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Abstract. For a given transitive binary relation e on a set E, the transitive
closures of open (i.e., co-transitive in e) sets, called the regular closed sub-
sets, form an ortholattice Reg(e), the extended permutohedron on e. This
construction, which contains the poset Clop(e) of all clopen sets, is a common
generalization of known notions such as the generalized permutohedron on a
partially ordered set on the one hand, and the bipartition lattice on a set on
the other hand. We obtain a precise description of the completely join-irre-
ducible (resp., meet-irreducible) elements of Reg(e) and the arrow relations
between them. In particular, we prove that
— Reg(e) is the Dedekind-MacNeille completion of the poset Clop(e);
— Every open subset of e is a set-theoretical union of completely join-irre-

ducible clopen subsets of e;
— Clop(e) is a lattice iff every regular closed subset of e is clopen, iff e

contains no “square” configuration, iff Reg(e) = Clop(e);
— If e is finite, then Reg(e) is pseudocomplemented iff it is semidistributive,

iff it is a bounded homomorphic image of a free lattice, iff e is a disjoint
sum of antisymmetric transitive relations and two-element full relations.

We illustrate our results by proving that, for n ≥ 3, the congruence lattice of
the lattice Bip(n) of all bipartitions of an n-element set is obtained by adding
a new top element to a Boolean lattice with n ·2n−1 atoms. We also determine
the factors of the minimal subdirect decomposition of Bip(n), and we prove
that if n ≥ 3, then none of them embeds into Bip(n) as a sublattice.

1. Introduction

The lattice P(n) of all permutations of an n-element chain, also known as the
permutohedron, even if widely known and studied in combinatorics, is a relatively
young object of study from a pure lattice theoretical perspective. Its elements, the
permutations of n elements, are endowed with the weak Bruhat order; this order
turns out to be a lattice.

There are many possible generalization of this order, arising from the theory
of Coxeter groups (Björner [4]), from graph and order theory (Pouzet et al. [26],
Hetyei and Krattenthaler [20]), from language theory (Flath [12], Bennett and
Birkhoff [2]).

In the present paper, we shall focus on one of the most noteworthy features—at
least from the lattice-theoretical viewpoint—of one of the equivalent constructions
of the permutohedron, namely that it can be realized as the lattice of all clopen
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(i.e., both closed and open) subsets of a certain strict ordering relation (viewed as
a set of ordered pairs), endowed with the operation of transitive closure.

It turns out that most of the theory can be done for the transitive closure oper-
ator on the pairs of a given transitive binary relation e. While, unlike the situation
for ordinary permutohedra, the poset Clop(e) of all clopen subsets of e may not be
a lattice, it is contained in the larger lattice Reg(e) of all so-called regular closed

subsets of e, which we shall call the extended permutohedron on e (cf. Section 3).
As Reg(e) is endowed with a natural orthocomplementation x 7→ x⊥ (cf. Def-
inition 3.2), it becomes, in fact, an ortholattice. The natural question, whether
Clop(e) is a lattice, finds a natural answer in Theorem 4.3, where we prove that
this is equivalent to the preordering associated with e be square-free, thus extending
(with completely different proofs) known results for both the case of strict orderings
(Pouzet et al. [26]) and the case of full relations (Hetyei and Krattenthaler [20]).

However, while most earlier references deal with clopen subsets, our present pa-
per focuses on the extended permutohedron Reg(e). One of our most noteworthy
results is the characterization, obtained in Theorem 7.8, of all finite transitive re-
lations e such that Reg(e) is semidistributive. It turns out that this condition is
equivalent to Reg(e) being pseudocomplemented, also to Reg(e) being a bounded

homomorphic image of a free lattice, and can also be expressed in terms of for-
bidden sub-configurations of e. This result is achieved via a precise description,
obtained in Section 5, of all completely join-irreducible elements of Reg(e). This
is a key technical point of the present paper. This description is further extended
to a description of the join-dependency relation (cf. Section 6), thus essentially
completing the list of tools for proving one direction of Theorem 7.8. The other
directions are achieved via ad hoc constructions, such as the one of Proposition 3.5.

Another noteworthy consequence of our description of completely join-irreduc-
ible elements of the lattice Reg(e) is the spatiality of that lattice: every element
is a join of completely join-irreducible elements. . . and even more can be said (cf.
Lemma 5.5 and Theorem 5.8). As a consequence, Reg(e) is the Dedekind-MacNeille

completion of Clop(e) (cf. Corollary 5.6).
We proved in our earlier paper Santocanale and Wehrung [31] that the factors

of the minimal subdirect decomposition of the permutohedron P(n) are exactly
Reading’s Cambrian lattices of type A, denoted in [31] by AU (n). As a further
application of our methods, we determine here the minimal subdirect decomposition
of the lattice Bip(n) of all bipartitions (i.e., those transitive binary relations with
transitive complement) of an n-element set, thus solving the “equation”

Tamari lattice

permutohedron
=

x

bipartition lattice

and in fact, more generally,

Cambrian lattice of type A

permutohedron
=

x

bipartition lattice
. (1.1)

