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Abstract

This paper is concerned with the class of distributions, continuous or discrete, whose
shape is monotone of finite integer order t. A characterization is presented as a mixture
of a minimum of t independent uniform distributions. Then, a comparison of t-monotone
distributions is made using the s-convex stochastic orders. A link is also pointed out with
an alternative approach to monotonicity based on a stationary-excess operator. Finally,
the monotonicity property is exploited to reinforce the classical Markov and Lyapunov
inequalities. The results are illustrated by several applications to insurance.
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1 Introduction

A frequent difficutly met in stochastic modeling is that only incomplete statistical knowledge
is available or trustworthy on certain model components. This is especially true in insurance
and finance where risks and losses are generally difficult to estimate. For instance, the partial
information at disposal for a claim distribution could be its range, the first few moments and
some shape constraints.

The present work is concerned with a class of distributions whose shape is known to be
monotone of finite integer order t. We will consider both absolutely continuous distributions
with a t-monotone density function on IR+, and discrete distributions with a t-monotone prob-
ability mass function (p.m.f.) on IN0 = {0, 1, . . .}. Let us recall the definition of t-monotonicity.

A function f on IR+ is completely monotone if f is infinitely differentiable and (−1)kf (k) ≥ 0
for all k ≥ 1. By Bernstein’s theorem, such a function can be represented as a scale mixture of
exponentials (see e.g. Feller (1971)). Functions f on IR+ that satisfy a property of this kind up
to a finite degree t have been introduced and studied by Williamson (1956), Lévy (1962) and
Gneiting (1999). More precisely,

1E-mail address: clefevre@ulb.ac.be
2E-mail address: stephane.loisel@univ-lyon1.fr. Corresponding author.
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Definition 1.1 A function f(y), y > 0, is 1-monotone if it is nonnegative and nonincreasing.
It is t-monotone, t ≥ 2, if

(−1)k f (k)(y) is nonnegative, nonincreasing and convex, for k = 0, . . . , t− 2. (1.1)

In other words, (−1)kf (k)(y) ≥ 0 for k = 0, . . . , t − 3 and (−1)t−2f (t−2)(y) is nonnegative,
nonincreasing and convex. A t-monotone function on IN0 is defined similarly using the forward
difference operator ∆ (i.e. ∆f(j) = f(j + 1)− f(j)).

Definition 1.2 A function f(j), j ≥ 0, is t-monotone, t ≥ 1, if

(−1)k ∆kf(j) ≥ 0, for k = 1, . . . , t. (1.2)

Multiple monotonicity of continuous distributions has been considered for different pur-
poses in probability and statistics. So, t-monotonicity corresponds to the concept of beta(1, t)-
unimodality with mode at 0 (see the book by Bertin et al. (1997)). It is a special type of scaling
relation discussed e.g. by Pakes (1997) and Pakes and Navarro (2007). A link with Archimedean
copulas and L1 Dirichlet distributions is pointed out e.g. in Constantinescu et al. (2011). The
estimation of a t-monotone density is studied e.g. by Balabdaoui and Wellner (2007). To our
knowledge, multiple monotonicity of discrete distributions has not been investigated so far.

Our interest in t-monotonicity comes in part from insurance where such a property can
realistically be imposed on certain risk distributions. The importance of the case t = 1, i.e.
nonincreasing distributions, is well-recognized in this area (see e.g. Gerber (1972), Kaas and
Goovaerts (1987), Denuit et al. (2000)). Introducing an order t allows us to cover a hierarchical
class of risk distributions with reinforced shape constraints. Of course, there are many other
application fields where a monotonicity property could be relevant.

The paper is organized as follows. In Section 2, we present a representation of t-monotone
distributions as a mixture of a minimum of t independent uniform distributions. In Section 3,
we use the s-convex stochastic orders to compare t-monotone distributions and derive extremal
distributions. In Section 4, we connect the present approach to t-monotonicity with an alterna-
tive approach that uses the t-fold iterate of a stationary-excess operator. In Section 5, we show
how the classical Markov and Lyapunov inequalities can be strengthened under the additional
assumption of t-monotonicity. In Section 6, we apply some of the bounds obtained to different
risk measures in insurance.

2 t-monotone distributions

The purpose of this Section is to provide a representation for random variables, continuous or
discrete, that have a t-monotone density or p.m.f. In the continuous case, such a characterization
was obtained e.g. by Lévy (1962). In the discrete case, the result seems to be new.
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2.1 Continuous case

For t ≥ 1, let Mt(z) denote the random variable

Mt(z) ≡ min{Ul(z), 1 ≤ l ≤ t)}, (2.1)

where z is a positive real number and the Ul(z)’s are t independent random variables uniform
on an interval [0, z]. Clearly, a distributional representation for Mt(z) is

Mt(z) =d (1− U1/t)z, (2.2)

where U is a uniform [0, 1] random variable. So, the density of Mt(z) is

dP [Mt(z) < x]

dx
=
t

z

(
1− x

z

)t−1
+

, x > 0. (2.3)

One easily obtains the iterated right-tail d.f.’s of Mt(z) (see (7.6) in the Appendix).

Property 2.1 For i ≥ 0,

F̄i+1[Mt(z), x] =
t!

(i+ t)!
zi
(

1− x

z

)t+i
+
, x > 0. (2.4)

Let us now consider a randomized random variable Mt(Z) obtained by substituting for z
in (2.1) some exogenous random variable Z valued in IR+. By (2.2),

Mt(Z) =d (1− U1/t)Z, (2.5)

where Z and U are independent variables. The random variable Mt(Z) can be viewed as a
randomly scaled version of Z studied e.g. by Pakes (1997) and Pakes and Navarro (2007).
Note that the scaling factor used here, 1 − U1/t, has a beta (1, t) distribution. In the theory
of unimodality, Mt(Z) is said to have a beta (1, t)-unimodal distribution (e.g. Bertin et al.
(1997), page 72). One then has

E
(
[Mt(Z)]i

)
=
E(Zi)(
i+t
t

) . (2.6)

The introduction of the variable Z leads to a characterization of a t-monotone density. By
(2.3), the density of Mt(Z) is

qt(x) =
∫ ∞
0

t

z

(
1− x

z

)t−1
+

dFZ(z), x > 0, (2.7)

where FZ is the d.f. of Z. From Theorem 5 (with (8.4) and (8.7)) in Lévy (1962), we then have
the following (known) proposition.
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Proposition 2.2 The density of a IR+-valued random variable X is t-monotone if and only if
X =d (1−U1/t)Z for some IR+-valued variable Z. If X has a t-monotone density q(x), x > 0,
then the density of Z is given by

dFZ(z)

dz
= (−1)t

zt

t!
[q(z)](t), z > 0, (2.8)

For t = 1, this result corresponds to a classical Khintchine theorem for unimodal distri-
butions with mode at 0. As t → ∞, one sees that t(1 − U1/t) →d − ln(U) =d Exp(1), an
exponential variable with mean 1. Thus, the limiting form of Proposition 2.2 and (2.5) shows
that a completely monotone density admits the representation (Bernstein’ theorem):

q∞(x) =
∫ ∞
0

1

z
e−x/z dFZ(z), x > 0.

