidance

The robot has to grasp a point object while keeping
its balance and respecting its joint limits. During
the task, the robot tries to keep the object in its
FOV and, if possible to keep its COM into a small
2cm-wide band inside its support polygon to obtain
a well-balanced posture (ebal). The task order is then
ejl ≺ efeet ≺ esupp ≺ erh ≺ efov ≺ ebal. The robot
motion is summarized by Figures 6 to 14.
The ball is moved in four different places as shown

in Fig. 6: first in front of the robot, in an easily reach-
able position; then far in the left, so that the robot
has to bend to reach it; the ball is put back to the
initial position before putting it to a far right po-
sition that is not reachable while keeping the COM
inside the support polygon. At the first ball posi-
tion, the two last tasks are respected: the ball is in-
side the FOV and the COM is in the central band.
The second ball position is further away and requires
to the robot to importantly bend to reach it. The
COM cannot be kept inside the central band while
satisfying all the other tasks. Relaxing the least-
priority COM task enables to satisfy efov and erh.
The higher-priority COM task is respected, that en-
sures the robot balance. The ball is then placed back

in front of the robot: the COM comes back to the
central band while all the other tasks are kept satis-
fied. The last position is unreachable while keeping
the COM in the support polygon. All the tasks from
the least-priority one are successively relaxed until
the minimal distance to the ball is finally reached: at
the final position, the COM is outside of the central
band, on the border of the support polygon, and the
ball is outside the FOV. This is a typical case of inter-
est of the hierarchy: a proper behavior is ensured by
the tasks having priority (balance, joint limits) while
the optional objectives are satisfied at best.

The task sequence is given in Fig. 7. In the be-
ginning of each motion sequence (when the ball is
just moved), the visibility constraint (44) might be
violated without the FOV task (45) being violated:
the control is simply bringing the ball inside the FOV
boundaries according to the task definition. The task
becomes violated when (45) cannot be fulfilled. De-
tails about the COM and FOV satisfaction are given
in Figures 8 and 9. At the beginning of the third
motion sequence, the COM is outside of the central
band. It is brought back to this zone after 0.2 sec-
onds. Similarly, at the beginning of each sequence,
the ball is outside of the FOV and is quickly brought
back. At time T = 4s, the COM is at the central-
band limit when several joints reach their limits (see
Fig. 10). This reduces the available DOF for the
grasp task, and following for ebal, which has to be
relaxed: the COM leaves the central band. Similarly,
at T = 9s, the COM is on the border of the band.
The activation of some joint limits once more drives
the COM outside of the central band. At T = 9.5s,
some DOF of the grasp task erh collapse because of
a kinematic singularity. The reallocation of the DOF
used by the least-priority tasks leads first the X coor-
dinate of the COM to leave the central band, then the
ball to leave the FOV. The COM quickly escapes the
central band, until it finally reaches the second COM
bound imposed by esupp. The limitation of the COM
causes the violation of erh: the robot then stops as
close as possible to the ball. Some typical trajectories
of the joints are shown in Fig. 10: the limits are al-
ways respected. The number of active constraints for
all levels together (i.e. the size of the optimal active
set) is displayed in Fig. 11.
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(t=2s) Ball in front (t=5s) Far left (t=7s) Front (t=10.4s) Far right

Fig. 6: Top row: snapshots of the robot motion. Bottom row: corresponding COM projection (blue point) in the
support polygon (brown rectangles depict the feet, the blue rectangle shows the area for ebal). Each snapshot is captured
at the end of a motion sequence. The FOV is displayed by the 4 lines passing by the center of the image projection.
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Fig. 7: Experiment A: task sequence, listed by prior-
ity from bottom to top. The tasks are specifically marked
when they become violated. The hierarchy appears through
the violation order: the least-priority tasks are relaxed
first in case of conflicts. The number of saturated joint
limits is displayed in the ejl row.
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Fig. 8: Experiment A: position of the COM wrt the inner
and outer limits. The COM has to remain into the outer
limits to ensure the balance of the robot, and should be
kept if possible inside the central band (inner limits) to
obtain a balanced robot posture.
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Fig. 9: Experiment A: position of the object projection
in the image plane wrt the FOV limits. When the ball is
moved outside the FOV, efov brings it back into the FOV
limits. At T = 0s, 2s, 5s and 7s, the ball is artificially
moved out of the FOV and the robot brings it back follow-
ing the task reference. The robot loses the ball at T = 9.8s
due to a conflict with the tasks having priority.
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Fig. 10: Experiment A: normalized joint positions.
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Fig. 11: Experiment A: number of active inequalities at
each control cycle.
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Fig. 12: Experiment A: Number of algorithm itera-
tions and computation time when using a cascade of QP
[Kanoun et al., 2011].

