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Abstract

This note focuses on state observer design for a general class of nonlinear discrete-time systems that
satisfies the one-sided Lipschitz condition. It has been shown that this condition may encompass
a large class of nonlinearities. However, challenging problems arise such as relevant choice of the
Lyapunov function or non convexity of the obtained stability conditions. Both full-order and reduced-
order observer design are considered. In this work, the main contribution is to provide first some
mathematical artifacts on the Lyapunov function to obtain simple and workable stability conditions,
furthermore we show how to obtain LMIs conditions to assure asymptotic convergence. On the other
hand, we extend the obtained results to n − p reduced order observer design. High performances are
shown through simulation results.

Keywords : One-sided Lipschitz condition; Quadratic inner-boundedness; Nonlinear observers; Discrete-
time nonlinear systems; Linear matrix inequality (LMI) approach; Lyapunov stability.

1 Introduction

Over the past two decades, there has been significant research activity on observers design for nonlinear
systems [1]-[2]-[3]-[4]-[5] and the references inside. This topic was motivated by the fact that state
estimation can be used for control design, diagnosis or, more recently, synchronization and unknown input
recovery [6]-[7]-[8]. It is worth to notice, however, that most of the existing results concern continuous
time systems with few extensions to discrete-time ones [9]-[10]. As no universal approach exists, state
observers, in particular for nonlinear systems, is still a challenging and open problem. Beside the famous
extended Kalman filter, we distinguish a simple and useful nonlinear state observer that is based on the
solution of a Riccati-like equation and the Lipschitz condition, we refer the reader to the pioneering works
in [11]-[12] and their extensions [13]-[14]. In recent contributions [13]-[14], limitations of this approach
have been highlighted. Indeed, it has been shown that the solution of the Riccati-like equation depends
strongly on the Lipschitz constant, i.e. more the latter is larger, the more difficult it is to find a solution
to the the Riccati-like equation.
In order to enlarge the domain of attraction and the class of nonlinear systems that can be considered,
a useful and less general condition was recently introduced for observers design, that is the one sided
Lipschitz condition. Interesting works on state observer design for this type of systems were recently
developed in [15]-[16]-[17]-[18]-[19]-[20] however the asymptotic stability condition leads to a challenging
problem that is the resolution of bilinear matrix inequalities. More recently, Abbaszadeh and Mar-
quez. [20] have explored a more general Lipschitz condition with interesting mathematical artifacts to
deduce LMI stability conditions. They show in particular inherent advantages with respect to the con-
servativeness induced by the classical Lipschitz condition. Inspired by their work we investigate here the
problem of state observer design for one sided Lipschitz nonlinear discrete time systems. Indeed, it is
worth to notice that the extension of the existing results on continuous time systems is a hard task and
needs specific mathematical artifacts.



First, we provide a general formulation of a quadratic Lyapunov function and construct an extended
state vector to formulate the asymptotic stability condition in section 2. On the other hand, we provide
simple and useful mathematical manipulations to deduce sufficient conditions for asymptotic convergence
in terms of linear matrix inequalities. Furthermore, we extend the obtained results to (n − p) reduced
order observer design in section 3. The latter may be interesting not only for real time applications but
also may have less restrictive stability conditions. In the last section, relevant numerical examples are
provided to show high performances of both techniques. Two illustrative examples are given in section 4
to show the efficiency of the proposed approach.
Notations. In a matrix, the notation (?) is used for the blocks induced by symmetry. 〈x, y〉 = xT y is
the scalar product. ‖x‖ =

√
〈x, x〉 =

√
xTx is the Euclidean vector norm. |a| is the absolute value of

the scalar a. λi(A) is the ith eigenvalue of matrix A and ‖A‖ =
√
λmax(ATA) is the induced 2-norm of

matrix A. If A = AT , ‖A‖ =
√
λmax(ATA) = |λmax(A)|. For a symmetric matrix A, A > 0 means that

the matrix A is positive definite.

2 Full-order observer design

In this section, sufficient conditions for the existence of an observer are derived and a design procedure
is presented. Let us consider the nonlinear system{

x(k + 1) = Ax(k) + f(x(k), y(k))
y(k) = Cx(k)

(1)

where x(k) ∈ IRn and y(k) ∈ IRp denotes respectively the state and the linear output. A and C are
constant matrices of adequate dimensions. f : IRn× IRp → IRn is a real nonlinear vector field.
Our objective is to design an asymptotic observer from the measured output signals y(k) to estimate the
state x(k). The following assumptions are made throughout this paper.