2.2 Discrete case

For t ≥ 1, Mt(z) denotes this time the random variable

Mt(z) ≡ min{Ul(z + l), 1 ≤ l ≤ t}, (2.9)

where z is a nonnegative integer and the Ul(z+ l)’s are t independent discrete random variables
uniform on the sets {0, . . . , z + l − 1} respectively.

Obviously, Mt(z) ≤ U1(z + 1) ≤ z. Let us determine the iterated right-tail d.f.’s of Mt(z).

For the sequel, we define
(
k
j

)
= 0 if k < 0 and j ≥ 0.

Property 2.3 For i ≥ 0,

F̄i+1[Mt(z), j] =

(
z−j+t+i
t+i

)
(
z+t
t

) . 0 ≤ j ≤ z, (2.10)

In particular,

P [Mt(z) = j] =

(
z−j+t−1
t−1

)
(
z+t
t

) , 0 ≤ j ≤ z, (2.11)

and

E

(
Mt(z)

i

)
=

(
z
i

)
(
i+t
t

) . (2.12)

Proof. We proceed by recurrence. From (2.9),

F̄1[Mt(z), j] = P [Mt(z) ≥ j] = P [U1(z + 1) ≥ j] . . . P [Ut(z + t) ≥ j]

=
z + 1− j
z + 1

. . .
z + t− j
z + t

=

(
z−j+t
t

)
(
z+t
t

) , 0 ≤ j ≤ z,
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i.e. (2.10) for i = 0. So, the p.m.f. of Mt(z), given by

P [Mt(z) = j] = P [Mt(z) ≥ j]− P [Mt(z) ≥ j + 1] = −∆F̄1[Mt(z), j],

becomes (2.11) by (7.3) below. For i ≥ 1, (7.11) and induction yield

F̄i+1[Mt(z), j] =
1(
z+t
t

) ∞∑
k=j

(
z − k + t+ i− 1

t+ i− 1

)

=
1(
z+t
t

) z+t+i−j−1∑
k=t+i−1

(
k

t+ i− 1

)
, 0 ≤ j ≤ z,

which reduces to (2.10) using (7.1) below. By (7.12), the binomial moments are given by

E

(
Mt(z)

i

)
= F̄i+1[Mt(z), i] =

(
z+t
t+i

)
(
z+t
t

) ,
and (2.12) follows. �

An interesting observation made by the referee is thatMt(z) admits a distributional repre-
sentation analogous to (2.1).

Proposition 2.4
Mt(z) =d MBin(z, 1− U1/t), (2.13)

where U is a uniform [0, 1] random variable and MBin(., .) denotes a mixed binomial random
variable.

Proof. The p.m.f. of MBin(z, 1− U1/t) is given by

mj ≡
(
z

j

)
E[(1− U1/t)jU (z−j)/t]

=

(
z

j

)∫ 1

0
vz−j+t−1(1− vj)dv =

(
z

j

)
B(z − j + t, j + 1), 0 ≤ j ≤ z,

after making the substitution u = vt and writing B(., .) for the usual beta function. This
reduces to the p.m.f. (2.11) as announced. �

Let us now replace z in (2.9) with some exogenous random variable Z valued in IN0. By
(2.11), the p.m.f. of Mt(Z) is given by

pt(j) ≡ P [Mt(Z) = j] = E


(
Z−j+t−1

t−1

)
(
Z+t
t

)
 , j ≥ 0, (2.14)
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which is the discrete analogue of (2.7). By (2.12),

E

(
Mt(Z)

i

)
=
E
(
Z
i

)
(
i+t
t

) , i ≥ 0. (2.15)

Continuing with (2.13) leads us to a nice representation of Mt(Z) through a binomial
thinning operator � due to Steutel and van Harn (1979). Recall that with a ∈ (0, 1) and
IN0-valued Z,

a� Z =
Z∑
i=1

Ii,

where the Ii’s are independent Bernoulli random variables with parameter a and independent
of Z. Thus, we see that

Mt(Z) =d (1− U1/t)� Z, (2.16)

where U and Z are independent. This was also pointed out to us by the referee.
The introduction of a variable Z allows us to characterize the t-monotonicity of a p.m.f.

Proposition 2.5 The p.m.f. of a IN0-valued random variable X is t-monotone if and only if
X =d (1− U1/t)� Z for some IN0-valued Z. If X has a t-monotone p.m.f. pX(j), j ≥ 0, then
the p.m.f. of Z is given by

P (Z = z) = (−1)t
(
z + t

t

)
∆tpX(z), z ≥ 0. (2.17)

Proof. From (7.3) below, the p.m.f. (2.14) of Mt(Z) is such that, for 1 ≤ k ≤ t,

∆kpt(j) = E

 1(
Z+t
t

) ∆k

(
Z − j + t− 1

t− 1

)
= (−1)k E


(
Z−j+t−1−k

t−1−k

)
(
Z+t
t

)
 , j ≥ 0,

so that (2.14) is t-monotone as desired.
Reciprocally, let X be a random variable whose p.m.f. pX(j), j ≥ 0, is t-monotone. Denote

by p(z) the right-hand side of (2.17) constructed using this p.m.f. The sequence p(z), z ≥ 0
constitutes a p.m.f. Indeed, by the t-monotonicity of X, one has p(z) ≥ 0 for all z ≥ 0.
Moreover, from the identity (7.5) below, we get that

∑
z≥0 p(z) = 1. Now, let Z be a random

variable which has precisely this p.m.f. By (2.14), the corresponding random variable Mt(Z)
has the p.m.f.

pt(j) = (−1)t
∞∑
z=j

(
z − j + t− 1

t− 1

)
∆tpX(z), j ≥ 0.