Finally, the computation cost is experimentally
studied. We compare the HQP resolution using a
cascade of QP as proposed in [Kanoun et al., 2011]
(Fig. 12), with our method using an empty initial
guess (Fig. 13) and using a warm start as proposed
in Sec. 4.4 (Fig. 14). First, the number of itera-
tions in the active search loop is much higher with a
cascade of QP than using the proposed HQP solver.
The number of iterations in the active search is very
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Fig. 13: Experiment A: Number of algorithm iterations
and computation time when no initial guess is used.
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Fig. 14: Experiment A: Number of algorithm iterations
and computation time when using a warm start based on
the previous control cycle.

similar to the number of active constraints at the
optimum, as can be seen by comparing Fig. 11 to
Fig. 13-(top). Our solver barely needs any deactiva-
tion to find the optimal active set. This is not the case
when using a cascade of QP: Fig. 12-(top) shows that
approximately twice as many iterations are need to
reach the optimal active set. As expected, the num-
ber of iterations is even lower using a proper warm
start: in that case, the active search only iterates
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when a new boundary is reached. The maximal num-
ber of iterations is 6 (at the first iteration after the
change of the ball position at T=7), the mean num-
ber is 0.03 and in 97.6% of the case, the active search
converges without any update. As shown in Sec. 4.1,
the computation time depends on the number of ac-
tive constraints and of active-search iterations. Since
there is nearly no iteration, Fig. 14-(bottom) depends
only on Fig. 11 and has the same shape. In Fig-
ures 12-(bottom) and 13-(bottom), the influence of
the number of iterations is more important, and the
time graph shape is similar to the graph of number
of iterations. Using the HQP and the warm start, an
average of 0.56ms of computation is needed.

5.4 Experiment B: opening a valve

The robot has to open a valve by manipulating a
wheel. The motion is composed of two parts: the
robot first manipulates the wheel using one hand,
then rotates the wheel using both hands with suc-
cessive re-grasps. During the motion, the robot has
to avoid a block located on its left, and to keep its
COM inside the support polygon. When grasping
the wheel, the robot has to look at it; when rotat-
ing the wheel, it has to look at a pression meter
located on its left. All the inequalities are consid-
ered at the top priority levels so that the HQP be-
havior can be compared to the solution proposed in
[De Lasa et al., 2010]. The first movement (left-arm
manipulation) is summarized in Figures 15 to 18.
The second movement (both-arm manipulation) is
summarized in Figures 19 to 24. The comparison of
the computation times are given in Figures 25 to 27.

5.4.1 First movement

Snapshots of the first motion are shown in Fig. 15.
The task sequence is detailed in Fig. 16. The con-
straints are the joint limits, the support polygon, the
FOV and the distance of the left elbow and shoul-
der to the left obstacle. The left-hand task is di-
vided into the translation eTlh and rotation eRlh com-
ponents. During the approach, both the left-hand
rotation and translation are controlled. When the
robot rotates the wheel, the rotation of the hand

(t=5.0s) (t=5.5s) (t=6.3s)

Fig. 15: Experiment B-1: Snapshots of the first move-
ment: the robot uses only its left hand to manipulate the
wheel. The three snapshots are captured during the wheel
rotation for three angles of 0, 2π
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and 4π
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Fig. 16: Experiment B-1: Task sequences of the first
movement. The wheel is rotated of two complete loops.
For the four inequality tasks, the number of active con-
straints during the motion are plotted for each levels.
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Fig. 17: Experiment B-1: Number of active inequalities
during the first movement.
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Fig. 18: Experiment B-1: distance to the obstacle during
the first movement. The obstacle is on the way between
the left-arm initial position and the wheel: the two con-
straints of the shoulder and the elbow become active at
T = 1.1s and T = 1.2s. They are deactivated later during
the grasping phase, at T = 2s and T = 2.1s. At each
loop of the wheel, the left arm comes close to the obstacle,
between T = 4s and T = 5s, and a second time between
T = 5.7s and T = 7s.