Assumption 1.

1. f is one-sided Lipschitz with respect to x(k). i.e,

〈f(x, y)− f(x̂, y), x− x̂〉 6 ρ ‖x− x̂‖2 , for any x, x̂ ∈ IRn, y ∈ IRp (2)

where ρ is the so-called one-sided Lipschitz constant which can be positive or negative.

2. f is quadratically inner-bounded with respect to x(k). i.e,

‖f(x, y)− f(x̂, y)‖2 6 β ‖x− x̂‖2 + γ〈x− x̂, f(x, y)− f(x̂, y)〉. (3)

where β and γ are real scalars.

Unlike the well-known Lipschitz condition, the constants ρ, β and γ can be positive, negative or zero.
In addition, if the function f is Lipschitz, then it is also both one-sided Lipschitz and quadratically
inner-bounded (β > 0 and γ), but the converse is not true (see [20]). The one-sided Lipschitz condition
(2), considered in [15] and [18], provides a less conservative condition than the classical Lipschitz one.
The concept of quadratic inner-boundedness (3), given in [20], is very useful to provide tractable LMI
stability conditions.
The observer of system (1) is defined by the following form

x̂(k + 1) = Ax̂(k) + f(x̂(k), y(k)) +K(y(k)− Cx̂(k)) (4)

where x̂(k) denotes the estimate of the state vector x(k) and K is the gain matrix to be computed.
Let e(k) = x(k) − x̂(k). Then from the observer (4) and the system (1), the dynamics of the state
estimation error is described by

e(k + 1) = (A−KC)e(k) + ∆fk (5)

where ∆fk = f(x(k), y(k))− f(x̂(k), y(k)).
Using the above assumption, the following theorem provides sufficient conditions so that equation (4) is
an asymptotic full-order observer for system (1).
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Theorem 1. Under assumption 1, the system (4) is an asymptotic observer for system (1) if there exist
scalars α > 0, µ1 > 0, µ2 > 0, ρ, β, γ and ε > 0 and matrices P = P T > αIn, Q = QT > 0, S and X
that solve the following LMI [

P S
ST Q

]
> 0 (6)

and
N < 0 (7)

where N is given by

N =



N11 N12 0 N14 N14 0
? N22 N23 0 0 0
? ? N33 0 0 NT23
? ? ? −η−1P 0 0
? ? ? ? −εIn 0
? ? ? ? ? −ε−1α2In

 (8)

with 

η = 1 + 2(|β|+ |ρ|)
S = S − (µ1γ − µ2)In
N11 = −P + 2(µ1β + µ2ρ)In
N12 = ηATP − ηCTX − S
N14 = ATP − CTX
N22 = ηP −Q− 2µ1In
N23 = S + α(γ − 1)In
N33 = Q− 2αIn

(9)

Then, the gain for observer is given by K = P−1XT .

Proof. Let us consider the quadratic Lyapunov function

Vk =

[
e(k)
∆fk

]T [
P S
ST Q

] [
e(k)
∆fk

]
(10)

where ∆fk defined in (5) and

[
P S
ST Q

]
> 0. Moreover, the variation ∆V = Vk+1 − Vk of this Lyapunov

function is given by

∆V = eT (k+1)Pe(k+1)−eT (k)Pe(k)−∆fTk Q∆fk+∆fTk+1Q∆fk+1 +2eT (k+1)S∆fk+1−2eT (k)S∆fk.
(11)

The one-sided Lipschitz and the quadratically inner-bounded conditions (2) and (3) give the following
inequality {

µ2ρe
T (k)e(k)− µ2eT (k)∆fk > 0

µ1βe
T (k)e(k) + µ1γe

T (k)∆fk − µ1∆fTk ∆fk > 0
(12)

where µ1 and µ2 are arbitrary strictly positive scalars.
The following inequality is obtained by adding the left hand side of (12) to (11)

∆V 6 eT (k + 1)Pe(k + 1) + eT (k)(−P + 2(µ2ρ+ µ1β)I)e(k)

+ 2eT (k + 1)S∆fk+1 − 2eT (k)(S + (µ2 − µ1γ)I)∆fk −∆fTk (Q+ 2µ1I)∆fk + ∆fTk+1Q∆fk+1. (13)

