
HAL Id: hal-00750332
https://hal.science/hal-00750332

Submitted on 10 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lightweight reconfiguration security services for
AXI-based MPSoCs

Pascal Cotret, Guy Gogniat, Jean-Philippe Diguet, Jérémie Crenne

To cite this version:
Pascal Cotret, Guy Gogniat, Jean-Philippe Diguet, Jérémie Crenne. Lightweight reconfig-
uration security services for AXI-based MPSoCs. FPL 2012 (22nd International Confer-
ence on Field Programmable Logic and Applications), Aug 2012, Oslo, Norway. pp.655-658,
�10.1109/FPL.2012.6339233�. �hal-00750332�

https://hal.science/hal-00750332
https://hal.archives-ouvertes.fr


LIGHTWEIGHT RECONFIGURATION SECURITY SERVICES FOR AXI-BASED MPSOCS

Pascal Cotret, Guy Gogniat, Jean-Philippe Diguet

Laboratoire Lab-STICC
Université de Bretagne-Sud

Lorient, France
name.surname@univ-ubs.fr

Jérémie Crenne

Laboratoire LIRMM
Université de Montpellier

Montpellier, France
jeremie.crenne@lirmm.fr

ABSTRACT

Nowadays, security is a key constraint in MPSoC develop-
ment as many critical and secret information can be stored
and manipulated within these systems. Addressing the pro-
tection issue in an efficient way is challenging as information
can leak from many points. However one strategic compo-
nent of a bus-based MPSoC is the communication architec-
ture as all information that an attacker could try to extract
or modify would be visible on the bus. Thus monitoring
and controlling communications allows an efficient protec-
tion of the whole system. Attacks can be detected and dis-
carded before system corruption. In this work, we propose
a lightweight solution to dynamically update hardware fire-
wall enhancements which secure data exchanges in a bus-
based MPSoC. It provides a standalone security solution for
AXI-based embedded systems where no user intervention is
required for security mechanisms update. An FPGA imple-
mentation demonstrates an area overhead of around 11% for
the adaptive version of the hardware firewall compared to the
static one.

1. INTRODUCTION

Embedded systems are facing an increasing number of threats
as attackers’ motivation is raising every day. Our devices con-
tain many sensitive information (passwords, private informa-
tion) that needs to be protected from software and hardware
attacks. Reconfigurable technologies such as FPGAs can be a
good candidate to build trusted devices as they embed proces-
sors, memories and application-specific IPs in a single chip
with moderate development costs. They also offer several
interesting features to build high-performance high-security
systems due to their intrinsic performance and adaptive prop-
erties. When dealing with logic attacks (e.g. targeting the
external memory through code/data corruption) main exis-
ting solutions are based on software countermeasures. How-
ever, relying the system security on software-only solutions
may not be adapted for high constrained embedded systems.
We believe adding some hardware mechanisms strongly in-
creases systems security at a very low cost. Monitoring and
controlling the communication architecture in a bus-based
MPSoC is particularly well adapted to enhance the security
of a system as all data are exposed to its structure. Thus if an
attacker tries to extract, destroy or modify some data through
a logical attack he will have to use the communication archi-
tecture. Therefore, enhancing the communication architec-
ture with protection mechanisms is a crucial point. However,

when building such a solution several key points need to be
addressed: what happens when an attack is detected? How
the system should behave? Is it required to increase the pro-
tection level of the system? In this paper, we address these
questions and propose security update features to provide de-
signers dynamic security levels.
The paper is organized as follows. Section 2 presents related
work. Section 3 summarizes a static solution defined in [1].
Section 4 describes our contribution and Sections 5 and 6 pro-
pose several results and analysis. Section 7 highlights main
perspectives.