around the wheel axis is let free and only two de-
grees of rotation are controlled. The hierarchy is
ejl ≺ esupp ≺ efov ≺ ecoll ≺ efeet ≺ eTlh ≺ eRlh.
The number of active constraints for the four first
levels is also shown in Fig. 16. The total number
of active inequalities is given in Fig. 17. When the
robot is on the left part of the wheel, the obstacle
strongly constraints the robot, which causes an in-
crease of the number of active constraints: two peaks
appear for each loop of the wheel. The distances of
the shoulder and elbow to the obstacle is given in
Fig. 18. The arm comes close to collision when the
robot approaches the wheel: the constraints are sat-
urated to prevent it. The constraints are then deac-
tivated when the robot goes away from the obstacle.
When the robot starts to rotate the wheel, the con-
straints become once more active. Since the motion is
not holonomic [Zanchettin and Rocco, 2012] (in par-
ticular, there is no posture task), the motion realized
for each loop is different: during the second loop, the
elbow constraint remains saturated.

5.4.2 Second movement

The robot then uses the second arm to ease the ma-
nipulation of the wheel. The motion is then more
constrained since both hands are bound to the wheel.
Snapshots of the motion are given in Fig. 19. The

task sequence is given in Fig. 20: each hand first
reaches an arbitrary pre-grasp position before grasp-
ing the wheel. During the approach, the three ro-
tations are controlled, while the rotation along the
tangential axis to the wheel is left free during the ma-
nipulation. The distance to the obstacle is plotted in
Fig. 21. The constraint becomes active at the end of
the motion. The joint position with respect to the
limit is shown in Fig. 22. Contrary to the previous
experiment, the joints do not systematically remain
on the exact limits since the robot is moving to fol-
low the rotation of the wheel. The number of active
constraints is given in Fig. 23. The number of active
constraints increases with the complexity of the task.
It reaches its maximum just before the robot starts to
move the wheel (see Fig. 19-left, the robot is bent on
the right with many apparent saturations). It then
decreases when the robot stands straight (see Fig. 19-
middle), and increases again at the end of the motion
(see Fig. 19-right). Finally, the conditioning number
of the left- and right-hand tasks is shown in Fig. 24.
The conditioning number evolves both continuously
with the changes in the Jacobians and discreetly at
each constraint activation.

5.4.3 Computation times

Finally, the computation cost of the overall motion
is studied. The computation time and corresponding
number of iterations of the active set are plotted in
Fig. 25. In 97.5% of the cases, the active search loop
converges without any update. The mean number of
iterations is 0.035 and the maximum is 9. The mean
of computation time is 0.9ms. The peaks of num-
ber of iteration correspond to peaks of computation
time. When 9 iterations are needed, the algorithm
takes 3.7ms to converges. This effect emphasizes the
fact that the active search is not real time: it is not
possible to predict how many iterations are needed
to reach the optimum and, even if the mean is below
1ms, a control frequency of 1kHz is not possible.

As proposed in Sec. 4.4, it is possible to arbitrarily
limit the number of iterations to enforce a determinis-
tic convergence time. In Fig. 26, the algorithm can do
only one update at each control cycle. When a second
update is requested, the algorithm quits without even
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(t=13.5s) (t=14.5s) (t=16.5s)

Fig. 19: Experiment B-2: Snapshots of the second move-
ment: the robot uses both hands to manipulate the wheel.
For the sake of clarity, the environment is not displayed.
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Fig. 20: Experiment B-2: Task sequence of the second
movement: the plots show the grasping phase (from T =
9s to T = 13.5s) and a rotation of 2π
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Fig. 21: Experiment B-2: Distance to the obstacle.