The fractional “equation” (1.1) is a very informal notation suggesting that x stands
to bipartition lattices the same way Cambrian lattices of type A stand to permu-
tohedra. The lattices x solving the “equation” (1.1), denoted here in the form
S(n, k) (cf. Remark 9.8), offer features quite different from those of the Cambrian
lattices; in particular, their cardinality does not depend on n alone (cf. Section 11)
and they are never sublattices of the corresponding bipartition lattice Bip(n) for
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n ≥ 3 (cf. Section 10). In fact, if n ≥ 3, then every nonconstant lattice endomor-
phism of Bip(n) is an automorphism, and the automorphism group of Bip(n) is
isomorphic to Sn × S2 (where Sn denotes the symmetric group on n elements),
see Theorem 10.1.

We also use our tools to determine the congruence lattice of every finite bipar-
tition lattice (cf. Corollary 8.8), which, for a base set with at least three elements,
turns out to be Boolean with a top element added.

2. Basic concepts and notation

We refer the reader to Grätzer [17] for basic facts, notation, and terminology
about lattice theory.

We shall denote by 0 (resp., 1) the least (resp., largest) element of a partially
ordered set (from now on poset) (P,≤), if they exist. A lower cover of an element
p ∈ P is an element x ∈ P such that x < p and there is no y such that x < y < p.
If p has a unique lower cover, then we shall denote this element by p∗. Upper covers,
and the notation p∗, are defined dually.

A nonzero element p in a lattice L is join-irreducible if p = x ∨ y implies that
p ∈ {x, y}, for all x, y ∈ L. We say that p is completely join-irreducible if it has
a unique lower cover p∗, and every x < p satisfies x ≤ p∗. Completely meet-irre-

ducible elements are defined dually. We denote by JiL (resp., MiL) the set of all
join-irreducible (resp., meet-irreducible) elements of L.

Every completely join-irreducible element is join-irreducible, and in a finite lat-
tice, the two concepts are equivalent. A lattice L is spatial if every element of L is
a (possibly infinite) join of completely join-irreducible elements. Equivalently, for
all a, b ∈ L, a � b implies that there exists a completely join-irreducible element p
of L such that p ≤ a and p � b.

For a completely join-irreducible element p and a completely meet-irreducible
element u of L, let p ր u hold if p ≤ u∗ and p � u. Symmetrically, let u ց p
hold if p∗ ≤ u and p � u. The join-dependency relation D is defined on completely
join-irreducible elements by

p D q ⇐⇒
def.

(
p 6= q and (∃x)(p ≤ q ∨ x and p � q∗ ∨ x)

)
.

It is well-known (cf. Freese, Ježek, and Nation [16, Lemma 11.10]) that the join-
dependency relation D on a finite lattice L can be conveniently expressed in terms
of the arrow relations ր and ց between JiL and MiL.

Lemma 2.1. Let p, q be distinct join-irreducible elements in a finite lattice L.
Then p DL q iff there exists u ∈ MiL such that pր uց q.

We shall denote by Dn (resp., D∗) the nth relational power (resp., the reflexive
and transitive closure) of the relation D, so, for example, p D2 q iff there exists
r ∈ JiL such that p D r and r D q.

It is well-known that the congruence lattice ConL of a finite lattice L can be
conveniently described via the relation D on L, as follows (cf. Freese, Ježek, and
Nation [16, § II.3]). Denote by con(p) the least congruence of L containing (p∗, p)
as an element, for each p ∈ JiL. Then con(p) ⊆ con(q) iff pD∗ q, for all p, q ∈ JiL.
Furthermore, ConL is a distributive lattice and its join-irreducible elements are
exactly the con(p), for p ∈ JiL. A subset S ⊆ JiL is a D-upper subset if p ∈ S and
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p D q implies that q ∈ S, for all p, q ∈ JiL. Set S ↓ x = {s ∈ S | s ≤ x}, for each
x ∈ L.

Lemma 2.2. The binary relation θS = {(x, y) ∈ L × L | S ↓ x = S ↓ y} is a

congruence of L, for every finite lattice L and every D-upper subset S of JiL, and
the assignment x 7→ x/θS defines an isomorphism from the (∨, 0)-subsemilattice S∨

of L generated by S onto the quotient lattice L/θS. Furthermore, the assignment

S 7→ θS defines a dual isomorphism from the lattice of all D-upper subsets of JiL
onto ConL. The inverse of that isomorphism is given by

θ 7→ {p ∈ JiL | (p, p∗) /∈ θ} , for each θ ∈ ConL .