2. RELATED WORK

In the literature, several studies have addressed the security
of embedded systems [2]. At the communication level, these
systems can be protected either by software or hardware me-
chanisms. Software solutions generally do not require addi-
tional hardware but offer low efficiency in terms of latency
which can be critical for applications where reactivity is es-
sential to fend off attacks. From an hardware point of view,
several solutions have been proposed depending on the com-
munication architecture technology: network-on-chip (NoC)
or bus. Regarding NoC-based architectures, Evain et al. [3]
propose a solution where security controls are done in each
network interface in a distributed manner. A management
unit gathers all information from network interfaces accor-
ding to a security policy.
Fiorin et al. [4][5][6] propose an alternative to this work
by adding probes within the interface structure to refine the
protection mechanisms. These probes can block incoming
traffic according to parameters stored in an embedded me-
mory. A security manager collects information from indi-
vidual security-enhanced interfaces to detect any collision or
error in the traffic. They also provide a adaptive implementa-
tion by adding a shadow memory (which behaves like a buffer
mechanism) to avoid a temporary state of the security en-
hancement during its reconfiguration.
For bus-based communication architectures, the work of Co-
burn et al. [7] which is similar to Fiorin’s work (without up-
dates) is based on SEI (Security Enforcement Interface) im-
plemented in each interface between an IP and the bus. Each
SEI computes information from the data handled by the IP
and sends it to a global manager (SEM, Security Enforce-
ment Module) which aims to check SEI data.
This work focuses on an FPGA implementation of a adap-

tive version of the work presented in [1]. It is inspired by

978-1-4673-2256-0/12/$31.00 c©2012 IEEE 655



SECA DPU This work
[7] [5]

Communication AHB/APB NoC AXI-4
standard

Adaptive ? No Yes Yes

Threat Wide range of Mainly buffer Wide range of
model soft. attacks overflow soft. attacks

Table 1. Comparison with existing works

Fiorin et al. approach [6] with an implementation specific
to the AXI bus standard with a low area/latency trade-off.
Moreover, several scenarios and a case study are discussed to
demonstrate all the features provided in this work.
The key contributions of this work include:

• Demonstration of adaptive firewall enhancements.

• Design of a set of security policies.

• Analysis of attack scenarios and case study implemen-
tation.

3. STATIC SECURITY ENHANCEMENTS WITHIN A
BUS-BASED MPSOC SYSTEM

This work is based on static security enhancements proposed
in [1] and [8]. It provides a low-latency solution based on
hardware firewalls embedded in each IP bus interface provi-
ding protection against read/write access and format disrup-
tions (Local Firewalls). The firewall connected to the exter-
nal memory controller (Cryptographic Firewall) adds flexible
cryptographic services to protect the memory with confiden-
tiality and/or authentication (Figure 1).

System bus

Local
Firewall

Proc.

Crypto
Firewall

 

   

 

External 
Memory

FPGA (trusted) untrusted

Mem.
ctrl

 

 

Firewall
Interface

Security Builder Crypto 
ModuleBRAM_addr

Corr.
Table

Checking
Module

 

 

 

AXI4_addr

AXI4_format

AXI4_rnw

check_out

 

AXI-4

Block 
RAM

Security Policies

AXI
system 

bus
IP or

DDR Memory

UntrustedTrusted

 
 

Specific to
Cryptographic 
Firewall

AXI-4

AXI4_data

Local
Firewall

Proc.

Local
Firewall

Proc.

 

Local
Firewall

IP

Local
Firewall

IP

Local
Firewall

IP

Fig. 1. Firewall structure within a bus-based MPSoC

When a data comes from the AXI system bus, it is stored in

the Firewall Interface while other information (such as ad-
dress, format and read/write modes) are sent to the Secu-
rity Builder. The Correspondence Table indicates the loca-
tion of the security policy associated with the bus address:
security policies contain cryptographic information (such as
keys), read/write access and format rules for a given address
space. Then, these parameters are sent to the Checking Mo-
dule which compares the system bus parameters with the va-
lues extracted from the security policy; at this step, if cryp-
tographic operations are needed, the Crypto Module man-
ages the encryption/decryption and authentication tasks with
a dedicated BRAM for cryptographic information storage (this
is not the main point of this work). Once Checking Module
completes its operations, a check out signal is sent to the Fi-
rewall Interface to confirm or not the data validity (security
policies are verified or not). Finally, Firewall Interface pro-
vides the final data and manages synchronization tasks in or-
der to fit with the output bus interface.
Using this method, the system is protected against logical at-
tacks aiming to tamper the external memory and the external
bus without encrypting the whole memory which has a strong
impact in terms of latency [1]. Unfortunately, this is a static
solution where security policies cannot be changed. Secu-
rity services update could be done with partial reconfigura-
tion of firewalls or a complete reconfiguration of the FPGA.
However these solutions would negatively impact the reac-
tion time of the system in case of an attack and potentially
compromise the security. This work focuses on the imple-
mentation of a solution based on Block RAM real-time mo-
difications without downloading any new bitstream.