9 10 11 12 13 14 15 16

0

0.2

0.4

0.6

0.8

1

Time (s)

N
or

m
al

iz
ed

 jo
in

t p
os

iti
on

 

 L.hip

Chest

R.shoulder

L.shoulder

L.elbow

Fig. 22: Experiment B-2: Normalized joint positions
during the second movement.
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Fig. 23: Experiment B-2: Number of active inequalities
during the second movement.
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Fig. 24: Experiment B-2: Conditioning number of the
hand tasks when both hands are moving the wheel. The
vertical dot lines show the inequality activations. The
conditioning number evolves both continuously with the
changes in the Jacobians and discreetly at each constraint
activation.
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Fig. 25: Experiment B: Number of algorithm iterations
and computation time when using a warm start based on
the previous control cycle.

computing the dual optimum. The peaks of compu-
tation disappear. In exchange, the number of control
cycles without update decreases to 96.6%. There is
no perceptible changes in the robot behavior, since,
due to the continuity properties, the obtained sub-
optimum is very close to the solution.

Since the only inequalities are at the first levels of
the hierarchy and are always compatible, the solver
proposed in [De Lasa et al., 2010] can be used to gen-
erate the motion. The computation time and corre-
sponding number of iterations of the active-set loops
are plotted in Fig. 27. As already noticed with the
cascade of QP, the active search needs many itera-
tions to find the optimal active set (up to 30, with a
mean at 4.5). However, since each QP solved in the
cascade is very small, the number of iterations only
slightly impacts the computation cost. In most of the
cases, the convergence is slower than in Fig. 25 (the
mean is 1.3ms), but there is no peak of computation
like with our solver (the maximum is 2.6ms). The
computation time is always higher than in Fig. 26.

5.5 Experiment C: grasping with pos-

ture constraints

This experiment is executed by the real HRP-2 robot.
The robot has to grasp a point object while looking at
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Fig. 26: Experiment B: Number of algorithm iterations
and computation time when using a warm start and a
limitation of active-set iterations.
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Fig. 27: Experiment B: Number of algorithm iterations
and computation time when using the projected cascade
described in [De Lasa et al., 2010].

it and avoiding its joint limits and the collisions with
the environment. Three tasks are set at the least-
priority levels to enforce the use of the upper limbs
of the robot: the task elegs is regulating the joint po-
sitions of the legs to the reference initial position; the
task echest is regulating the orientation of the chest
to keep it vertical, using (42). Finally, the last task
eup is blocking the upper part of the robot (chest,
arms and neck). This kind of behavior using only the
necessary limbs to perform an action was proposed
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in [Ee et al., 2007] using dedicated geometrical com-
putations. The hierarchy is ejl ≺ ecoll ≺ esupp ≺
erh ≺ efov ≺ elegs ≺ echest ≺ eup. The motion is
summarized by Figures 28 to 33.
The ball is moved in three different positions, as

shown in Fig. 28: first close in front of the robot,
then at the height of the waist and finally on the
ground behind a small box. The grasping task is fi-
nally removed when the last position is reached. The
task sequence is shown in Fig. 29. When the ball is
close enough, only the least-priority task eup is vio-
lated, and the robot is grasping the ball using only its
right arm. The neck and the left arm are marginally
used, respectively for the FOV task and support task.
When the ball is placed at the second position, it is
out of the reach of the arm alone. The task elegs is
violated at the end of the grasping motion. When the
ball is on the ground, it is not possible to grasp it with
the chest being vertical. The task echest is violated
at the end of the motion to reach the ball. Finally,
the task erh is removed. The three tasks elegs, echest
and eup are then feasible, and the robot goes back
naturally to its initial position.
The errors of the four tasks are given in Fig. 30

and illustrate very well the hierarchical order: the
task erh has priority over the three other ones, and
is always accomplished: the error exponentially con-
verges as imposed. The task eup is violated first, and
its error is the most important. The task elegs is vi-
olated then, while the task echest is violated at the
end, and keeps the lowest error value.
The activation of the limits is synthesized on

Fig. 29. Some examples of activations are given in
Figures 31 and 32. The left hand is moving backward
to ensure the robot balance, and is quickly blocked
by the task preventing the collision with the wall sit-
uated behind the robot. The right hand avoids a
collision with the box when going to the third target
position. Both collision constraints are deactivated
when the robot moves back to the initial pose. Some
joints limits of the legs are saturated when the robot
goes for the second target position, and many limits
are saturated when reaching the third target.
Finally, the number of active inequality con-

straints, and the number of iterations of the active-
search loop are given in Fig. 33. As previously, the

active set of the previous control cycle is used as
warm start and reduces the number of iterations of
the loop. The maximum number of iterations is 7
and is reached when the task erh is removed from
the hierarchy. In average, 0.035 iterations and 1.1ms
are needed at each control cycle, and 97.8% of the
cycles are resolved without extra iteration.

