N. André, L. Padovani, and E. Pasquier, Metronomic scheduling of anticancer treatment: the next generation of multitarget therapy?, Future Oncology, vol.7, issue.3, pp.385-94, 2011.
DOI : 10.2217/fon.11.11

D. Balding and D. Mcelwain, A mathematical model of tumour-induced capillary growth, Journal of Theoretical Biology, vol.114, issue.1, pp.53-73, 1985.
DOI : 10.1016/S0022-5193(85)80255-1

D. Barbolosi and A. Iliadis, Optimizing drug regimens in cancer chemotherapy: a simulation study using a PK???PD model, Computers in Biology and Medicine, vol.31, issue.3, pp.157-172, 2001.
DOI : 10.1016/S0010-4825(00)00032-9

S. Baruchel, M. Diezi, D. Hargrave, D. Stempak, J. Gammon et al., Safety and pharmacokinetics of temozolomide using a dose-escalation, metronomic schedule in recurrent paediatric brain tumours, European Journal of Cancer, vol.42, issue.14, pp.2335-2342, 2006.
DOI : 10.1016/j.ejca.2006.03.023

S. Benzekry, N. André, A. Benabdallah, J. Ciccolini, C. Faivre et al., Modeling the Impact of Anticancer Agents on Metastatic Spreading, Mathematical Modelling of Natural Phenomena, vol.7, issue.1, pp.306-336, 2012.
DOI : 10.1051/mmnp/20127114

URL : https://hal.archives-ouvertes.fr/hal-00657724

S. Benzekry, G. Chapuisat, J. Ciccolini, A. Erlinger, and F. Hubert, A new mathematical model for optimizing the combination between antiangiogenic and cytotoxic drugs in oncology, Comptes Rendus de l'Académie des Sciences -Series I -Mathematics, pp.23-28
DOI : 10.1016/j.crma.2011.11.019

URL : https://hal.archives-ouvertes.fr/hal-00641476

F. Billy, J. Clairambault, O. Fercoq, S. Gaubert, T. Lepoutre et al., Synchronisation and control of proliferation in cycling cell population models with age structure, Mathematics and Computers in Simulation, vol.96, 2012.
DOI : 10.1016/j.matcom.2012.03.005

URL : https://hal.archives-ouvertes.fr/hal-00662885

F. Billy, B. Ribba, O. Saut, H. Morre-trouilhet, T. Colin et al., A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy, Journal of Theoretical Biology, vol.260, issue.4, pp.545-562, 2009.
DOI : 10.1016/j.jtbi.2009.06.026

URL : https://hal.archives-ouvertes.fr/inria-00440447

D. Bresch, T. Colin, E. Grenier, B. Ribba, and O. Saut, Computational Modeling of Solid Tumor Growth: The Avascular Stage, SIAM Journal on Scientific Computing, vol.32, issue.4, pp.2321-2344, 2010.
DOI : 10.1137/070708895

URL : https://hal.archives-ouvertes.fr/inria-00148610

C. Breward, H. Byrne, and C. Lewis, A Multiphase Model Describing Vascular Tumour Growth, Bulletin of Mathematical Biology, vol.65, issue.4, pp.609-640, 2003.
DOI : 10.1016/S0092-8240(03)00027-2

T. Browder, C. Butterfield, B. Kraling, B. Shi, B. Marshall et al., Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer, Cancer Res, vol.60, issue.7, pp.1878-1886, 2000.

H. Byrne and M. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Mathematical Biosciences, vol.130, issue.2, pp.151-181, 1995.
DOI : 10.1016/0025-5564(94)00117-3

H. Byrne and M. Chaplain, Mathematical models for tumour angiogenesis: Numerical simulations and nonlinear wave solutions, Bulletin of Mathematical Biology, vol.60, issue.3, pp.461-486, 1995.
DOI : 10.1007/BF02460635

M. Chaplain, The mathematical modelling of tumour angiogenesis and invasion, Acta Biotheoretica, vol.53, issue.4, pp.387-402, 1995.
DOI : 10.1007/BF00713561

M. Chaplain, S. Giles, B. Sleeman, and R. Jarvis, A mathematical analysis of a model for tumour angiogenesis, Journal of Mathematical Biology, vol.33, issue.7, pp.744-770, 1995.
DOI : 10.1007/BF00184647

M. Chaplain, S. Mcdougall, and A. Anderson, Mathematical modeling of tumor-induced angiogenesis, Annu Rev Biomed Eng, 2006.

M. Chaplain and A. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor, Mathematical Medicine and Biology, vol.10, issue.3, pp.149-168, 1993.
DOI : 10.1093/imammb/10.3.149

C. Chen, T. Xu, Y. Lu, J. Chen, and S. Wu, The efficacy of temozolomide for recurrent glioblastoma multiforme, European Journal of Neurology, vol.6, issue.2, pp.223-253, 2013.
DOI : 10.1111/j.1468-1331.2012.03778.x

E. , D. Angelis, and L. Preziosi, Advection-diffusion models for solid tumour evolution in vivo and related free boundary problem, Math. Models Methods Appl. Sci, vol.10, issue.3, pp.379-407, 2000.