For each p ∈ JiL, denote by Ψ(p) the largest congruence θ of L such that p 6≡ p∗
(mod θ). Then Ψ(p) = θSp

where we set Sp = {q ∈ JiL | p D∗ q}. Equivalently,
Ψ(p) is generated by all pairs (q, q∗) such that p D∗ q does not hold. Say that
p ∈ JiL is D∗-minimal if p D∗ q implies q D∗ p, for each q ∈ JiL. The set ∆(L) of
all D∗-minimal join-irreducible elements of L defines, via Ψ, a subdirect product
decomposition of L,

L →֒
∏

p∈∆(L)

(
L/Ψ(p)

)
, x 7→

(
x/Ψ(p) | p ∈ ∆(L)

)
, (2.1)

that we shall call the minimal subdirect product decomposition of L.
A lattice L is join-semidistributive if x∨z = y∨z implies that x∨z = (x∧y)∨z, for

all x, y, z ∈ L. Meet-semidistributivity is defined dually. A lattice is semidistributive

if it is both join- and meet-semidistributive.
A lattice L is a bounded homomorphic image of a free lattice if there are a free

lattice F and a surjective lattice homomorphism f : F ։ L such that f−1{x} has
both a least and a largest element, for each x ∈ L. These lattices, introduced by
McKenzie [24], form a quite important class within the theory of lattice varieties,
and are often called “bounded lattices” (not to be confused with lattices with both
a least and a largest element). A finite lattice is bounded iff the join-dependency
relations on L and on its dual lattice are both cycle-free (cf. Freese, Ježek, and
Nation [16, Corollary 2.39]). Every bounded lattice is semidistributive (cf. Freese,
Ježek, and Nation [16, Theorem 2.20]), but the converse fails, even for finite lattices
(cf. Freese, Ježek, and Nation [16, Figure 5.5]).

An orthocomplementation on a poset P with least and largest element is a map
x 7→ x⊥ of P to itself such that

(O1) x ≤ y implies that y⊥ ≤ x⊥,
(O2) x⊥⊥ = x,
(O3) x ∧ x⊥ = 0 (in view of (O1) and (O2), this is equivalent to x ∨ x⊥ = 1),

for all x, y ∈ P . Elements x, y ∈ P are orthogonal if x ≤ y⊥, equivalently y ≤ x⊥.
An orthocomplemented poset is a poset with an orthocomplementation. Although

an orthocomplemented poset P always has a least element 0, a largest element 1,
and the elements x ∧ x⊥ and x ∨ x⊥ exist for all x ∈ P (with respective values 0
and 1), the poset P may not be a lattice.

Of course, any orthocomplementation of P is a dual automorphism of (P,≤). In
particular, if P is a lattice, then de Morgan’s rules

(x ∨ y)
⊥
= x⊥ ∧ y⊥ , (x ∧ y)

⊥
= x⊥ ∨ y⊥
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hold for all x, y ∈ P . An ortholattice is a lattice endowed with an orthocomplemen-
tation.

A lattice L with a least element 0 is pseudocomplemented if {y ∈ L | x ∧ y = 0}
has a greatest element, for each x ∈ P .

We shall denote by PowX the powerset of a set X , and we shall set Pow∗X =
(PowX)\{∅, X}. We shall also set [n] = {1, 2, . . . , n}, for every positive integer n.

3. Regular closed subsets of a transitive relation

Throughout the paper, by “relation” (on a possibly infinite set) we shall always
mean a binary relation. For a relation e on a set E, we will often write

x ⊳e y ⇐⇒
def.

(x, y) ∈ e ,

x Ee y ⇐⇒
def.

(either1 x ⊳e y or x = y) ,

x ≡e y ⇐⇒
def.

(x Ee y and y Ee x) ,

for all x, y ∈ E. We say that e is a strict ordering if it is irreflexive (i.e., (x, x) /∈ e

for every x) and transitive. In the general case, we set

[a, b]
e
= {x | a Ee x and x Ee b} ,

[a, b[
e
= {x | a Ee x and x ⊳e b} ,

]a, b]
e
= {x | a ⊳e x and x Ee b} ,

[a]
e
= [a, a]

e
,

for all a, b ∈ E. As a ⊳e a may occur, a may belong to ]a, b]
e
.

Denote by cl(a) the transitive closure of any relation a. We say that a is closed if
it is transitive. We say that a is bipartite if there are no x, y, z such that (x, y) ∈ a

and (y, z) ∈ a. It is trivial that every bipartite relation is closed.
Let e be a transitive relation on a set E. A subset a ⊆ e is open (relatively to e)

if e \ a is closed; equivalently,
(
x ⊳e y ⊳e z and (x, z) ∈ a

)
⇒

(
either (x, y) ∈ a or (y, z) ∈ a

)
, for all x, y, z ∈ E .

The largest open subset of a ⊆ e, called the interior of a and denoted by int(a),
is exactly the set of all pairs (x, y) ∈ e such that for every subdivision x = z0 ⊳e

z1 ⊳e · · · ⊳e zn = y, with n > 0, there exists i < n such that (zi, zi+1) ∈ a.
A subset a ⊆ e is clopen if a = cl(a) = int(a). We denote by Clop(e) the poset

of all clopen subsets of e. A subset a ⊆ e is regular closed (resp., regular open)
if a = cl int(a) (resp., a = int cl(a)). We denote by Reg(e) (resp., Regop(e)) the
poset of all regular closed (resp., regular open) subsets under set inclusion.