6 Conclusion

In this paper, we have proposed a generic solution
to resolve a hierarchical least-square quadratic
program defined by equality or inequality con-
straints. When only equalities are set, the method
comes back to the classical stat-of-the-art solutions
[Hanafusa et al., 1981, Siciliano and Slotine, 1991,
Baerlocher and Boulic, 2004] but is up to ten times
faster. When the problem encompasses inequality
constraints, a true hierarchy is solved with inequal-
ities at any level. The resolution loop keeps a low
number of iterations by using a unified active-search
algorithm, in contrast to the cascades of QP used
in [Kanoun et al., 2011, De Lasa et al., 2010]. Using
a proper construction of the active-search loop, the
resolution can be performed in real-time at 200Hz
using a classical personal computer and no specific
hardware tuning.

The solver is generic and can be applied to many
problems in robotics and beyond. We have proposed
to apply it to compute the control law of a redundant
robot in the inverse-kinematics context. In that case,
we have shown that the control is continuous for a
given hierarchy, and stable. The method was used to
generate several complex motions with the humanoid
robot HRP-2, in presence of realistic constraints such
as joint limits, obstacle or field of view. For most of
the control cycles (97% in average in the presented ex-
periments), the active-search loop does not need any
iterations, which implies that the solver deals with
inequalities as if they were equalities. The presented
experiments validated that the proposed method is
the first complete solution to handle inequalities at
any level inside a hierarchy of tasks to generate robot
motions in real time.

In the future, we will try to reduce the computation
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Fig. 28: Experiment C: Snapshots of the robot move-
ment.
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Fig. 29: Experiment C: Task sequence.
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Fig. 30: Experiment C: Norm of the task errors.
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Fig. 31: Experiment C: Distance to the obstacle.
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Fig. 32: Experiment C: Normalized joint positions.
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Fig. 33: Experiment C: Number of active inequalities
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cost by predicting the future constraint activations.
The solver was only applied to inverse the robot kine-
matics, but the dynamics could be handled as well.
Only a simple obstacle-avoidance scheme was set up,
and a proper link with a complete collision checker
should be studied. Finally, the continuity of the con-
trol scheme is not ensured when adding or removing
a task from the hierarchy, which is needed before be-
ing able to apply it as a basic solution on our robots.
Openings to other kind of problems, such as those
solved by a walking pattern generator, is also an im-
portant perspective.

A Index to Multimedia Exten-

sions

Ext. Type Description

1 Video The movement sequences pre-
sented in the experimental sec-
tions.

2 Code MATLAB code described in
App. D.

B Elementary transformation

This appendix recalls the basis on Householder re-
flections and Givens rotations.

B.1 Householder reflections

Householder reflections are orthogonal transforma-
tions built from any vector v:

Q = I −
2

vT v
vvT (46)

If v is chosen as v = (0, . . . , 0, a1 − ‖a‖, a2, . . . , an),
then:
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Householder reflections are rank-1 modifications of
the identity. They are very useful to zero the tail of a
vector or of a matrix column. They do not affect the
head of the vector they are applied on. The explicit
shape ofQ should not be computed, but only v should
be stored. See [Golub and Van Loan, 1996] for more
details.

B.2 Givens rotations

Givens rotations of any dimension d are defined by:

G[i, j, θ] = Id − Sij(I2 −Rθ)S
T
ij (48)

with Id and I2 the identity matrices of dimension

d and 2 respectively, Rθ =

[

cos θ sin θ
− sin θ cos θ

]

the 2D

rotation of angle θ and Sij =
[

ei ej
]

with ei and
ej the canonical vectors (zero everywhere except on
the corresponding row). A right multiplication with
a Givens rotation only modify the two rows i and j.
It can be used to introduce a zero inside a vector or
a matrix:
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when θ = tan−1(xj , xi). Givens rotations
are rank-2 modifications of the identity. See
[Golub and Van Loan, 1996] for more details. In this
paper, Householder and Givens matrices are referred
to as elementary transformations.