On the other hand, using the one-sided Lipschitz and the inner-bounded conditions (2) and (3) with the
fact that P > αIn, it follows that

|ρ| eT (k + 1)Pe(k + 1)− αeT (k + 1)∆fk+1 > α |ρ| eT (k + 1)e(k + 1)− αeT (k + 1)∆fk+1 > 0, (14)

|β| eT (k + 1)Pe(k + 1) + αγeT (k + 1)∆fk+1 − α∆fTk+1∆fk+1
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> α |β| eT (k + 1)e(k + 1) + αγeT (k + 1)∆fk+1 − α∆fTk+1∆fk+1 > 0. (15)

Thus, by adding the left terms in inequalities (14) and (15) to (13), we get

∆V 6 ηeT (k+1)Pe(k+1)+eT (k)(−P+2(µ2ρ+µ1β)I)e(k)−∆fTk (Q+2µ1I)∆fk−2eT (k)(S+(µ2−µ1γ)I)∆fk

+ 2eT (k + 1)(S + α(γ − 1)I)∆fk+1 + ∆fTk+1(Q− 2αI)∆fk+1. (16)

Using the dynamics of the estimation error (5) and based on the Lyapunov stability theory, the con-
vergence of the estimation error is guaranteed, as soon as ∆V < 0 is negative definite, which holds
if

ξTN ξ < 0 (17)

where
ξT (k) =

[
eT (k) ∆fTK ∆fTK+1

]
(18)

and

N =

N11 + ηN12P
−1N T

12 ηN12 − S N12P
−1N23

? N22 N23

? ? N33

 (19)

with N12 = (A−KC)TP .
The BMI problem of (17)-(19) is not convex and the existing LMI computational procedures can not be
applied. To linearize the BMI problem (17)-(19), we proceed in three steps.
The first step concerns matrix N12P

−1N23. Since we have N12 and N23 acting separately in (19), and
N12 is a function of K and P , it is necessary to rewrite N12P

−1N23 under a form so that N12 and N23

appear separately in this equation. Notice that the matrix N can be rewritten as follows

N = N + ΨΦT + ΦΨT (20)

where

N =

N11 + ηN12P
−1N T

12 ηN12 − S 0
? N22 N23

? ? N33


and

ΨT =
[
N T

12 0 0
]
,

ΦT =
[
0 0 P−1N23

]
.

In the second step, we use the well-known matrix inequality

ΨΦT + ΦΨT 6 εΦΦT +
1

ε
ΨΨT (21)

with ε > 0 [21] to obtain an upper bound of the term ΨΦT + ΦΨT in (20) and the following inequality
holds for any scalar ε > 0

ΨΦT + ΦΨT 6 ε

 0
0

NT23P−1

 [0 0 P−1N23

]
+

1

ε

N12

0
0

 [N T
12 0 0

]
. (22)

From the fact that P−2 < α−2I (since P > αI), it follows that

N 6 N + εα−2

 0
0

NT23

 [0 0 N23

]
+

1

ε

N12

0
0

 [N T
12 0 0

]
= N. (23)
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This implies that if the linear matrix inequality

N =

N11 + ΥTΠΥ ηN12 − S 0
? N22 N23

? ? N33 + εα−2NT23N23

 < 0 (24)

is verified then ∆V < 0, where

ΥT =
[
N12 N12

]
and Π =

[
ηP−1 0

0 1
ε I

]
. (25)

Now using the Schur lemma [22], the inequality (24) is equivalent to the following LMI
N11 ηN12 − S 0 ΥT 0
? N22 N23 0 0
? ? N33 0 NT23
? ? ? −Π−1 0
? ? ? ? −ε−1α2In

 < 0. (26)

By using the expression Υ and Π given by (25) and the notation X = KTP , the LMIs in (7) and (26)
are equivalent, which completes the proof.