As a set x is open iff its complement xc = e\x is closed (by definition), similarly
a set x is closed (regular closed, regular open, clopen, respectively) iff xc is open
(regular open, regular closed, clopen, respectively).

The terminology “open”, “closed”, “clopen”, widely spread among lattice theo-
rists, originates from topology, and the corresponding concepts bear some similarity
with the topological ones. For example, any union of open sets is open, and any
intersection of closed sets is closed. Nevertheless, an important difference between
the present context and the topological one is that the union of finitely many

1Here and elsewhere in the paper, “either A or B” will stand for inclusive disjunction of A
and B, see for example Barwise and Etchenmendy [1, page 75].
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closed sets may not be closed. This means that the closure operator cl (see, for
example, Birkhoff [3, § V.1]) is not necessarily topological, that is, one may have
cl(x ∪ y) 6= cl(x) ∪ cl(y) with x,y ⊆ e.

The following lemma gathers a few basic facts about the concepts defined above.

Lemma 3.1. The following statements hold, for any transitive binary relation e

(on a possibly infinite set):

(i) The operators cl ◦ int and int ◦ cl are both idempotent.

(ii) A subset x of e is regular closed iff x = cl(u) for some open set u.

(iii) The poset Reg(e) is a complete lattice, with meet and join given by
∨

i∈I
ai = cl

(⋃
i∈I

ai

)
,

∧
i∈I

ai = cl int
(⋂

i∈I
ai

)
,

for any family (ai | i ∈ I) of regular closed sets.

Proof. (i). Observe that int ≤ id ≤ cl, that is, int(x) ⊆ x ⊆ cl(x) for every x ⊆ e.
Since the operators cl and int are both order-preserving and idempotent, we get

(cl ◦ int)2 = cl ◦ int ◦ cl ◦ int ≤ cl ◦ id ◦ cl ◦ int = cl ◦ int ,

(cl ◦ int)2 = cl ◦ int ◦ cl ◦ int ≥ cl ◦ int ◦ id ◦ int = cl ◦ int ,

hence (cl ◦ int)2 = cl ◦ int. Likewise, (int ◦ cl)2 = int ◦ cl.
(ii). If x = cl(u) with u open, then, by (i), x = (cl ◦ int)(u) = (cl ◦ int)2(u) =

(cl ◦ int)(x) is regular closed. Conversely, if x is regular closed, then x = cl(u) for
the open set u = int(x).

(iii). The open set u =
⋃

i∈I int(ai) is contained in a =
⋃

i∈I ai. Furthermore,
ai = cl(int(ai)) ⊆ cl(u) for each i, thus a ⊆ cl(u), whence cl(a) = cl(u) is regular
closed. It follows easily that cl(a) is the least upper bound of {ai | i ∈ I} in Reg(e).

Setting b =
⋂

i∈I ai, it follows from (i) that cl int(b) is regular closed. It follows
easily that this set is the greatest lower bound of {ai | i ∈ I} in Reg(e). �

The complement of a regular closed set may not be closed. Nevertheless, we
shall now see that there is an obvious “complementation-like” map from the regular
closed sets to the regular closed sets.

Definition 3.2. We define the orthogonal of x as x⊥ = cl(e \ x), for any x ⊆ e.

Lemma 3.3.

(i) x⊥ is regular closed, for any closed x ⊆ e.

(ii) The assignment ⊥ : x 7→ x⊥ defines an orthocomplementation of Reg(e).

Proof. (i) follows immediately from Lemma 3.1(ii).
(ii) follows from the equations int(x) = e \ cl(e \ x) = e \ x⊥, together with the

idempotence of the operator cl ◦ int (cf. Lemma 3.1(i)). �

Corollary 3.4. The lattices Reg(e) and Regop(e) are pairwise isomorphic, and also

self-dual, for any transitive relation e. The isomorphisms are given by Reg(e) →
Regop(e), x 7→ int cl(x) and Regop(e) → Reg(e), x 7→ cl int(x).

We shall call Clop(e) the permutohedron on e and Reg(e) the extended permu-

tohedron on e. For example, if e is the strict ordering associated to a poset (E,≤),
then Clop(e) is the poset denoted by N(E) in Pouzet et al. [26]. On the other
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hand, if e = [n]× [n] for a positive integer n, then Clop(e) is the poset of all bipar-
titions of [n] introduced in Foata and Zeilberger [13] and Han [19], see also Hetyei
and Krattenthaler [20] where this poset is denoted by Bip(n).

While the lattice Reg(e) is always orthocomplemented (cf. Lemma 3.3), the
following result shows that Reg(e) is not always pseudocomplemented.

Proposition 3.5. Let e be a transitive relation on a (possibly infinite) set E with

pairwise distinct elements a0, a1, b ∈ E such that a0 ≡e a1 and either b ⊳e a0 or

a0 ⊳e b. Then there are clopen subsets a0, a1, c of e such that a0∧c = a1∧c = ∅
while ∅ 6= c ⊆ a0 ∨ a1. In particular, the lattice Reg(e) is neither meet-semidis-

tributive, nor pseudocomplemented.