From the identity (7.4) below, we know that the right-hand side reduces to pX(j). This means
that, as announced, Mt(Z) and X have the same distribution. �
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3 s-convex orderings

In this Section, we compare t-monotone distributions and derive extremal distributions by using
the s-convex stochastic orders, denoted ≤s−cx, s integer ≥ 1. These orders are briefly presented
in the Appendix; let us recall that their definition is similar, but not identical, in the continuous
and discrete cases. For t = 1, such a comparison problem has been discussed in Denuit et al.
(1998) and Denuit, Lefèvre and Mesfioui (1999).

3.1 Continuous case

The proposition below states that a s-convex ordering on Z implies a s-convex ordering on
Mt(Z). This is true for any t.

Proposition 3.1 If Z1 ≤s−cx Z2, then Mt(Z1) ≤s−cxMt(Z2).

Proof. Let u be an arbitrary value of U and consider the variable (1−u1/t)Z. The (continuous)
s-convex ordering is preserved by multiplication by a positive constant and by mixture (see
Denuit et al. (1998)). Thus, applying these properties yields the announced assertion. �

Convex extrema. Proposition 3.1 provides a simple way to construct s-convex extrema
for t-monotone densities using standard s-convex extrema, i.e. when there is no monotonicity
restriction on the densities. With the same goal, Lefèvre and Loisel (2010) proposed a different
approach based on the use of the t-fold iterate of a stationary-excess operator. The present
method has the advantage to be more easily applicable .

Specifically, let Bs([0, b];µ1, . . . , µs−1) denote the class of all the random variables Z whose
distributions have support in [0, b] and which have the first s − 1 moments E(Zi) = µi, 1 ≤
i ≤ s − 1. Let Z

(s)
min and Z(s)

max be the extrema in this class with respect to the order ≤s−cx.
A method to determine these extrema is described e.g. in Shaked and Shanthikumar (2007),
pages 145-6.

Now, consider the class Bs([0, b]; ν1, . . . , νs−1; t-monotone) of all the random variables X
with support in [0, b], first s − 1 moments E(X i) = νi, 1 ≤ i ≤ s − 1, and which have a t-
monotone density. By Proposition 2.2, there exists some random variable Z on [0, b] such that
X =d Mt(Z). Remember that the moments µi of Z are obtained from νi through (2.6). As

Z
(s)
min ≤s−cx Z ≤s−cx Z(s)

max, Proposition 3.1 yields Mt(Z
(s)
min) ≤s−cx X ≤s−cxMt(Z

(s)
max).

For instance, let s = 2. It is well-known that inside B2([0, b];µ1),

Z
(2)
min = µ1 a.s.,

Z(2)
max =

{
0 with probability 1− µ1/b,
b with probability µ1/b.

Let t = 1 and consider B2([0, b]; ν1; 1-monotone). In this case, (2.6) implies that µ1 = 2ν1. As
M1(Z) = UZ, we get

M1(Z
(2)
min) = 2ν1 U, (3.1)

7



M1(Z
(2)
max) =

{
0 with probab. 1− 2ν1/b,
bU with probab. 2ν1/b.

(3.2)

Let t = 2 and consider B2([0, b]; ν1; 2-monotone). From (2.6), we have µ1 = 3ν1. Using (2.5),
we then obtain

M2(Z
(2)
min) = 3ν1 (1− U1/2) (3.3)

M2(Z
(2)
max) =

{
0 with probab. 1− 3ν1/b,
b (1− U1/2) with probab. 3ν1/b.

(3.4)

Note that the density of (1− U1/2) is 2(1− x), 0 ≤ x ≤ 1.
The 1-convex minimum (3.1) has a density that is uniform on [0, 2ν1] and takes the value

0 otherwise. Obviously, this density is nonincreasing but it is not convex. This allows us to
correct an erroneous assertion in Section 5 of Lefèvre and Loisel (2010): (3.1) is not, as claimed
there, the 2-convex minimum in the class of the random variables whose density is nonincreasing
convex. In fact, the true 2-convex minimum in that class is given by (3.3). The upper bound
(3.2) has a nonincreasing convex density on [0, b], with a probability mass at 0 (i.e. an infinite
value of the density at 0 and a finite limit at 0+). Thus, (3.2) is also the 2-convex maximum
among the variables whose density is required to be 2-monotone on [0, b] only; this is precisely
what is stated in Lefèvre and Loisel (2010). The 2-convex maximum given by (3.4) is not the
one obtained in that paper because the 2-monotonicity required there is on [0, b] only.

3.2 Discrete case

As in the continuous case, an s-convex ordering on Z is transferred toMt(Z). This is a direct
consequence of the representatation (2.16).

Proposition 3.2 The assertion of Proposition 3.1 holds here too.

Proof. For any value u of U , consider the variable (1 − u1/t) � Z =d MBin(Z, 1 − u1/t). If
Z1 ≤s−cx Z2, then MBin(Z1, 1 − u1/t) ≤s−cx MBin(Z2, 1 − u1/t) (Denuit, Lefèvre and Utev
(1999), Property 5.7). As the (discrete) s-convex ordering is preserved by mixing (Denuit and
Lefèvre (1997)), the announced result follows. �

Remark. Let f be a function on IN0 and define the associated function g by

g(z) ≡ E[f(Mt(z))] =
z∑
j=0

(
z−j+t−1
t−1

)
(
z+t
t

) f(j), z ≥ 0. (3.5)

One can show that (
t+ s

s

)
∆sg(z) =

z∑
j=0

(
j+s
s

)(
z−j+t−1
t−1

)
(
z+s+t
s+t

) ∆sf(j), s ≥ 0. (3.6)
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Thus, if the function f is a s-convex (in the sense of (7.13)), then the function g too is s-convex.
By the definition 7.3 of the s-convex order, this gives another proof of Proposition 3.2. For
t = 1, the identity (3.6) has been derived by Denuit et al. (1999) to prove the result in that
case. The argument followed above is simpler and more enlightening than the use of (3.6).
Note that, by a known combinatorial identity, the coefficients of ∆sf(j) sum to 1. Thus, they
constitute a p.m.f. and the right-hand side corresponds to an expectation as in (3.5).

Convex extrema. The framework is similar. Let Bs({0, . . . , n};µ1, . . . , µs−1) be the class
of all the random variables Z which are valued in a set {0, . . . , n} and have the first s − 1

binomial moments E
(
Z
i

)
= µi, 1 ≤ i ≤ s − 1. Denote by Z

(s)
min and Z(s)

max the extrema in that
class with respect to ≤s−cx. A method for deriving these extrema is presented in Denuit and
Lefèvre (1997).

