J. Hamilton, Time series analysis, Analyse des s ries temporelles : application l Economie et la Gestion, 1994.

G. Celeux and J. Nakache, Analyse discriminante sur variables qualitatives, Polytechnica proceeding, 1994.

M. Muselli, P. Poggi, G. Notton, and A. Louche, First order Markov chain model for generating synthetic ???typical days??? series of global irradiation in order to design photovoltaic stand alone systems, Energy Conversion and Management, vol.42, issue.6, pp.42-675, 2001.
DOI : 10.1016/S0196-8904(00)00090-X

D. Logofet, The mathematics of Markov models: what Markov chains can really predict in forest successions, Ecological Modeling, pp.285-298, 2000.

M. Sharif and D. Burn, Simulating climate change scenarios using an improved K-nearest neighbor model, Journal of Hydrology, vol.325, issue.1-4, pp.179-196, 2006.
DOI : 10.1016/j.jhydrol.2005.10.015

S. Yakowitz, NEAREST-NEIGHBOUR METHODS FOR TIME SERIES ANALYSIS, Journal of Time Series Analysis, vol.21, issue.2, pp.235-247, 1987.
DOI : 10.2307/2288075

A. Mellit and S. Kalogirou, Artificial intelligence techniques for photovoltaic applications: A review, Progress in Energy and Combustion Science, pp.574-632, 2008.
DOI : 10.1016/j.pecs.2008.01.001

A. Mellit and A. M. Pavan, A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy, Solar Energy, vol.84, issue.5, pp.807-821, 2010.
DOI : 10.1016/j.solener.2010.02.006

C. Paoli, C. Voyant, M. Muselli, and M. Nivet, Solar Radiation Forecasting Using Ad-Hoc Time Series Preprocessing and Neural Networks, Emerging Intelligent Computing Technology and Applications, pp.898-907, 2009.
DOI : 10.1007/978-3-642-04070-2_95

URL : http://arxiv.org/abs/0906.0311

C. Voyant, M. Muselli, C. Paoli, M. Nivet, P. Poggi et al., Predictability of PV power grid performance on insular sites without weather stations: use of artificial neural networks, 24 th European Photovoltaic Solar Energy Conference and Exhibition, pp.10-4229

A. Mellit, S. Kalogirou, S. Shaari, H. Salhi, and A. Hadjarab, Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV system, Renewable Energy, vol.33, issue.7, pp.33-1570, 2008.
DOI : 10.1016/j.renene.2007.08.006

M. Chaabene and M. Benammar, Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems, Renewable Energy, vol.33, issue.7, pp.1435-1443, 2008.
DOI : 10.1016/j.renene.2007.10.004

A. Mellit, S. Kalogirou, L. Hontoria, and S. Shaari, Artificial intelligence techniques for sizing photovoltaic systems: A review, Renewable and Sustainable Energy Reviews, vol.13, issue.2, pp.406-419, 2009.
DOI : 10.1016/j.rser.2008.01.006

G. Reikard, Predicting solar radiation at high resolutions: A comparison of time series forecasts, Solar Energy, vol.83, issue.3, pp.342-349, 2009.
DOI : 10.1016/j.solener.2008.08.007

S. F. Crone, Stepwise Selection of Artificial Neural Network Models for Time Series Prediction, Journal of Intelligent Systems, vol.14, issue.2-3, 2005.
DOI : 10.1515/JISYS.2005.14.2-3.99

J. G. De-gooijer and R. J. Hyndman, 25 years of time series forecasting, International Journal of Forecasting, vol.22, issue.3, pp.443-473, 2006.
DOI : 10.1016/j.ijforecast.2006.01.001

J. Faraday and C. Chatfield, Times Series Forecasting with Neural Networks: A Case Study, 1998.

C. Voyant, M. Muselli, C. Paoli, M. L. Nivet, B. Pillot et al., Optimization of an Artificial Neural Network (ANN) Dedicated to the Daily Global Radiation and PV Plant Production Forecasting Using Exogenous Data, 25 th European Photovoltaic Solar Energy Conference and Exhibition, pp.5022-5024, 2010.

C. Paoli, C. Voyant, M. Muselli, and M. Nivet, Forecasting of preprocessed daily solar radiation time series using neural networks, Solar Energy, vol.84, issue.12, pp.2146-2160, 2010.
DOI : 10.1016/j.solener.2010.08.011

URL : https://hal.archives-ouvertes.fr/hal-00537178

P. J. Brockwell and R. A. Davis, Time Series, 1991.
DOI : 10.1007/978-3-642-04898-2_595

G. Zhang, Forecasting with artificial neural networks:, International Journal of Forecasting, vol.14, issue.1, pp.35-62, 1998.
DOI : 10.1016/S0169-2070(97)00044-7

G. P. Zhang and M. Qi, Neural network forecasting for seasonal and trend time series, European Journal of Operational Research, vol.160, issue.2, pp.501-514, 2005.
DOI : 10.1016/j.ejor.2003.08.037

M. Qi and G. Zhang, Trend Time Series Modeling and Forecasting With Neural Networks, IEEE Trans

G. Notton, P. Poggi, and C. Cristofari, Predicting hourly solar irradiations on inclined surfaces based on the horizontal measurements: Performances of the association of well-known mathematical models, Energy Conversion and Management, vol.47, issue.13-14, pp.47-1816, 2006.
DOI : 10.1016/j.enconman.2005.10.009

URL : https://hal.archives-ouvertes.fr/hal-00541232

C. Marty and R. Philipona, The clear-sky index to separate clear-sky from cloudy-sky situations in climate research, Geophysical Research Letters, vol.101, issue.2, pp.2649-2652, 2000.
DOI : 10.1029/2000GL011743

P. Ineichen, A broadband simplified version of the Solis clear sky model, Solar Energy, vol.82, issue.8, pp.758-762, 2008.
DOI : 10.1016/j.solener.2008.02.009

R. W. Mueller, K. F. Dagestad, P. Ineichen, M. Schroedter-homscheidt, S. Cros et al., Rethinking satellite-based solar irradiance modelling: The SOLIS clear-sky module, pp.91-160, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00464382

A. Sfetsos and A. H. Coonick, Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques, Solar Energy, vol.68, issue.2, pp.169-178, 2000.
DOI : 10.1016/S0038-092X(99)00064-X

P. Balestrassi, E. Popova, A. Paiva, and J. Marangonlima, Design of experiments on neural network's training for nonlinear time series forecasting, Neurocomputing, vol.72, issue.4-6, pp.72-1160, 2009.
DOI : 10.1016/j.neucom.2008.02.002

M. Benghanem, A. Mellit, and S. Alamri, ANN-based modelling and estimation of daily global solar radiation data: A case study, Energy Conversion and Management, pp.50-1644, 2009.

C. Voyant, M. Muselli, C. Paoli, and M. Nivet, Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation, Energy, 2010.

A. Tsoukias, From decision theory to decision aiding methodology, European Journal of Operational Research, vol.187, issue.1, pp.138-161, 2008.
DOI : 10.1016/j.ejor.2007.02.039

P. Haurant, M. Muselli, and P. Oberti, Solar Atlas Implementation and Multicriteria Context of PV Plant Planning in Corsica Island (France), 24 th European Photovoltaic Solar Energy Conference and Exhibition, pp.21-25, 2009.

P. Haurant, M. Muselli, P. Oberti, B. Pillot, and C. Thibault, Multicriteria Decision Aiding for Selection of Photovoltaic Plants on Farming Fields in Corsica, 25 th European Photovoltaic Solar Energy Conference and Exhibition, pp.5267-5270, 2010.