Proof. We show the proof in the case where a0 ⊳e b. By applying the result to
eop = {(x, y) | (y, x) ∈ e}, the result for the case b ⊳e a0 will follow. We set
I = [a0, b]e = [a1, b]e and

ai = {ai} × (I \ {ai}) (for each i ∈ {0, 1}) ,

c = {a0, a1} × (I \ {a0, a1}) .

It is straightforward to verify that a0, a1, c are all clopen subsets of e. Furthermore,
(a0, b) ∈ c thus c 6= ∅, and c ⊆ a0 ∪ a1 ⊆ a0 ∨ a1.

Now let (a0, x) be an element of a0 ∩ c = {a0} × (I \ {a0, a1}). Observing
that a0 ⊳e a1 ⊳e x while (a0, a1) /∈ a0 ∩ c and (a1, x) /∈ a0 ∩ c, we obtain that
(a0, x) /∈ int

(
a0 ∩ c

)
; whence a0 ∧ c = ∅. Likewise, a1 ∧ c = ∅. �

4. Lattices of clopen subsets of square-free transitive relations

Definition 4.1. A transitive relation e is square-free if for all (a, b) ∈ e, any two
elements of [a, b]

e
are comparable with respect to Ee. That is,

(∀a, b, x, y)
((
a Ee x and a Ee y and x Ee b and y Ee b

)

=⇒ (either x Ee y or y Ee x)
)
.

For the particular case of the natural strict ordering 1 < 2 < · · · < n, the
following result originates in Guilbaud and Rosenstiehl [18, § VI.A]. The case of
the full relation [n] × [n] is covered by the proof of Hetyei and Krattenthaler [20,
Proposition 4.2].

Lemma 4.2. Let e be a square-free transitive relation. Then the set int(a) is

closed, for each closed a ⊆ e. Dually, the set cl(a) is open, for each open a ⊆ e.

Proof. It suffices to prove the first statement. Let x ⊳e y ⊳e z with (x, y) ∈ int(a)
and (y, z) ∈ int(a), we must prove that (x, z) ∈ int(a). Consider a subdivision
x = s0 ⊳e s1 ⊳e · · · ⊳e sn = z and suppose that

(si, si+1) /∈ a for each i < n (4.1)

(we say that the subdivision fails witnessing (x, z) ∈ int(a)). Denote by l the
largest integer such that l < n and sl Ee y. If sl = y, then the subdivision
x = s0 ⊳e s1 ⊳e · · · ⊳e sl = y fails witnessing (x, y) ∈ int(a), a contradiction; so
sl 6= y and sl ⊳e y. From x = s0 ⊳e s1 ⊳e · · · ⊳e sl ⊳e y, (x, y) ∈ int(a), and (4.1)
it follows that

(sl, y) ∈ a . (4.2)
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Since e is square-free, either sl+1 Ee y or y ⊳e sl+1. In the first case, it follows
from the definition of l that l = n − 1, thus, using (4.2) together with (y, z) ∈ a,
we get sn−1 = sl ⊳a y ⊳a z = sn, whence (sn−1, sn) ∈ a, which contradicts (4.1).

Hence y ⊳e sl+1. From y ⊳e sl+1 ⊳e sl+2 ⊳e · · · ⊳e sn = z, (y, z) ∈ int(a),
and (4.1) it follows that (y, sl+1) ∈ a, thus, by (4.2), (sl, sl+1) ∈ a, in contradiction
with (4.1). �

In the particular case of strict orderings, most of the following result is con-
tained (with a completely different argument) in Pouzet et al. [26, Lemma 12]. No
finiteness assumption on e is needed.

Theorem 4.3. The following are equivalent, for any transitive relation e:

(i) e is square-free;

(ii) Clop(e) = Reg(e);
(iii) Clop(e) is a lattice;

(iv) Clop(e) has the interpolation property, that is, for all x0,x1,y0,y1 ∈
Clop(e) such that xi ⊆ yj for all i, j < 2, there exists z ∈ Clop(e) such

that xi ⊆ z and z ⊆ yi for all i < 2.

Proof. (i)⇒(ii) follows immediately from Lemma 4.2.
(ii)⇒(iii) and (iii)⇒(iv) are both trivial.
(iv)⇒(i). We prove that if e is not square-free, then Clop(e) does not satisfy the

interpolation property. By assumption, there are (a, b) ∈ e and u, v ∈ [a, b]
e
such

that u 6Ee v and v 6Ee u. It is easy to verify that the subsets

x0 = {a} × ]a, u]
e
, x1 = [u, b[

e
× {b} ,

y0 = ({a} × ]a, b]
e
) ∪ x1 , y1 = ([a, b[

e
× {b}) ∪ x0

are all clopen, and that xi ⊆ yj for all i, j < 2. Suppose that there exists z ∈
Clop(e) such that xi ⊆ z ⊆ yi for each i < 2. From (a, u) ∈ x0 ⊆ z and (u, b) ∈
x1 ⊆ z and the transitivity of z it follows that (a, b) ∈ z, thus, as a ⊳e v ⊳e b and z

is open, either (a, v) ∈ z or (v, b) ∈ z. In the first case, (a, v) ∈ y1, thus v Ee u, a
contradiction. In the second case, (v, b) ∈ y0, thus u Ee v, a contradiction. �

By applying Theorem 4.3 to the full relation [n]× [n], which is trivially square-
free (cf. Definition 4.1; here, x Ee y always holds), we obtain the following result,
first proved in Hetyei and Krattenthaler [20, Theorem 4.1].