Remark 1. As pointed in [20] in the continuous-time case, the detectability of the pair (A,C) is not
required due to the use of assumption 1. Then, the “linear part” of the observation error must not
necessarily dominate the “nonlinear” one. A consequence of this is that we get less conservative results
than those derived with a Lipschitz condition. �

3 Reduced-order observer design

In this section we present a method to design a reduced-order observer for system (1), i.e. an observer
which does not estimate the full state x(k), but only a linear combination of x(k) given by the reduced
state vector z(k) ∈ IRn−p defined as [23]

z(k) = Lx(k) (27)

where L ∈ IR(n−p)×n is a full row rank matrix. Without loss of generality, matrix C is of full row rank,

then the matrix L can always be chosen such that

[
L
C

]
is nonsingular, so matrices M and N can be

defined as

[
L
C

]−1
=
[
N M

]
. We then have

x(k) = Nz(k) +My(k). (28)

From (1), (27), and (28), we obtain the following nonlinear reduced form

z(k + 1) = Azz(k) + Lg(z(k), y(k)) +Bzy(k) (29)

where Az = LAN , Bz = LAM and g(z(k), y(k)) = f(Nz(k) +My(k), y(k)).
Since the nonlinear map f(x(k), y(k)) is one-sided Lipschitz and quadratically inner-bounded, then also
the function g(z(k), y(k)) is one-sided with constants ρg and quadratically inner-bounded, with constants
βg and γg.
We propose a reduced-order observer corresponding to (29) as follows{

ẑ(k + 1) = Az ẑ(k) + Lg(ẑ(k), y(k)) +Bzy(k) +K(y(k + 1)− Cx̂x+1/k)

x̂x+1/k = ANẑ(k) +AMy(k) + g(ẑ(k), y(k)).
(30)

By setting Cz = CAN , we obtain

y(k + 1) = Czz(k) + CAMy(k) + Cg(z(k), y(k)) (31)
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and we deduce
ε(k + 1) = (Az −KCz)ε(k) + (L−KC)∆gk (32)

where ε(k) = z(k)− ẑ(k) and ∆gk = g(z(k), y(k))− g(ẑ(k), y(k)).
Using the assumption 1, an asymptotic reduced-order observer for system (1) is given by the system (30)
if the conditions given in the following theorem hold.

Theorem 2. Under assumption 1, system (30) is an observer for system (29), if there exist scalars
α > 0, µ1 > 0, µ2 > 0, ρ, β, γ and ε > 0 and matrices P = P T > αIn, Q = QT > 0, S and X that solve
the following convex optimization problem: [

P S
ST Q

]
> 0 (33)

and
M < 0 (34)

where M is given by (36), with

η = 1 + 2(|β|+ |ρ|)
M23 = S + α(γ − 1)In
S = −NTS + (µ1γ − µ2)NT

M11 = −NTPN + 2(µ1β + µ2ρ)NTN
M22 = −(Q+ 2µ1In)
M33 = Q− 2αIn

(35)

Then, the gain for observer is given by K = LP−1XT .

M =



M11 S 0 ATz N
TP − CTz X ATz N

TP − CTz X 0 0 0
? M22 0 0 0 LTNTP − CTX LTNTP − CTX 0
? ? M33 0 0 0 0 MT

23

? ? ? −η−1P 0 0 0 0
? ? ? ? −ε

η2+1In 0 0 0

? ? ? ? ? −η−1P 0 0

? ? ? ? ? ?
−ε

1 + ε2α−2
In 0

? ? ? ? ? ? ?
−1

2
ε−1α2In


(36)

Proof. The proof of this theorem can be achieved by the use of the following Lyapunov function

Vk =
[
ε(k)T ∆gTk

] [NTPN NTS
STN Q

] [
ε(k)
∆gk

]

where

[
P S
ST Q

]
> 0.

Following similar steps (11)-(16) as in the previous proof and by replacing e(k) and fk by Nε(k) and
gk, respectively, the convergence of the estimation error is guaranteed, if ∆V = Vk+1 − Vk < 0, which is
equivalent to

∆V 6 ηεT (k+1)NTPNε(k+1)+εT (k)M11ε(k)+∆gTkM22∆gk+2εT (k)S∆gk+2εT (k+1)NTM23∆gk+1+∆gTk+1M33∆gk+1.
(37)

Using the dynamics of the estimation error (32) and based on the Lyapunov stability theory, the conver-
gence of the estimation error is guaranteed, as soon as ∆V < 0, which holds if

ζTM ζ < 0 (38)
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where
ζT (k) =

[
εT (k) ∆gTK ∆gTK+1

]
(39)

and

M =

M11+ηM12P
−1MT

12 ηM12P
−1M̃T

12 + S M12P
−1M23

? ηM̃12P
−1M̃T

12 + M22 M̃12P
−1M23

? ? M33

 (40)

with {
M12 = (Az −KCz)TNTP

M̃12 = (L−KC)TNTP
(41)