4. SECURITY SERVICES UPDATE
REQUIREMENTS

When an attack event is detected, BRAM contents must be
updated with new security policies in order to keep a safe
execution environment for the target MPSoC. This work pro-
poses an architecture for this purpose as detailed in Figure
2. All the components are connected through an AXI-Lite
bus (also known as Security bus) and managed by a trust-
worthy processor (program stored in a trusted ROM) which
stores important events in a log file readable by the processor
running the main application (timestamps, attack events. . . ).
Each firewall has a custom bus connection with the monito-
ring IP. While log timer and monitoring IP are used for de-
tecting and reporting an attack, AXI-Lite BRAM controller
connections are used for security policies update.
The first task accomplished in the architecture presented in
Figure 2 is the monitoring of attack events by a dedicated
IP in the left hand side of the figure. Once an attack is de-
tected, register values are update and an interruption routine
is launched for security update on the trustworthy processor
depending on the main register value (representative of all at-
tack events). On an attack event, the system security must be
updated in order to avoid malicious data leakage. One very
important issue during firewalls update is the data availabi-
lity while switching between two security policies. For this
purpose, a mechanism based on the handshake property of
the AXI protocol is implemented in each Firewall Interface
to block outcoming traffic while updating security rules asso-
ciated with the current firewall.

656



Firewall

r1

Security bus

Trustworthy
Processor

Log
timer

ri

rn

rm
Monitoring 

IP IP /
Processor

BRAM
ctrl #1

Data

SP BRAM

System bus

Custom 
bus Address

Firewall

IP /
Processor

BRAM
ctrl #1

SP BRAM

Attack
flags

Attack
flags

Monitoring path

Security update path

recfgEn
bit

recfgEn
bit

Trusted 
ROM

Fig. 2. Architecture of the security/monitoring area

4.1. Hierarchy and evolution of protection modes

Two classes of components are defined based on their ability
to manipulate confidential information. Critical IPs (for in-
stance, ciphering algorithms implementation) must not reveal
any information when an attack is detected. Extracting keys
and/or signatures would be a major threat for the system. In
that case as soon as an attack is detected critical IPs are iso-
lated from the system (known as ”error mode” or quarantine).
For non-critical IPs, an intermediate protection layer is autho-
rized where reading accesses are still allowed but no writing
ones. This feature aims for example to allow a backup of data
before IP isolation.
In case of an attack event (detected through interruption rou-
tines launched by the monitoring IP), the trustworthy proces-
sor saves the current security policy of the attacked firewall
in a dedicated on-chip memory and applies a higher security
level according to the two schemes previously defined. For
instance, if the current protection level of an IP is a ”read-
only mode”, the next one could be an ”error mode”, equiva-
lent to a quarantine feature.
In the most critical case (i.e. an attack event is detected even
if the IP being monitored is under the ”error mode” protec-
tion configuration), it is assumed that a reboot of the complete
system is required. Therefore, the initial bitstream and secu-
rity policies configuration are reloaded. The system restarts
from an initial state.