A. Ergun, K. Camphausen, and L. M. Wein, Optimal Scheduling of Radiotherapy and Angiogenic Inhibitors, Bulletin of Mathematical Biology, vol.65, issue.3, pp.407-424, 2003.
DOI : 10.1016/S0092-8240(03)00006-5

R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, VII, Handb. Numer. Anal., VII, pp.713-1020, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00346077

C. Faivre, D. Barbolosi, and A. Iliadis, On determining the mtd for phase I trials in pediatric oncology, Curr Top Med Chem, 2012.

J. Folkman, Tumor angiogenesis: therapeutic implications, N Engl J Med, vol.285, issue.21, pp.1182-1186, 1971.

J. Folkman, Anti-Angiogenesis, Annals of Surgery, vol.175, issue.3, pp.1971-1972
DOI : 10.1097/00000658-197203000-00014

J. Folkman, What Is the Evidence That Tumors Are Angiogenesis Dependent?, JNCI Journal of the National Cancer Institute, vol.82, issue.1, 1990.
DOI : 10.1093/jnci/82.1.4

H. B. Frieboes, M. E. Edgerton, J. P. Fruehauf, F. R. Rose, L. K. Worrall et al., Prediction of Drug Response in Breast Cancer Using Integrative Experimental/Computational Modeling, Cancer Research, vol.69, issue.10, pp.694484-4492, 2009.
DOI : 10.1158/0008-5472.CAN-08-3740

M. R. Gilbert, M. Wang, K. D. Aldape, R. Stupp, M. E. Hegi et al., Dose-Dense Temozolomide for Newly Diagnosed Glioblastoma: A Randomized Phase III Clinical Trial, Journal of Clinical Oncology, vol.31, issue.32, 2013.
DOI : 10.1200/JCO.2013.49.6968

G. W. Swan, Role of optimal control theory in cancer chemotherapy, Mathematical Biosciences, vol.101, issue.2, pp.237-284, 1990.
DOI : 10.1016/0025-5564(90)90021-P

P. Hahnfeldt, J. Folkman, and L. Hlatky, Minimizing Long-Term Tumor Burden: The Logic for Metronomic Chemotherapeutic Dosing and its Antiangiogenic Basis, Journal of Theoretical Biology, vol.220, issue.4, pp.545-554, 2003.
DOI : 10.1006/jtbi.2003.3162

P. Hahnfeldt, D. Panigrahy, J. Folkman, and L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res, pp.594770-4775, 1999.

D. Hanahan, G. Bergers, and E. Bergsland, Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice, Journal of Clinical Investigation, vol.105, issue.8, pp.1045-1047, 2000.
DOI : 10.1172/JCI9872

D. Hanahan and J. Folkmann, Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis, Cell, vol.86, issue.3, pp.353-64, 1996.
DOI : 10.1016/S0092-8674(00)80108-7

C. Hogea, B. Murray, and J. Sethian, Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method, Journal of Mathematical Biology, vol.67, issue.1, pp.86-134, 2006.
DOI : 10.1007/s00285-006-0378-2

A. Iliadis and D. Barbolosi, Optimizing Drug Regimens in Cancer Chemotherapy by an Efficacy???Toxicity Mathematical Model, Computers and Biomedical Research, vol.33, issue.3, pp.211-226, 2000.
DOI : 10.1006/cbmr.2000.1540

T. L. Jackson, Vascular tumor growth and treatment: Consequences of polyclonality, competition and dynamic vascular support, Journal of Mathematical Biology, vol.44, issue.3, pp.201-226, 2002.
DOI : 10.1007/s002850100118

T. L. Jackson and H. M. Byrne, A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy, Mathematical Biosciences, vol.164, issue.1, pp.17-38, 2000.
DOI : 10.1016/S0025-5564(99)00062-0

P. Kevrekidis, N. Whitaker, D. Good, and G. Herring, Minimal model for tumor angiogenesis, Physical Review E, vol.73, issue.6, p.61926, 2006.
DOI : 10.1103/PhysRevE.73.061926

G. Klement, S. Baruchel, J. Rak, S. Man, K. Clark et al., Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity, Journal of Clinical Investigation, vol.105, issue.8, pp.15-24, 2000.
DOI : 10.1172/JCI8829

U. Ledzewicz, H. Maurer, and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy, Mathematical Biosciences and Engineering, vol.8, issue.2, pp.307-323, 2011.
DOI : 10.3934/mbe.2011.8.307