Discrete extrema have received less attention in the literature. It is worth mentioning,
however, that optimal bounds of this type have been investigated in branching theory for
approximating the extinction probability and other functionals (e.g. Pakes (2003), pages 705,
6 for references to these bounds); see also e.g. Lefèvre and Utev (1996) in epidemic modeling.

Now, let Bs({0, . . . , n}; ν1, . . . , νs−1; t-monotone) be the set of all the random variables X

valued in {0, . . . , n}, with first s − 1 binomial moments E
(
X
i

)
= νi, 1 ≤ i ≤ s − 1, and which

have a t-monotone p.m.f. By Proposition 2.5, X =dMt(Z) for some random variable Z valued
in {0, . . . , n}. The moments of Z and X are connected by (2.15). Applying Proposition 3.2

then yields Mt(Z
(s)
min) ≤s−cx X ≤s−cxMt(Z

(s)
max).

For illustration, let s = 2. Inside B2({0, . . . , n};µ1),

Z
(2)
min =

{
ξ with probab. ξ + 1− µ1,
ξ + 1 with probab. µ1 − ξ,

Z(2)
max =

{
0 with probab. 1− µ1/n,
n with probab. µ1/n,

where ξ is the integer in [0, n − 1] such that ξ < µ1 ≤ ξ + 1 (Denuit and Lefèvre (1997)). Let
t = 1 and consider B2({0, . . . , n}; ν1; 1-monotone). Following (2.15), we have µ1 = 2ν1; let ξ1
be the corresponding value of ξ. By (2.9), M1(Z) = U1(Z + 1), so that

M1(Z
(2)
min) =

{
0, . . . , ξ1 with equal probab. 2(ξ1 + 1− ν1)/(ξ1 + 1)(ξ1 + 2),
ξ1 + 1 with probab. (2ν1 − ξ1)/(ξ1 + 2),

(3.7)

M1(Z
(2)
max) =

{
0 with probab. 1− 2ν1/(n+ 1),
1, . . . , n with equal probab. 2ν1/n(n+ 1),

(3.8)

Let t = 2 and consider B2({0, . . . , n}; ν1; 2-monotone). From (2.15), we have µ1 = 3ν1; let
ξ2 be the corresponding value of ξ. Using (2.9), we obtain

M2(Z
(2)
min) = j ∈ {0, . . . , ξ2 + 1} with probab. (ξ2 − j + 1)π1 + (ξ2 − j + 2)π2, (3.9)

where π1 = 2(ξ2 + 1− 3ν1)/(ξ2 + 2)(ξ2 + 1) and π2 = 2(3ν1 − ξ2)/(ξ2 + 3)(ξ2 + 2), while

M2(Z
(2)
max) =

{
0 with probab. 1− 3ν1/(n+ 2),
j ∈ {1, . . . , n} with probab. 6ν1(n− j + 1)/n(n+ 1)(n+ 2),

(3.10)
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The 1-convex maximum (3.8) has a p.m.f. that is nonincreasing convex on {0, . . . , n}, but it
is not convex on IN0. Thus, (3.8) is the 2-convex maximum among the random variables whose
p.m.f. is required to be 2-monotone on {0, . . . , n} only; this is what is asserted in Section
5 of Lefèvre and Loisel (2010). Of course, (3.8) is not the 2-convex maximum here because
the 2-monotonicity is on IN0. The true 2-convex maximum is given by (3.10). The 2-convex
minimum (3.9) has a p.m.f. that is nonincreasing convex on {0, . . . , n}. Thus, it is also optimal
among the variables whose p.m.f. is required to be 2-monotone on {0, . . . , n} only; this result
has been obtained in Lefèvre and Loisel (2010). Note that by comparison, the p.m.f. of the
1-convex minimum (3.7) is nonincreasing but nonconvex.

Other values of t may be considered without real difficulties. One can also deal with s ≥ 3
provided the s-convex extrema for Z are available. This is possible, for instance, with s = 3.
Then, (2.15) leads to µ1 = 2ν1 and µ2 = 3ν2 when t = 1, and µ1 = 3ν1 and µ2 = 6ν2 when
t = 2.

4 t-stationary-excess distributions

A different method to generate t-monotone distributions consists in using the t-fold iterate of a
stationary-excess operator (Lefèvre and Loisel (2010)). Our purpose in this Section is to point
out a link between that method and the present approach to t-monotonicity. This question is
partly related to the characterization of distributions through length-biasing, stationary-excess
and random scaling operations (e.g. Pakes (1996), (1997) and Pakes and Navarro (2007)).

4.1 Continuous case

(i) The length-bias transform. Let Y be a IR+-valued random variable with finite mean
and density qY . The length-bias transform L of Y is a IR+-valued random variable L(Y ) with
density

qL(Y )(z) =
zqY (z)

E(Y )
, z > 0. (4.1)

For instance, if Y is gamma (α, n), then L(Y ) is gamma (α, n+ 1); if Y is Pareto (α, γ) [resp.
Lognormal (µ, σ2)], L(Y ) is Pareto (α, γ − 1) [resp. Lognormal (µ + σ2, σ2)]. Length-biased
distributions arise in many situations where the probability of selection is proportional to a
size dimension (see e.g. Patil and Rao (1978)). Note that the operator L yields a one-to-one
correspondence.

Let us apply t times the operator L to Y , under the assumption E(Y t) <∞. We easily see
that the resulting random variable Lt(Y ) has the density

qLt(Y )(z) =
ztqY (z)

E(Y t)
, z > 0. (4.2)

Moreover, we get

E
(
[Lt(Y )]i

)
=
E(Y i+t)

E(Y t)
, i ≥ 0. (4.3)
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In an actuarial context, the right-hand side for i = 1 corresponds to the size-biased pricing
functional of an insurance risk or loss Y (e.g. Furman and Zitikis (2009)).

(ii) The stationary-excess transform. Let us first examine what becomes of the random
variable Mt(Z) =d (1− U1/t)Z in the case where Z =d Lt(Y ) with density (4.2).

Property 4.1 The density of Mt(Lt(Y )) is

qt(x) =
t E(Y − x)t−1+

E(Y t)
, x > 0. (4.4)

Proof. Substituting (4.2) in (2.7) gives

qt(x) =
t

E(Y t)

∫ t

0

1

z

(
1− x

z

)t−1
+

ztqY (z) dz, x > 0,

and (4.4) follows. �
Note that the density qt reduces to a ratio between two expectations. From (2.6) and (4.3),

the associated moments are

E
(
[Mt(Lt(Y ))]i

)
=

E(Y i+t)(
i+t
t

)
E(Y t)

, i ≥ 0. (4.5)

Now, let us consider the standard stationary-excess operator S (e.g. Cox (1962)). S trans-
forms the variable Y into a random variable S(Y ) with density

qS(Y )(z) =
P (Y > y)

E(Y )
, z > 0. (4.6)

Obviously, the density (4.6) is the same as (4.4) with t = 1. Let us apply t times the operator S,
which yields a random variable St(Y ). As shown by Lefèvre and Loisel (2010), formula (4.11),
the density of St(Y ) is still given by (4.4), which gives the following result.

