Macroscopic diffusion from a Hamilton-like dynamics

Abstract : We introduce and analyze a model for the transport of particles or energy in extended lattice systems. The dynamics of the model has all the properties of Hamiltonian dynamics in a confined phase space : it is deterministic, periodic, reversible and conservative. Randomness enters the model as a way to model ignorance about initial conditions and interactions between the components of the system. The orbits of the particles are non-intersecting random loops. We prove, as a weak law of large number, the validity of a diffusion equation for the macroscopic observables of interest for time arbitrary large, but small compared to the minimal recurrence time in the dynamics.
Liste complète des métadonnées
Contributeur : Raphael Lefevere <>
Soumis le : mardi 13 novembre 2012 - 12:02:10
Dernière modification le : mercredi 21 mars 2018 - 18:56:48

Lien texte intégral


  • HAL Id : hal-00751373, version 1
  • ARXIV : 1211.0608



Raphael Lefevere. Macroscopic diffusion from a Hamilton-like dynamics. 2012. 〈hal-00751373〉



Consultations de la notice