URL : https://hal.archives-ouvertes.fr/inria-00636033

M. Tubiana, The growth and progression of human tumors: Implications for management strategy, Radiotherapy and Oncology, vol.6, issue.3, pp.167-84, 1986.
DOI : 10.1016/S0167-8140(86)80151-7

DOI : 10.1142/S0218339010003482

D. Majumder and A. Mukherjee, PATHO-PHYSIOLOGICALLY BASED LOGISTICS FOR TREATMENT OF CANCER, Journal of Biological Systems, vol.14, issue.04, pp.631-650, 2006.
DOI : 10.1142/S0218339006001969

C. Meille, J. Gentet, D. Barbolosi, N. André, F. Doz et al., New Adaptive Method for Phase I Trials in Oncology, Clinical Pharmacology & Therapeutics, vol.15, issue.6, pp.873-881, 2008.
DOI : 10.1038/sj.clpt.6100383

A. Mukherjee and D. Majumder, Mathematical modelling for the assessment of the effect of drug application delays in metronomic chemotherapy of cancer due to physiological constraints, Biosystems, vol.91, issue.1, pp.108-116, 2008.
DOI : 10.1016/j.biosystems.2007.08.002

H. Nicholson, C. Kretschmar, M. Krailo, M. Bernstein, R. Kadota et al., Phase 2 study of temozolomide in children and adolescents with recurrent central nervous system tumors, Cancer, vol.23, issue.7, pp.1101542-50, 2007.
DOI : 10.1002/cncr.22961

R. Nishimura, T. Osako, Y. Okumura, M. Hayashi, Y. Toyozumi et al., Arima Ki-67 as a prognostic marker according to breast cancer subtype and a predictor of recurrence time in primary breast cancer, Exp Ther Med, vol.1, issue.5, pp.747-754, 2010.

A. D. Onofrio, Rapidly acting antitumoral antiangiogenic therapies, Physical Review E, vol.76, issue.3, p.31920, 2007.
DOI : 10.1103/PhysRevE.76.031920

A. D. Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Mathematical Biosciences, vol.191, issue.2, pp.159-184, 1999.
DOI : 10.1016/j.mbs.2004.06.003

A. D. Onofrio and A. Gandolfi, A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy, Mathematical Medicine and Biology, vol.26, issue.1, pp.63-95, 2009.
DOI : 10.1093/imammb/dqn024

M. Orme and M. Chaplain, A mathematical model of vascular tumour growth and invasion, Mathematical and Computer Modelling, vol.23, issue.10, pp.43-60, 1996.
DOI : 10.1016/0895-7177(96)00053-2

E. Pasquier, M. Kavallaris, and N. André, Metronomic chemotherapy: new rationale for new directions, Nature Reviews Clinical Oncology, vol.1805, issue.8, pp.455-465, 2010.
DOI : 10.1038/nrclinonc.2010.82

M. Plank, B. Sleeman, and P. Jones, A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins, Journal of Theoretical Biology, vol.229, issue.4, pp.435-454, 2004.
DOI : 10.1016/j.jtbi.2004.04.012

Q. Romero, P. O. Bendahl, M. Klintman, N. Loman, C. Ingvar et al., Ki67 proliferation in core biopsies versus surgical samples - a model for neo-adjuvant breast cancer studies, BMC Cancer, vol.26, issue.31, p.341, 2011.
DOI : 10.1200/JCO.2007.14.6597

I. Stamper, H. Byrne, M. Owen, and P. Maini, Modelling the Role of Angiogenesis and Vasculogenesis in Solid Tumour Growth, Bulletin of Mathematical Biology, vol.197, issue.12, pp.2737-2772, 2007.
DOI : 10.1007/s11538-007-9253-6

A. Swierniak, A. Polanski, and M. Kimmel, Optimal control problems arising in cell-cycle-specific cancer chemotherapy, Cell Proliferation, vol.41, issue.3, pp.117-139, 1996.
DOI : 10.1002/cyto.990110214

Y. Tao, N. Yoshida, and Q. Guo, Nonlinear analysis of a model of vascular tumour growth and treatment, Nonlinearity, vol.17, issue.3, pp.867-895, 2004.
DOI : 10.1088/0951-7715/17/3/008

B. You, C. Meille, D. Barbolosi, B. Tranchand, J. Guitton et al., A mechanistic model predicting hematopoiesis and tumor growth to optimize docetaxel + epirubicin (et) administration in metastatic breast cancer (mbc): Phase i trial, ASCO Annual Meeting, 2007.

B. Zetter, ANGIOGENESIS AND TUMOR METASTASIS, Annual Review of Medicine, vol.49, issue.1, pp.407-84, 1998.
DOI : 10.1146/annurev.med.49.1.407

X. Zheng, S. Wise, and V. Cristini, Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method, Bulletin of Mathematical Biology, vol.67, issue.2, pp.211-259, 2005.
DOI : 10.1016/j.bulm.2004.08.001