The BMI problem of (38)-(41) is not convex and the existing LMI computational procedures can not be
applied. To linearize BMI problem (38)-(41), we proceed in three steps.
The first step concerns the blocks (1,2), (1,3) and (2,3) of matrix M in relation (40). Since we have

M12, M̃12 and M23 acting separately in (40), and since M12 and M̃12 are functions of K and P , while
M23 depends on S, it is necessary to rewrite these blocks (1,2), (1,3) and (2,3) under a form so that

the matrices M12, M̃12 and M23 appear linearly or quadratically in matrix M. Then the matrix M is
rewritten as follows

M =M+ ΨΦT + ΦΨT (42)

where

M =

M11+ηM12P
−1MT

12 S 0

? ηM̃12P
−1M̃T

12 + M22 0
? ? M33

 (43)

and

Ψ =

ηM12 M12 0

0 0 M̃12

0 0 0

 , Φ =

 0 0 0

M̃12P
−1 0 0

0 MT
23P

−1 MT
23P

−1

 .
In the second step, we use inequality (21) to obtain an upper bound of the term ΨΦT + ΦΨT in (42) and
the following inequality holds for any positive scalar ε

ΨΦT+ΦΨT 6 ε

 0 0 0

M̃12 0 0
0 MT

23 MT
23

P−2
0 M̃T

12 0
0 0 M23

0 0 M23

+
1

ε

ηM12 M12 0

0 0 M̃12

0 0 0

ηMT
12 0 0

MT
12 0 0

0 M̃T
12 0

 .
(44)

From the fact that P−2 < α−2I (since P > αI), it follows that

M 6 M̃+


1 + η2

ε
M12MT

12 0 0

0
1 + ε2α−2

ε
M̃12M̃T

12 0

0 0 2εα−2MT
23M23

 = M. (45)

This implies that if the linear matrix inequality

M =

M11+ ΥTΠ1Υ S 0

? Υ̃TΠ2Υ̃ + M22 0
? ? M33 + 2εα−2MT

23M23

 < 0 (46)

is verified then ∆V < 0, where 

ΥT =
[
M12 M12

]
Υ̃T =

[
M̃12 M̃12

]
Π1 =

ηP−1 0

0
η2 + 1

ε
In


Π2 =

ηP−1 0

0
1 + ε2α−2

ε
In


(47)

7



Now using the Schur lemma [22], the inequality (46) is equivalent to the LMI

M11 S 0 ΥT 0 0

? M22 0 0 Υ̃T 0
? ? M33 0 0 MT

23

? ? ? −Π−11 0 0

? ? ? ? −Π−12 0

? ? ? ? ?
−1

2
ε−1α2In


< 0. (48)

By using the notation X = KTNTP , the LMIs in (34) and (48) are equivalent, which completes the
proof.

4 Numerical Example

In this section, we present two illustrative examples showing the application of both theorems given in
sections 2 and 3 respectively.

4.1 First example

Consider the following discrete-time model of a moving object in the cartesian coordinates [20]:{
ẋ(t) = Acx(t) + fc(x(t), y(t))
y(t) = Ccx(t)

(49)

where

Ac =

[
1 −1
1 1

]
, Cc =

[
0 1

]
.

The nonlinear function fc(x, y) is given by

fc(x, y) =

[
−x1(x21 + x22)
−x2(x21 + x22)

]
.

By applying the Euler method on system (49), a discrete time system is derived as follows{
x(k + 1) = Ax(k) + f(x(k), y(k))

y(k) = Cx(k)
(50)

where A = I2 + TeAc, f(x(k), y(k)) = Tefc(x(t), y(t)) and Cc = C.
First, we verify the one-sided Lipschitz property of the function f

〈f(x, y)− f(x̂, y), x− x̂〉 = Te(x1x̂1 + x2x̂2)
(
(x21 + x22) + (x̂21 + x̂22)

)
− Te(x21 + x22)

2 − Te(x̂21 + x̂22)
2. (51)

On the other hand

x1x̂1 + x2x̂2 =
1

2
(x21 + x22) +

1

2
(x̂21 + x̂22)−

1

2
(x1 − x̂1)2 −

1

2
(x2 − x̂2)2

=
1

2

(
‖x‖2 + ‖x̂‖2 − ‖x− x̂‖2

)
. (52)