Proposition 4.2
St(Y ) =d (1− U1/t)Lt(Y ). (4.7)

The relation (4.7) represents the stationary-excess operator as a random contraction of the
length-bias operator. It occurs as Lemma 4.1 in Pakes (1996) (with a different proof).

Note that by virtue of Proposition 2.2 and (4.7), a stationary-excess density of order t is
a t-monotone function. Moreover, from (4.7) and using Proposition 4.4 in Lefèvre and Loisel
(2010), we obtain the following convex comparison result:

if Y1 ≤(s+t)−cx Y2, then Mt(Lt(Y1)) ≤s−cxMt(Lt(Y2)). (4.8)
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4.2 Discrete case

(i) A length-bias type transform. Let Y be a IN0-valued random variable with finite
mean. We define an operator L that transforms Y into a random variable L(Y ), also IN0-valued,
whose p.m.f. is defined by

P (L(Y ) = z) =
(z + 1)P (Y = z + 1)

E(Y )
, z ≥ 0. (4.9)

For instance, if Y is Poisson (λ), then L(Y ) is also Poisson (λ); if Y is binomial (n, p) [resp.
negative binomial (n, p)], L(Y ) is binomial (n− 1, p) [resp. negative binomial (n + 1, p)]. The
operator L yields a one-to-one correspondence when E(Y ) is fixed. This is not true otherwise:
for example, if ν is a Bernoulli variable independent of Y , then L(Y ) =d L(νY ).

Let us notice that L differs slightly from the length-bias operator usually considered for
discrete random variables (as e.g. in Patil and Rao (1978)). This operator, L̃ say, transforms
Y into a variable L̃(Y ) with p.m.f. given by

P (L̃(Y ) = z) =
zP (Y = z)

E(Y )
, z ≥ 1.

Thus, L(Y ) =d L̃(Y )− 1, i.e. L(Y ) is a (−1)-translated length-biased version of Y .
Let us operate t times L to Y , provided E(Y t) < ∞. For t = 2, this gives a variable

L2(Y ) whose p.m.f. is P (L2(Y ) = z) = (z + 1)P (L(Y ) = z + 1)/E(L(Y )), z ≥ 0, where

E(L(Y )) = 2E
(
Y
2

)
/E(Y ). After t iterations, we get for Lt(Y ) the following p.m.f.

P (Lt(Y ) = z) =

(
z+t
t

)
P (Y = z + t)

E
(
Y
t

) , z ≥ 0. (4.10)

Its binomial moments are

E

(
Lt(Y )

i

)
=

(
i+t
t

)
E
(
Y
t+i

)
E
(
Y
t

) , i ≥ 0. (4.11)

These formulas can also be obtained using the probability generating function of Lt(Y ).

(ii) The stationary-excess transform. Let us consider the random variable Mt(z) =d

(1− U1/t)� Z in the case where Z =d Lt(Y ) with p.m.f. (4.10).

Property 4.3 The p.m.f. of Mt(Lt(Y )) is

pt(j) =
E
(
Y−j−1
t−1

)
E
(
Y
t

) , j ≥ 0. (4.12)
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Proof. From (2.14) and (4.10),

pt(j) =
∞∑
z=j

(
z−j+t−1
t−1

)
(
z+t
t

)
(
z+t
t

)
P (Y = z + t)

E
(
Y
t

)
=

1

E
(
Y
t

) ∞∑
z=j+t

(
z − j − 1

t− 1

)
P (Y = z), j ≥ 0,

which gives the formula (4.12). �
As in (4.4), the p.m.f. pt is a ratio between two expectations. From (2.15) and (4.11), its

binomial moments are

E

(
Mt(Lt(Y ))

i

)
=
E
(
Y
i+t

)
E
(
Y
t

) , i ≥ 0. (4.13)

Now, let us consider the discrete stationary-excess operator S introduced in Lefèvre and
Loisel (2010). S transforms Y into an IN-valued random variable S(Y ) with p.m.f.

P (S(Y ) = z) =
P (Y ≥ z + 1)

E(Y )
, z ≥ 0. (4.14)

Observe that the p.m.f. (4.14) and (4.12) with t = 1 are identical. Applying t times S to Y
yields a random variable St(Y ) whose p.m.f. is still given by (4.12) (Lefèvre and Loisel (2010),
formula (4.2)). This yields the following result.

Proposition 4.4
St(Y ) =d (1− U1/t) � Lt(Y ). (4.15)

By Proposition 2.5 and (4.15), a stationary-excess p.m.f. of order t is a t-monotone function.
One can show that the comparison result (4.8) holds too in the discrete case.

5 Refining simple standard inequalities

The goal here is to strengthen Markov and Lyapunov inequalities for distributions that are
known to be t-monotone. Our study is mainly focused on the continuous case, which is more
tractable. We thank S. Utev for fruitful discussions on this topic; see also Lefèvre and Utev
(2011) for further results. As indicated below, such inequality refinements exist in the literature
on unimodal distributions. For clarity, we write Xt ≡Mt(Z) in this Section.

5.1 Continuous case

First, note from (2.5) that (2.6) can be extended to any moment of order r > 0 by

E(Xr
t ) =

Γ(r + 1)Γ(t+ 1)

Γ(r + t+ 1)
E(Zr). (5.1)
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(i) Markov type inequality. Let X be a IR+-valued random variable. The classical
Markov inequality states that for any r ≥ 0,

P (X ≥ x) ≤ E(Xr)

xr
, x > 0. (5.2)

The bound may be refined when additional information on X is available. We derive below a
tighter bound for a random variable Xt whose density is t-monotone.

Proposition 5.1 For r ≥ 0,

P (Xt ≥ x) ≤ c(r, t)
E(Xr

t )

xr
, x > 0, (5.3)

where c(r, t) is a reducing factor given by

c(r, t) =
Γ(r + t+ 1)

Γ(r + 1)Γ(t+ 1)

(
r

r + t

)r ( t

r + t

)t
. (5.4)

Proof. By (2.4),

xrP (Xt ≥ x) = xrE
(

1− x

Z

)t
+
≡ E[θZ(x)], x > 0.