C Proof of Theorem 4.3

We define the Lyapunov energy function by V =
1

2
eE

T eE . Then

V̇ = eE
T ėE = eE

TJE q̇ (50)

where q̇ is computed from the eHQP of the current
optimal active search:

q̇ = Y H‡
pW

T
p bp (51)
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Suppose that the active set of S is built incrementally
from the initial guess SE , using the update procedure
of Sec. 3.2. The initial decomposition involves only
JE , with the following notations:

JE = WEHEY
T
E (52)

For each active component of the inequality levels SI ,
there are two options: it corresponds to a column Yi

of YE (case 2.2 of the update) or it is decoupled. In
the second case, the component can be equivalently
activated at the least-priority level. The optimum is
then equivalently written:

y∗ = (y∗1 , . . . , y
∗
p , y

∗
p+1) (53)

with y∗p+1 the equivalent level where all the decoupled
constraints of S are set and all the active inequalities
of levels 1 to p are coupled with JE : both bases Y

and YE are the same with a permutation Π on the
column order: Y = YEΠ.
The optimum y∗

p
of the full iHQP can be computed

from the optimum of the eHQP corresponding to JE ,
denoted by y∗

E
:

y∗
p
=


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...
y∗p






= ΠT
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(1− τ1)y
∗
E1

...
(1− τp)y

∗
Ep






= ΠT ∆τ y

∗

E
(54)

where the τk are the step lengths met during the up-
date phases and ∆τ is the diagonal matrix of the
1− τk.
Introducing this last form into (50):

V̇ = eE
TWEHE∆τy

∗

E
(55)

= eE
TWEHE∆τ H

‡
EW

T
EeE (56)

which is non-negative since ∆τ is positive and H
‡
E

respects the three first conditions of Moore-Penrose.
If JE is full rank, all the N of Hk are empty. More-

over, if none of the equality levels of the iHQP are
rank deficient, then it is as if all the inequalities had
been activated at a least-priority level p. Then:

V̇ = eE
T eE > 0 (57)

which ensures the asymptotic stability.

D MATLAB code

The main algorithms proposed in the paper are sum-
marized by a short Matlab solver attached to it. The
software solves the following HQP:

lexmin
x,w1...wp

{‖w1‖, ‖w2‖, . . . , ‖wp‖} . (58)

subject to ∀k = 1..p AE
k x = bEk (59)

bIk ≤ AI
kx (60)

AS
kx ≤ bSk (61)

blk ≤ Alu
k x ≤ buk (62)

For each constraint, b is given by a pair of floats and
an integer identifying the constraint to one of the four
constraint types specified above.

The problem specifications Ap, bp, the current ac-
tive set and the corresponding HCOD are stored in a
dedicated array h: each cell of the array corresponds
to one level of the hierarchy and stores Ak, bk,Wk, Hk

and the active constraints. The right basis Y is inde-
pendently stored. The software is organized in four
main functions split in the same number of files:

• hcod computes the HCOD from the problem
specification Ap, bp and an initial guess of the
active set. The function returns h and Y that
are manipulated by the other function during the
active-search loop.

• eHQP primal computes the primal optimum of
the eHQP corresponding to the current active
set. The function returns the optimum x∗ and
the corresponding expression in the Y basis y∗.
This corresponds to Alg. 1

• eHQP dual computes the multiplier λk of one
level k of the hierarchy, as proposed in Alg. 2.

• active search is the main function: it com-
putes the HCOD and then runs the search loop.
It returns the primal and dual optima and the
HCOD. It uses the fuctions step length (see
Alg. 4), check multipliers and freeze (to test
the lexicographic positivity of the multipliers),
and up and down (to add and remove one row of
the HCOD).

25



To simplify the code, the solver computes explic-
itly the left and right bases of the HCOD instead of
using structured matrices. It is given as a detailed
example to guide the implementation of a hierarchi-
cal QP solver, but should not be used for reactivity
tests. An optimized version of the solver coded in
C++ using the Eigen library and structured-matrix
bases was used for the experiments.
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