Inserting (52) into (51) leads to the following equation

〈f(x, y)− f(x̂, y), x− x̂〉 =
Te
2

(
‖x‖2 + ‖x̂‖2 − ‖x− x̂‖2

)(
‖x‖2 + ‖x̂‖2

)
− Te ‖x‖4 − Te ‖x̂‖4

=
−Te

2
‖x− x̂‖2

(
‖x‖2 + ‖x̂‖2

)
− Te

2

(
‖x‖2 − ‖x̂‖2

)2
6 0. (53)
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Thus, f satisfies globally the one-sided Lipschitz condition (2) with an one-sided Lipschitz constant ρ = 0.
Now, let us verify the Lipschitz continuity property. According to the mean-value theorem and since f
is of class C1, we have

f(x, y)− f(x̂, y) = Jf (x, x̂, y)e (54)

where Jf is the Jacobian matrix of f defined by

Jf = Te

[
−3x21 − x22 −2x1x2
−2x1x2 −3x22 − x21

]
. (55)

By the fact that Jf is a symmetric matrix, then its induced 2-norm equals its spectral radius

‖Jf‖ , max
16i62

|λi(Jf )| = 3Te(x
2
1 + x22) 6 3Ter

2. (56)

Let D = {x ∈ IR2 : ‖x‖ 6 r} denote the domains of functioning of x. A simple reasoning shows that

‖f(x, y)− f(x̂, y)‖ 6 3Ter
2 ‖e‖ , ∀x ∈ D. (57)

This means that the system is locally Lipschitz and the Lipschitz constant is 3Ter
2 on any set D.

Finally, we verify the quadratic inner-boundedness property of the system. First, we develop the left
hand-side of the inequality (3)

‖f(x, y)− f(x̂, y)‖2 =T 2
e

(
−x1(x21 + x22) + x̂1(x̂

2
1 + x̂22)

)2
+ T 2

e

(
−x2(x21 + x22) + x̂2(x̂

2
1 + x̂22)

)2
=T 2

e (x21 + x22)
3 + T 2

e (x̂21 + x̂22)
3 − 2T 2

e (x21 + x22)(x̂
2
1 + x̂22)(x1x̂1 + x2x̂2)

=T 2
e ‖x‖

6 + T 2
e ‖x̂‖

6 − T 2
e ‖x‖

2 ‖x̂‖2
(
‖x‖2 + ‖x̂‖2 − ‖x− x̂‖2

)
=T 2

e

(
‖x‖2 − ‖x̂‖2

)(
‖x‖4 − ‖x̂‖4

)
+ T 2

e ‖x‖
2 ‖x̂‖2 ‖x− x̂‖2

=T 2
e

(
‖x‖2 − ‖x̂‖2

)2 (
‖x‖2 + ‖x̂‖2

)
+ T 2

e ‖x‖
2 ‖x̂‖2 ‖x− x̂‖2 . (58)

Second, using the equation (53), the right hand-side of the of the inequality (3) becomes

γ〈f(x, y)− f(x̂, y), x− x̂〉+ β ‖x− x̂‖2 =− γ

2
Te ‖x− x̂‖2

(
‖x‖2 + ‖x̂‖2

)
− γ

2
Te

(
‖x‖2 − ‖x̂‖2

)2
+ β ‖x− x̂‖2 .

(59)

The expressions (58) and (59) fulfill the condition (3) if the following inequalities are verified
‖x‖2 + ‖x̂‖2 6

−γ
2Te

‖x‖2 ‖x̂‖2 6
β

T 2
e

− γ

2Te

(
‖x‖2 + ‖x̂‖2

)
6

β

T 2
e

+
γ2

4T 2
e

(60)

for all x ∈ D and x̂ ∈ D. So we conclude that the quadratic inner-bounded condition (3) holds if
2r2 6

−γ
2Te

r4 6
β

T 2
e

+
γ2

4T 2
e

(61)

consequently if

r = min

((
−γ
4Te

)1/2

,

(
β

T 2
e

+
γ2

4T 2
e

)1/4
)
, γ 6 0, β >

−γ2

4
. (62)

Then the quadratically inner-bounded property of f(x, y) is verified in D. As the system is globally
one-sided Lipschitz, i.e., D = IR2, D ∩ D = D. Note that the region D can be made arbitrarily large by
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choosing appropriate values for γ and β. Notice that to maximize r in relation (62) for a given γ, the
parameter β should satisfy (