For Z fixed, the fuction θZ(x) has a maximum at x = xM ≡ [r/(r + t)]Z (∈ (0, Z)). Thus,

xrP (X ≥ x) ≤ E[θZ(xM)]

=
(

r

r + t

)r ( t

r + t

)t
E(Zr), x > 0. (5.5)

From (5.1),

E(Zr) =
Γ(r + t+ 1)

Γ(r + 1)Γ(t+ 1)
E(Xr

t ), (5.6)

which, inserted in (5.5), gives (5.3) and (5.4). �
From (5.4), we observe that c(r, t) = c(t, r). The next property asserts that, as expected,

the bound in (5.3) becomes tighter for larger values of t; a proof is given in the Appendix.

Property 5.2 The factor c(r, t), r > 0, is decreasing with t, and

lim
t→∞

c(r, t) = rre−r/Γ(r + 1).

When t = 0, (5.3) and (5.4) reduce to (5.2). When t = 1 (nonincreasing densities), (5.3),
(5.4) gives for r = 1,

P (X1 ≥ x) ≤ E(X1)

2x
, (5.7)
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and for r = 2,

P (X1 ≥ x) ≤ 4E(X2
1 )

9x2
.

This refinement of Chebyshev’s inequality in fact is the (earlier) Gauss inequality for unimodal
distributions. A study of the case t = 1 is made e.g. in the book of Dharmadhikari and Joag-
Dev (1988), Section 1.5. Note that our proof of Proposition 5.1 for t = 1 is neater than the
proof presented there. When t = 2 (nonincreasing convex densities), (5.3) and (5.4) yields for
r = 1,

P (X2 ≥ x) ≤ 4E(X2)

9x
, (5.8)

and for r = 2,

P (X2 ≥ x) ≤ 3E(X2
2 )

8x2
.

(ii) Lyapunov type inequality. Considering again X ≥ 0, Jensen’s inequality implies,
for any r ≥ 1,

[E(X)]r ≤ E(Xr). (5.9)

In particular, this yields the standard Lyapunov inequality: for 0 < r ≤ s,

[E(Xr)]1/r ≤ [E(Xs)]1/s. (5.10)

Let us show how to refine these two inequalities for a t-monotone random variable Xt.

Proposition 5.3 For r ≥ 1,

[E(Xt)]
r ≤ Γ(r + t+ 1)

(t+ 1)rΓ(r + 1)Γ(t+ 1)
E(Xr

t ), (5.11)

and for 0 < r ≤ s,[
E(Xr

t )
Γ(r + t+ 1)

Γ(r + 1)Γ(t+ 1)

]1/r
≤
[
E(Xs

t )
Γ(s+ t+ 1)

Γ(s+ 1)Γ(t+ 1)

]1/s
. (5.12)

Proof. From (5.1), one has for r ≥ 0

[E(Xt)]
r = [1/(t+ 1)r] [E(Z)]r, (5.13)

as well as the relation (5.6). By (5.9), [E(Z)]r ≤ E(Zr) for r ≥ 1. Inserting this inequality in
(5.13) and using (5.6) then yields (5.11). The proof of (5.12) is similar: it suffices to combine
the formula (5.6) with the inequality (5.10) applied to Z, i.e. [E(Zr)]1/r ≤ [E(Zs)]1/s. �

For t = 0, (5.11) and (5.12) reduce to (5.9) and (5.10). For t = 1 and r = 2, (5.11) gives

[E(X1)]
2 ≤ 3E(X2

1 )

4
,
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or equivalently, [E(X2
1 )] ≤ 3V ar(X1), which is a known result (see e.g. Dharmadhikari and

Joag-Dev (1988), page 9). If t = r = 2 for instance,

[E(X2)]
2 ≤ 2E(X2

2 )

3
.

An inequality similar to (5.11) can be found e.g. in Pec̆arić et al. (1992), page 222 (see also
page 218 when t = 1). By comparison, our proof is especially simple.

5.2 Discrete case

This topic in the discrete case remains widely open. The difficulty comes from the less tractable
representation (2.16) forMt(Z). We just examine here how Markov’s inequality in its simplest
form, i.e. when r = 1, can be refined for a p.m.f. that is nonincreasing. First, we notice that if
X is a IN0-valued random variable, one sees that

P (X ≥ j + 1) ≤ E(X)

j + 1
, j ≥ 0, (5.14)

which is, of course, almost (5.2) for r = 1. The following inequality is similar to (5.7) but is
derived by a different argument.

Proposition 5.4 For i ≥ 0,

P (X1 ≥ j + 1) ≤ E(X1)

2j + 1
, j ≥ 0. (5.15)

Proof. By definition,

E(X1) =
∞∑
i=1

F̄1(X1, i) ≥
2j+1∑
i=1

F̄1(X1, i)

=
j∑
i=1

[F̄1(X1, i) + F̄1(X1, 2j + 2− i)] + F̄1(X1, j + 1). (5.16)

As X1 has a nonicreasing p.m.f., the function F̄1(X1, i) is convex. Thus, F̄1(X1, i)+ F̄1(X1, 2j+
2− i) ≥ 2F̄1(X1, j + 1) for 1 ≤ i ≤ j. Inserting this inequality in (5.16) then gives (5.15). �

6 Illustrations in insurance

We present four applications in insurance of the bounds obtained in Sections 3 and 5. Many
other examples in life insurance and risk theory could be considered (see e.g. the books by
Goovaerts et al. (1990), Kaas et al. (1994), (2008) and Asmussen and Albrecher (2010)).

(i) Solvency Capital Requirement. In the context of Solvency II, let us examine the
problem of estimating the SCR (Solvency Capital Requirement) for a given risk. A standard
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approximation formula is SCR = qσ where q > 0 is a quantile factor and σ is the standard
deviation of the random loss. Using a standard collective risk model, one has

σ2 = V ar(W )E(N) + [E(W )]2 V ar(N), (6.1)

where N is the number of claims and W is an arbitrary claim amount independent of N .
Now, following Lefèvre and Loisel (2010), we consider the business line C27, ”drought and

earthquake”, inside some French data. For heavy-tailed risks, an admissible value for the
quantile factor is q = 6. Concerning the claims, we take E[W (C27)] = 1000, V ar[W (C27)] =
25002, and N is assumed to have a bounded support {0, . . . , n} with E(N) = 0.37.