4.2. Switching between the different modes

When an IP firewall must be updated, Security Policies pa-
rameters stored in Block RAMs have to be modified (assu-
ming that the whole IP address space is covered by one or
more SP, the only component to be updated is the BRAM
containing SP values). This work considers only the update
of read/write rights (fields 1 in Figure 3). Local Firewall SP
is stored on a single 32-bit block while Cryptographic Fire-
wall read/write information is stored in the first 32-bit word

of the Cryptographic SP. Writing a Security Policy (stored

LF1

TAG address4 5 Key(127 downto 0)

LF Security
Policy

Block RAM

Detailed contents

32 
bits

address=0

address=1

address=n

[…]

LF3

Key(127 downto 96)
31 0

Key(95 downto 64)
31 0

Key(63 downto 32)
31 0

Key(31 downto 0)
31 0

TAG address
31 0

[…]
31 0

31 0

1: Read/Write access (2 bits)
2: Allowed format (2 bits)

4: Confidentiality mode (1 bit)
5: Integrity mode (1 bit)

Local Firewall SP

Cryptographic Firewall SP

CF1

CF1

CF1

CF1

CF1

CF1

[…]

CF Security
Policy

Block RAM

LF2
address=2

@0

@n

@n+6
[…]

zero-pad1 2 3
31 0

zero-pad4 5

1 2 3

3: Error mode enable (1 bit)

3

3 Parameters to be reconfigured

Fig. 3. Security Policy memory layout for Local and Crypto-
graphic Firewalls

in a 32-bit word) in a BRAM takes one clock cycle. There-
fore, the update of N Security Policies in one firewall is done
in N clock cycles. This time has no real impact on firewall
data analysis because data is blocked as soon as an attack is
detected (previously described in this work).

5. IMPLEMENTATIONS RESULTS

Implementations were done using Virtex-6 Xilinx FPGA tech-
nology (model xc6vlx240t1156-1). This device has around
240,000 logic cells and 15 Mb of Block RAM. First, diffe-
rent implementation options for firewalls are studied.
Then, this work focuses on generic scenarios that serve as a
basis for further case study analysis.

5.1. Area

In Table 2, two implementation options are considered: static
Local Firewall (based on results of [1]) and the adaptive ver-
sion.

Slices Regs LUTs BRAMs
Static solution 138 123 293 1

(Local Firewall)
Adapt. Run-time 6 0 5 0
version Error mode 17 0 18 0

additions Misc. 5 13 15 0
Overhead +20.29% +10.57% +12.97% +0%

Table 2. Standalone firewalls results

The adaptive version takes into account two features presented
in this work: the run-time update and the error mode option.
The area overhead due to these enhancements is low (around
11%). The update is based on simple logic elements and the
use of bus properties, there is no need to store data in a buffer
mechanism while updating security policies of a firewall.

657



5.2. Latency

Update latency of security policies depends on the number of
policies to be updated. The most critical step in this process
is the computation of the new security policy configuration
done by the trustworthy processor. For a basic implementa-
tion of this process, the new configuration is computed in 148
clock cycles.

When more than one attack has to be reported (N firewalls
detect an attack), they are first blocked according to their or-
der in the main register of the Monitoring IP. The trustworthy
processor computes all the up-to-date security policies. Fi-
nally, each firewall is released as soon as its update is com-
pleted. Firewalls being updated are not affected because they
are not able to transmit any information (handshake signals
are controlled by the update logic). This method allows any
updated firewall to be used by the main application of the
MPSoC system.
The update latency depends on the firewall location in the
update queue: the first firewall will be modified in N cycles,
while the firewall placed in location #k in the queue is up-
dated in k(N) cycles because it must wait for the first k − 1
firewalls to be updated.

6. CASE STUDY

The MPSoC case study considers 2 Microblaze processors,
a 64KB shared Block RAM, an image processing IP and an
external memory. Each processor has code and data sections
in an external memory. This architecture is set with mixed
cryptographic options and access rights to get all the options
(integrity only, read/write, confidentiality and integrity. . . ).
4 Local Firewalls and 1 Cryptographic Firewall are needed
for the protection of this case study. Three options are con-
sidered: the MPSoC without firewalls, the static firewall-
enhanced MPSoC (based on the results of [1]) and the adap-
tive version with firewalls. Area results are summarized in
Table 3.