Corollary 4.4 (Hetyei and Krattenthaler). The poset Bip(n) of all bipartitions

of [n] is a lattice, for every positive integer n.

Example 4.5. We set δE = {(x, y) ∈ E ×E | x < y}, for any poset E, and we set
P(E) = Clop(δE) and R(E) = Reg(δE). By Theorem 4.3 (see also Pouzet et al. [26,
Lemma 12]), P(E) is a lattice iff E contains no copy of the four-element Boolean
lattice B2 = {0, a, b, 1} (represented on the left hand side diagram of Figure 4.1)—
that is, by using the above terminology, δE is square-free.

The lattice R(B2) has 20 elements, while its subset P(B2) has 18 elements. The
lattice R(B2) is represented on the right hand side of Figure 4.1. Its join-irreducible
elements, all clopen (see a general explanation in Theorem 5.8), are

a0 = {(0, a)} , a1 = {(a, 1)} , b0 = {(0, b)} , b1 = {(b, 1)} ,

c00 = {(0, a), (0, b), (0, 1)} , c01 = {(0, a), (b, 1), (0, 1)} ,

c10 = {(a, 1), (0, b), (0, 1)} , c11 = {(a, 1), (b, 1), (0, 1)} .
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a0a1 b0

c00 c01c10 c11

u

u
⊥

a
⊥

0
a
⊥

1

b
⊥

0
b
⊥

1

c
⊥

00c
⊥

01 c
⊥

10

c
⊥

11

b1

0

1

a b

R(B2)B2

Figure 4.1. The lattice R(B2)

The two elements of R(B2) \ P(B2) are u = {(0, a), (a, 1), (0, 1)} together with its
orthogonal, u⊥ = {(0, b), (b, 1), (0, 1)}. Those elements are marked by doubled
circles on the right hand side diagram of Figure 4.1.

Example 4.6. It follows from Proposition 3.5 that the lattice Bip(3) of all bipar-
titions of [3] is not pseudocomplemented. We can say more: Bip(3) contains a copy
of the five element lattice M3 of length two, namely {∅,a, b, c, e}, where

a = {(1, 2), (3, 1), (3, 2)} ,

b = {(2, 1), (2, 3), (3, 1)} ,

c = {(1, 2), (1, 3), (2, 3)} ,

e = [3]× [3] .

It is also observed in Hetyei and Krattenthaler [20, Example 7.7] that Bip(3) con-
tains a copy of the five element nonmodular lattice N5; hence it is not modular.

5. Completely join-irreducible clopen sets

Throughout this section we shall fix a transitive relation e on a (possibly infinite)
set E.

Definition 5.1. We denote by F(e) the set of all triples (a, b, U), where (a, b) ∈ e,
U ⊆ [a, b]

e
, and a 6= b implies that a /∈ U and b ∈ U . We set U c = [a, b]

e
\ U , and

〈a, b;U〉 =

{
{(x, y) | a Ee x ⊳e y Ee b , x /∈ U , and y ∈ U} , if a 6= b ,

e ∩
(
({a} ∪ U c)× ({a} ∪ U)

)
, if a = b ,

for each (a, b, U) ∈ F(e). Equivalently, 〈a, b;U〉 = e ∩
(
({a} ∪ U c)× ({b} ∪ U)

)
.

Observe that 〈a, b;U〉 is always a subset of e.
Observe that 〈a, b;U〉 is bipartite iff a 6= b. If a = b, we shall say that 〈a, b;U〉 is

a clepsydra.2

The proof of the following lemma is a straightforward exercise.

Lemma 5.2. Let (a, b, U), (c, d, V ) ∈ F(e). Then 〈a, b;U〉 = 〈c, d;V 〉 iff one of the

following statements occurs:

2Although the word “clepsydra” has Greek origins and denotes a water clock, we borrow the
meaning from the Italian word “clessidra”, standing for “hourglass”, the latter describing the
pattern of the associated transitive relation: the elements of U

c below; a in the middle; the
elements of U above.
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(i) a 6= b, c 6= d, a ≡e c, b ≡e d, and U = V ;

(ii) a = b = c = d and U \ {a} = V \ {a}.

Lemma 5.3. The set p = 〈a, b;U〉 is clopen and (a, b) ∈ p, for each (a, b, U) ∈
F(e). Furthermore, the set p∗ defined by

p∗ =

{
p \ ([a]

e
× [b]

e
) , if a 6= b ,

p \ {(a, a)} , if a = b
(5.1)

is clopen, and every open proper subset of p is contained in p∗.