A reasonable assumption might be that the p.m.f. of N is a nonincreasing convex function.
In that case, N

(t=2,s=2)
min ≤2−cx N ≤2−cx N (t=2,s=2)

max where the lower and upper bounds have
a p.m.f. given by (3.9) and (3.10) respectively. Let us recall that the extrema in Lefèvre
and Loisel (2010) are obtained for a p.m.f. which is nonincreasing convex on {0, . . . , n} only;

they are denoted N
(2,2)
min (n) and N (2,2)

max (n). As indicated in Section 3.2, N
(2,2)
min = N

(2,2)
min (n), but

N (2,2)
max 6= N (2,2)

max (n).
For the upper bound N (2,2)

max , we get from (3.10)

V ar(N (2,2)
max ) =

6ν1
n(n+ 1)(n+ 2)

n∑
j=1

j2(n− j + 1)− ν21 = ν1(n+ 1)/2− ν21 . (6.2)

Table 1 provides the variance (6.2) and the SCR estimated using (6.1) for the business line C27

as a function of n. Of course, these bounds increase with n. They are also sharper than the
corresponding bounds calculated with N (2,2)

max (n). If n = 10 for instance, V ar(N (2,2)
max (10)) = 2.453

and SCR(N (2,2)
max (10)) = 13098.2.

n(C27) V ar(N (2,2)
max ) SCR(N (2,2)

max )
5 0.9731 10875.73
10 1.8981 12311.85
20 3.7481 14770.97
30 5.5981 16875.47
40 7.4481 18745.18

Table 1: Upper bounds on V ar(N) and SCR for C27 when t = s = 2.

(ii) Total risk of pension fund. Let us consider the example, discussed in Kaas and
Goovaerts (1987), of a pension fund that covers the risk of an active married participant dying.
The authors use a lifetable for Dutch government employees to estimate the first two moments
of the total risk X of the pension fund; this gives E(X) = 27.63 and E(X2) = 1893. Then,
bounds for the stop-loss premium with a retention of 53.6982 are computed on the basis of these
moments and with n = 1000 as the largest possible value of X. The restriction to unimodal
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distributions with mode at 0 is also examined. The lower and upper bounds obtained are
(0.41, 8.23) in the general case and (1.26, 7.16) under the unimodality assumption.

Now, let us suppose that the mean of X is known but not the variance, and that the p.m.f.
of X is not only nonincreasing but also convex. The absence of information on E(X2) is a big

drawback, of course. The 2-convex extrema for X, [X
(t=2,s=2)
min , X(t=2,s=2)

max ], have a p.m.f. given
by (3.9) and (3.10). The bounds for the associated stop-loss premiums then follow easily and
are equal to (1.29, 23.42). Observe that the lower bound is slightly higher, thus better, than
1.26, while the upper bound is very large.

(iii) Percentile risk aversion. Following e.g. de Jong and Madan (2011), under certain
assumptions, the capital m required for a risk X with d.f. FX is of the form

m = −
∫ ∞
−∞

xdΨ[FX(x)] = −E[Xψ(UX)],

for some concave distortion function Ψ on [0, 1], or some nonincreasing percentile aversion
function ψ = dΨ/dx, where UX ≡ FX(X) is uniformly distributed on [0, 1]. The risk margin is
defined as m+ E(X). If E[ψ(UX)] = 1, it is then given by

m+ E(X) = −Cov(X,ψ(UX)) = σψσXρ−X ,

where σψ is the standard deviation of ψ(UX), σX is the standard deviation of X and ρ−X is
negative of the correlation coefficient between X and ψ(UX). Note that σψ does not depend
on X, and ρ−X ≥ 0 as ψ is a nonincreasing function. The factor σψ is a conservatism factor
reflecting risk aversion, and ρX is the portion of σX taken into account in the risk margin.

de Jong and Madan (2011) consider a flexible class of risk aversion functions depending on
a stress parameter γ. A plot of the density ψ(u), 0 ≤ u ≤ 1, is displayed in Figure 1 of their
paper for different values of γ. As long as γ > 0, ψ(u) → ∞ as u → 0. The higher the level
of γ, the higher the conservatism factor σψ. The most cautious case in that figure is γ = 0.75,
giving σψ = 2.06. This case seems also to yield the smallest value of γ for which ψ is convex.

One could wonder whether it is possible to get high values for σψ using other functions ψ
that are nonincreasing convex on a bounded support [0, b] with E[ψ(UX)] = 1. To answer this
question, we evaluate the maximal value of σψ for such a function ψ. Note that the d.f. of
ψ(UX) is 1 − ψ−1 which is a concave function, so that the density of ψ(UX) is nonincreasing.
Thus, the highest level of σψ is given by the standard deviation of the density (3.2) with ν1 = 1;

it is equal to
√

2b/3− 1. For instance, if b = 100, this bound gives 8.103.

Let us now add the constraint that the density of ψ(UX) is also convex. In that case, the
maximal value for σψ is given by the standard deviation of the density (3.4) with ν1 = 1; it is

equal to
√
b/2− 1. For b = 100, this bound is equal to 7, which is reasonable in comparison to

the cautious value 2.06 considered in de Jong and Madan (2011).

(iv) Exponential premium principle. Goovaerts et al. (2003) showed that many risk
measures and premium principles can be derived by minimizing a Markov bound. A typical ex-
ample is the classical exponential premium principle. For a continuous risk variable X, applying
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Markov’s inequality to exp(βX) where β > 0 gives P (X ≥ x) ≤ E(exp(βX))/ exp(βx), x ≥ 0.
This bound is non-trivial if it is at most 1. It equals 1 when x ≡ π given by

π = (1/β) lnE(eβX), (6.3)

i.e. π is the exponential premium of parameter β. Under this choice, one has similarly

P (X ≥ π + y) ≤ E(eβX)/eβ(π+y) = e−βy, y ≥ 0. (6.4)

Suppose that the density of X is nonincreasing. Then, exp(βX) has a nonincreasing density
and applying (5.7) allows us to refine the inequality (6.4) to

P (X > π + y) ≤ (1/2) e−βy, y ≥ 0.

If the density of X is also convex, we get similarly from (5.8) that the factor 1/2 is replaced
with 4/9. The bound (6.4) and these improvements could be used to estimate, for instance, the
probability that a stop-loss reinsurance treaty is activated.