−γ
4Te

)1/2

6

(
β

T 2
e

+
γ2

4T 2
e

)1/4

which is equivalent to

β >
−3γ2

16
. (63)

If we chose β = 1 and γ = −256, we get r = 8. The LMI-based observer gain matrix is

K =

[
−0.1563
1.0945

]
. (64)

However, we propose to use the reduced-order version. With L =
[
1 0

]
, we have N =

[
1 0

]T
and

M =
[
0 1

]T
. The LMI-based observer gain matrix is

K = 0.1993. (65)

Simulations were processed with the sample time Te = 0.1 [sec]. As shown in figures 1 to 3, the state is
very well estimated.

4.2 Second example

The goal of this section is to apply the theoretical results introduced in the previous sections to the
example used in [6] that is the one-link flexible joint robot [24]

θ̇m = ωm

ω̇m =
κ

Jm
(θl − θm)− b

Jm
ωm +

KT

Jm
u

θ̇l = ω1

ω̇l =
κ

Jl
(θl − θm)− mgh

Jl
sin(θl)

(66)

where θm and θl are the angles of rotations of the motor and link, respectively. ωm and ωl are their
angular velocities. Jm and Jl are the inertia of the motor and link respectively. KT , κ, m, g and h are
positive constants.
The behavior of the link flexible joint robot can be described by nonlinear state-space equations (1)
where x = [ θm ωm θl ωl ]T . The nonlinear function f(x) is given by f(x) = 3.205 sin(x3). We consider
that the measurements of the system are the angle of rotation of the motor θm and the angular velocity
ωm. The system matrices can be computed with the numerical values of the link flexible joint robot
parameters available in [6]

ẋ =


−10 1 0 0
−48.6 −1.26 48.6 0

0 0 −22 1
1.95 0 −19.5 −6


︸ ︷︷ ︸

Ac

x+


0
1
0
0


︸︷︷︸
Bc

u+


0
0
0

3.205 sin(x3)


︸ ︷︷ ︸

fc(x(t),y(t))

y =

[
1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

Cc

x.

The Euler discretization of this dynamic system gives{
x(k + 1) = Ax(k) +Bu(k) + f(x(k), y(k))

y(k) = Cx(k)
(67)
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where A = I4 + TeAc, B = TeBc, f(x(k), y(k)) = Tefc(x(t), y(t)) and C = Cc. Using the mean value
theorem, It is easy to verify that f(x(k), y(k)) satisfies condition (2) with one-sided Lipschitz constant
ρ = 3.205Te. In addition, f(x(k), y(k)) is Lipschitz function, then, is also quadratically inner-bounded
with β = 3.205Te and γ = 0.
The LMI-based observer gain matrix is

K =


0.5790 0.01
−0.4860 0.7421

0 0.1128
0.0195 −0.1797

 .

However, we propose to use the reduced-order version. With L =

[
0 0 1 0
0 0 0 1

]
, we haveN =

[
0 0 1 0
0 0 0 1

]T
and M =

[
1 0 0 0
0 1 0 0

]T
. The LMI-based observer gain matrix is

K =

[
0 0.7610
0 −0.4323

]
Simulations were processed with the sample time Te = 0.1 [sec]. As shown in figures 4 to 9, the state is
very well estimated.
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Figure 1: Example 1 : response of x1(k) (blue line) and its estimate with the full-order observer (red
line).
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Figure 2: Example 1 : response of x2(k) (blue line) and its estimate with the full-order observer.

5 Conclusion

In this note, we proposed a simple and useful observer design method for a class of nonlinear discrete-time
systems that satisfies the one-sided Lipschitz condition. One of the main challenges we tackled, using
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Figure 3: Example 1 : response of x1(k) (blue line) and its estimate with the reduced-order observer (red
line).
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Figure 4: Example 2 : response of x1(k) (blue line) and its estimate with the full-order observer (red
line).
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Figure 5: Example 2 : response of x2(k) (blue line) and its estimate with the full-order observer (red
line).

several artifacts, is to provide LMI conditions for the asymptotic convergence. On the other hand, we
considered a more general Lyapunov function in which we introduced nonlinearities of the system. This
function has the advantage of reducing the complexity of the obtained conditions. Furthermore, both
full-order and reduced-order observer designs were considered. Illustrative examples were given in order
to show the high performances of the proposed methods.
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