Slices Regs LUTs BRAMs
Unprot. 5,446 7,195 8,354 32
solution

Firewalls 7,302 9,848 12,215 51
w/o recfg +34.08% +36.87% +46.22% +37.25%
Adaptive 7,442 9,913 12,405 51

protection +36.65% +37.78% +48.49% +37.25%

Table 3. Table of standalone results

The firewall-enhanced case study has a quite high overhead:
this is mainly due to the cryptographic module embedded in
the firewall attached to the external memory controller. The
logic added for update purposes implies a quite high area
overhead of around 40% compared to the static firewall im-
plementation: this is mainly due to the trustworthy processor,
the monitoring IP and the security AXI-Lite bus.

7. CONCLUSION AND PERSPECTIVES

In this work, a bus-based MPSoC with adaptive security en-
hancements (also known as firewalls) is presented. These

firewalls protect memories and memory-mapped IPs accor-
ding to user-defined security policies. By using communica-
tion bus properties, it allows developers to get run-time up-
dates with a low area overhead compared to a static solution;
furthermore, when security updates are required, there is no
invalid data leakage. Mechanisms defined in this work do not
need any user event as protection levels are all defined in a
dedicated processor.
This work corresponds to a trade-off between SECA [7] and
DPU [5] solutions with an implementation on the AXI bus
standard implemented in Xilinx tools suite. This work pro-
poses an update feature which is not present in the other
bus-based solution. In terms of area overhead over a ba-
sic softcore processor, adaptive firewalls have a lower im-
pact (around 11%) than DPU solution (25%, it is based on
a shadow memory acting as a buffer-like mechanism); SECA
solution has the lowest area overhead (6.20%, mainly due to
the centralized security manager) but provides a static solu-
tion.

Acknowledgment
The work presented in this paper was realized in the frame of
the SecReSoC project number ANR-09-SEGI-013, supported
by a grant of the French National Research Agency (ANR).

8. REFERENCES

[1] P. Cotret, G. Gogniat, J.-P. Diguet, L. Gaspar, and G. Duc, “Dis-
tributed security for communications and memories in a multi-
processor architecture,” in Proc. IEEE 18th Reconfigurable Ar-
chitectures Workshop, May 2011, pp. 326–329.

[2] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Secu-
rity in embedded systems: Design challenges,” ACM Transac-
tions on Embedded Computing Systems, vol. 3, no. 3, pp. 461–
491, Aug. 2004.

[3] J.-P. Diguet, S. Evain, R. Vaslin, G. Gogniat, and E. Juin, “Noc-
centric security of reconfigurable soc,” in Proc. ACM/IEEE 1st
Int. Symposium on Network-on-Chips, May 2007, pp. 223–232.

[4] L. Fiorin, G. Palermo, S. Lukovic, and C. Silvano, “A data pro-
tection unit for noc-based architectures,” in Proc. IEEE/ACM
5th IEEE/ACM Int. Conference on Hardware/Software Code-
sign and System Synthesis, Sept. 2007, pp. 167–172.

[5] L. Fiorin, S. Lukovic, and G. Palermo, “Implementation of a
reconfigurable data protection module for noc-based mpsocs,”
in Proc. IEEE 18th IEEE Int. Symposium on Parallel and Dis-
tributed Processing, Apr. 2008, pp. 1–8.

[6] L. Fiorin, G. Palermo, and C. Silvano, “A monitoring system
for nocs,” in Proc. 3rd Int. Workshop on Network on Chip Ar-
chitectures, Dec. 2010, pp. 25–30.

[7] J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar, “Seca:
security-enhanced communication architecture,” in Proc. 2005
Int. Conference on Compilers, Architectures and Synthesis for
Embedded Systems, Sept. 2005, pp. 78–89.

[8] P. Cotret, J. Crenne, G. Gogniat, and J.-P. Diguet, “Bus-based
mpsoc security through communication protection: A latency-
efficient alternative,” in Proc. IEEE 20th Annual Int. IEEE Sym-
posium on Field-Programmable Custom Computing Machines,
Apr. 2012, pp. 200–207.

658