In general the value of β is defined by the market. Nevertheless, within an Enterprise Risk
Management process, insurance companies start to define so-called risk limits. One possibility,
among others, could consist in setting a lower limit on the premium to guarantee that the
probability of loosing more than a fixed amount K (in excess of π) is smaller than a level ε.
Using the Markov bound (6.3), the trigger level β ≡ β(K, ε) satisfies exp(−βK) = ε, so that β =
−(1/K) ln(ε). If the density of X is nonincreasing, this level decreases to β1 = −(1/K) ln(2ε).
If the density is also convex, one gets β2 = −(1/K) ln(9ε/4). For example, if K = 100 and
ε = 0.05, then β = 0.0299, β1 = 0.0230 (a gain of 23%) and β2 = 0.0218 (a gain of 27%).

As a consequence, more competitive premium levels above the risk limit are possible. Sup-
pose, for instance, that X has a gamma distribution with parameters (θ, α), i.e. E(exp(βX)) =
[θ/(θ − β)]α. By (6.3), the lower risk limit on π is given by (α/β) ln[θ/(θ − β)]. Let us choose
α = 0.2 and θ = 0.1, so that the density of X is decreasing convex. With β, β1 and β2 above,
the risk limits are then equal to 2.376, 2.273 and 2.256, respectively.

7 Appendix

This Section collects some notions and technical results used in Section 2, 3 and 5.

Combinatorial identities. The following relations are straightforward:

m∑
j=i

(
j

i

)
=

(
m+ 1

i+ 1

)
, 0 ≤ i ≤ m, (7.1)

and if the operator ∆ operates on j, then for i, k ≥ 0,

∆k

(
j

i+ k

)
=

(
j

i

)
, i+ k ≤ j, (7.2)
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∆k

(
m− j
i+ k

)
= (−1)k

(
m− j − k

i

)
, i+ k ≤ m− j. (7.3)

The next relations are less standard for non-specialists.

Lemma 7.1 Let f : IN→ IR be an arbitrary function. For t ≥ 1,

(−1)t
∞∑
j=k

(
j − k + t− 1

t− 1

)
∆tf(j) = f(k), k ≥ 0, (7.4)

(−1)t
∞∑
j=0

(
j + t

t

)
∆tf(j) =

∞∑
j=0

f(j). (7.5)

Proof. Let g(k), k ≥ 0, be the left-hand side of (7.4). Expanding ∆t, we get

g(k) = (−1)t
∞∑
j=k

(
j − k + t− 1

t− 1

)
t∑
l=0

(
t

l

)
(−1)t−lf(j + l)

=
t∑
l=0

(
t

l

)
(−1)l

∞∑
j=k+l

f(j)

(
j − k − l + t− 1

t− 1

)

=
∞∑
j=k

f(j)

(
j − k + t− 1

t− 1

)
+

∞∑
j=k+1

f(j)
t∑
l=1

(
t

l

)
(−1)l

(
j − k − l + t− 1

t− 1

)

= f(k) +
∞∑

j=k+1

f(j) ∆t

(
j − k − 1

t− 1

)
= f(k),

after using (7.2), and (7.4) follows. Now, summing (7.4) over k yields

(−1)t
∞∑
k=0

∞∑
j=k

(
j − k + t− 1

t− 1

)
∆tf(j) =

∞∑
j=0

f(j),

which becomes (7.5) after permuting the two sums and using (7.1). �
s-convex stochastic orders. These orders have been mostly studied by Denuit et al.

(1998), (1999) for continuous distributions, and by Lefèvre and Utev (1996) and Denuit and
Lefèvre (1997) for discrete distributions. Basic points of the theory are recalled below.

Continuous case. With IR+-valued X, define the iterated right-tail d.f.’s of X by F̄1(X, x) =
P (X > x) and

F̄i+1(X, x) =
∫ ∞
x

F̄i(X, y)dy, x ≥ 0, i ≥ 1. (7.6)

An equivalent expression is

F̄i+1(X, x) =
E[(X − x)i+]

i!
, x ≥ 0, i ≥ 0. (7.7)
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Now, let s be some integer ≥ 1. Denote by Fs the set of s-convex functions on IR+, i.e.

Fs = {f : f (s)(x) ≥ 0, x ≥ 0}. (7.8)

A more general concept of s-convex functions is used in interpolation theory (see e.g. Karlin
and Studden (1966)). For the definition below, however, it is not restrictive to consider the
class of functions (7.8).

Definition 7.2 If X and Y are continuous random variables on IR+, then X is smaller than
Y in the s-convex stochastic sense, written X �s Y , when

Ef(X) ≤ Ef(Y ) for all functions f ∈ Fs, (7.9)

provided the expectations exist.

Note that X �s Y implies that X and Y have necessarily the same first s − 1 moments. In
fact, one can prove that a condition equivalent to (7.9) is

E(X i) = E(Y i), i = 0, 1, . . . , s− 1, and

F̄s(X, j) ≤ F̄s(X, j), j ≥ s. (7.10)


Discrete case. With IN0-valued X, the iterated right-tail d.f.’s of X are defined by F̄0(X, j) =

P (X = j), j ≥ 0, and

F̄i+1(X, j) =
∞∑
k=j

F̄i(X, k), j ≥ 0, i ≥ 0. (7.11)

They can be also expressed as

F̄i+1(X, j) = E

(
X − j + i

i

)
, j ≥ 0, i ≥ 0. (7.12)

For s a positive integer, let Fs denote the set of functions that are s-convex on IN0, i.e.

Fs = {f : ∆sf(j) ≥ 0, j ≥ 0}. (7.13)

Definition 7.3 If X and Y are random variables on IN0, then X �s Y when the condition
(7.9) is satisfied with respect to the class (7.13).

Here too, the conditions (7.10) are equivalent to (7.9).

Proof of Property 5.2. Let us consider the function c(r, t) for t ∈ IR+. To show that this
function is decreasing, we first obtain that

d log c(r, t)/dt = u(r)− u(0),

where
u(x) = ψ(x+ t+ 1)− log(x+ t), x > 0,
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with ψ(x) = d log Γ(x)/dx. Thus, it suffices to prove that u′(x) < 0, i.e. ψ′(x+1) < 1/x. Using
a known expansion for ψ′(x) (e.g. Abramowitz and Stegun (1972), formula 6.4.10), we get

ψ′(x+ 1) =
∞∑
i=1

1

(x+ i)2

<
∞∑
i=1

(
1

x+ i− 1
− 1

x+ i

)
=

1

x
,

as desired. For the limit as t→∞, we write that

c(r, t) =
rr

Γ(r + 1)

(
1− r

r + t

)t ( t

r + t

)r Γ(r + t+ 1)

trΓ(t+ 1)
.

By formula 6.1.46 in Abramowitz and Stegun (1972), the last fraction in the right hand side
tends to 1, so that the announced limit follows. �
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