Note. The notation p∗ will be validated shortly, in Corollary 5.4, by proving that p∗

is, indeed, the unique lower cover of p in the lattice Reg(e).

Proof. In both cases (i.e., either a 6= b or a = b) it is trivial that (a, b) ∈ p.
Consider first the case where a 6= b. In that case, p is bipartite, thus closed. Let

x ⊳e y ⊳e z with (x, z) ∈ p. If y ∈ U , then (x, y) ∈ p, and if y /∈ U , then (y, z) ∈ p.
Hence p is clopen.

As p∗ ⊆ p and p is bipartite, p∗ is bipartite as well, thus p∗ is closed. Let
x ⊳e y ⊳e z with (x, z) ∈ p∗, and suppose by way of contradiction that (x, y) /∈ p∗

and (y, z) /∈ p∗. As p is open, either (x, y) ∈ p or (y, z) ∈ p, hence either (x, y) or
(y, z) belongs to p∩ ([a]

e
× [b]

e
). In the first case, x ≡e a and x /∈ U . Furthermore,

b ≡e y ⊳e z, but z Ee b (because (x, z) ∈ p∗ ⊆ p), so z ≡e b, and so we get
(x, z) ∈ p ∩ ([a]

e
× [b]

e
) = p \ p∗, a contradiction. The second case is dealt with

similarly. Therefore, p∗ is open.
Let u ⊆ p be open and suppose that u is not contained in p∗. This means

that there exists (a′, b′) ∈ u such that a ≡e a
′ and b ≡e b

′. We must prove that
p ⊆ u. Let (x, y) ∈ p; in particular, x /∈ U and y ∈ U . From x /∈ U it follows
that (a′, x) /∈ p, thus (a′, x) /∈ u; whence, from a′ Ee x ⊳e b

′, (a′, b′) ∈ u, and the
openness of u, we get (x, b′) ∈ u. Now y ∈ U , thus (y, b′) /∈ p, and thus (y, b′) /∈ u,
hence, as x ⊳e y Ee b

′, (x, b′) ∈ u, and u is open, we get (x, y) ∈ u, as required.
From now on suppose that a = b. It is trivial that p is closed (although it is no

longer bipartite). The proof that p is open is similar to the one for the case where
a 6= b.

Let x ⊳e y ⊳e z with (x, y) ∈ p∗ and (y, z) ∈ p∗. From p∗ ⊆ p it follows that
y ∈ {a}∪U c and y ∈ {a} ∪U , thus y = a, and thus (as (x, a) = (x, y) ∈ p∗) x 6= a,
and so (x, z) 6= (a, a). This proves that p∗ is closed.

Let x ⊳e y ⊳e z with (x, z) ∈ p∗, and suppose by way of contradiction that
(x, y) /∈ p∗ and (y, z) /∈ p∗. As p is open, either (x, y) ∈ p or (y, z) ∈ p, thus either
(x, y) = (a, a) or (y, z) = (a, a). In the first case (y, z) = (x, z) ∈ p∗, and in the
second case (x, y) = (x, z) ∈ p∗, a contradiction in both cases. This proves that p∗

is open.
Finally let u ⊆ p be open not contained in p∗, so (a, a) ∈ u. Let (x, y) ∈ p, we

must prove that (x, y) ∈ u. If (x, y) = (a, a) this is trivial. Suppose that x = a and
y ∈ U \ {a}. Then a ⊳e y ⊳e a, but (y, a) /∈ u (because (y, a) /∈ p), (a, a) ∈ u,
and u is open, thus (x, y) = (a, y) ∈ u, as desired. This completes the case x = a.
The case where y = a and x ∈ U c \ {a} is dealt with similarly. Now suppose
that x ∈ U c \ {a} and y ∈ U \ {a}. As above, we prove that (y, a) /∈ u and thus
(a, y) ∈ u. Now (a, x) /∈ u (because (a, x) /∈ p), thus, as a ⊳e x ⊳e y, (a, y) ∈ u,
and u is open, we get (x, y) ∈ u, as desired. �
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Corollary 5.4. Let (a, b, U) ∈ F(e). The clopen set p = 〈a, b;U〉 is completely join-

irreducible in the lattice Reg(e), and the element p∗ constructed in the statement

of Lemma 5.3 is the lower cover of p in that lattice.

Proof. Let a $ p be a regular closed set. As int(a) is open and properly contained
in p, it follows from Lemma 5.3 that int(a) ⊆ p∗. Hence, since a is regular closed
and p∗ is clopen, we get a = cl int(a) ⊆ cl(p∗) = p∗. �

Lemma 5.5. Every open subset u of e is the set-theoretical union of all its subsets

of the form 〈a, b;U〉, where (a, b, U) ∈ F(e). In particular, every open subset of e

is a union of clopen sets.

Proof. Let (a, b) ∈ u, we must find U such that (a, b, U) ∈ F(e) and 〈a, b;U〉 ⊆ u.
Suppose first that a 6= b and set

U = {x ∈ [a, b]
e
| x 6= a and (a, x) ∈ u} .

It is trivial that a /∈ U and b ∈ U . Let (x, y) ∈ 〈a, b;U〉 (so x /∈ U and y ∈ U),
we must prove that (x, y) ∈ u. If x = a then this is obvious (because y ∈ U).
Now suppose that x 6= a. In that case, from x /∈ U it follows that (a, x) /∈ u. As
(a, y) ∈ u (because y ∈ U), a ⊳e x ⊳e y, and u is open, we get (x, y) ∈ u, as
desired.

From now on suppose that a = b. We set

U = {x ∈ [a]
e
| (a, x) ∈ u} .

Observe that a ∈ U , so {a} ∪ U = U . Let (x, y) ∈ 〈a, a;U〉, we must prove that
(x, y) ∈ u. If x = a, then, as y ∈ U , we get (x, y) = (a, y) ∈ u. Hence we may
suppose from now on that x 6= a; it follows that x ∈ U c (as (x, y) ∈ 〈a, a;U〉) and
therefore (a, x) /∈ u. As y ∈ U , we get (a, y) ∈ u. As a ⊳e x ⊳e y and u is open,
it follows again that (x, y) ∈ u, as desired. �

Corollary 5.6. The lattice Reg(e) is, up to isomorphism, the Dedekind-MacNeille

completion of the poset Clop(e). In particular, every completely join-irreducible

element of Reg(e) is clopen.

Proof. Let a be regular closed; in particular, a = cl(b), with b open. Write b as a
union of clopen sets, b =

⋃
i∈I ci. Applying the closure operator cl to both sides of

the equation, we obtain the equality a =
∨

i∈I ci in Reg(e).
Thus every element of Reg(e) is a join of elements from Clop(e); by duality, every

element of Reg(e) is a meet of elements from Clop(e). It immediately follows, see
Davey and Priestley [10, Theorem 7.41], that Reg(e) is the Dedekind-MacNeille
completion of the poset Clop(e).

Suppose next that a is a completely join-irreducible element of Reg(e); since
Reg(e) is join-generated by Clop(e), we can write a as join of clopen sets, a =∨

i∈I ci. As a is completely join-irreducible, it follows that a = ci for some i ∈ I,
thus a is clopen. �

Lemma 5.5 makes it possible to extend Pouzet et al. [26, Lemma 11], from
permutohedra on posets, to lattices of regular closed subsets of transitive relations.
This result also refines the equivalence (ii)⇔(iii) of Theorem 4.3.

Corollary 5.7. The following statements hold, for any (possibly infinite) family

(ai | i ∈ I) of clopen subsets of e:
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(i) The set {ai | i ∈ I} has a meet in Clop(e) iff int
(⋂

i∈I ai

)
is clopen, and

then the two sets are equal.

(ii) The set {ai | i ∈ I} has a join in Clop(e) iff cl
(⋃

i∈I ai

)
is clopen, and

then the two sets are equal.

Proof. A simple application of the involution x 7→ e \ x reduces (ii) to (i). On the
way to proving (i), we define the open set u = int

(⋂
i∈I ai

)
.

It is trivial that if u is clopen, then it is the meet of {ai | i ∈ I} in Clop(e).
Conversely, suppose that {ai | i ∈ I} has a meet a in Clop(e). It is obvious
that a ⊆ u. Let (x, y) ∈ u. By Lemma 5.5, there exists b ⊆ u clopen such that
(x, y) ∈ b. It follows from the definition of a that b ⊆ a, thus (x, y) ∈ a. Therefore,
u = a is clopen. �

Notice that Corollary 5.7 can also be derived from Corollary 5.6: if the inclusion
of Clop(e) into Reg(e) is, up to isomorphism, the Dedekind-MacNeille completion of
Clop(e), then this inclusion preserves existing joins and meets. Thus, for example,

suppose that w =
∧Clop(e)

i∈I ai exists; then w =
∧Reg(e)

i∈I ai, and we get

w =
∧Reg(e)

i∈I
ai = cl int

(⋂
i∈I

ai

)
⊇ int

(⋂
i∈I

ai

)
.

As w ⊆ int
(⋂

i∈I ai

)
follows from the openness of w together with w ⊆ ai for each

i ∈ I, we get w = int
(⋂

i∈I ai

)
, showing that int

(⋂
i∈I ai

)
is closed.

Theorem 5.8. The completely join-irreducible elements of Reg(e) are exactly the

elements 〈a, b;U〉, where (a, b, U) ∈ F(e). Furthermore, the lattice Reg(e) is spatial.

Proof. Let a ∈ Reg(e). As int(a) is open, it follows from Lemma 5.5 that we can
write int(a) =

⋃
i∈I〈ai, bi;Ui〉, for a family ((ai, bi, Ui) | i ∈ I) of elements of F(e).

As the elements 〈ai, bi;Ui〉 are all clopen (thus regular closed) and a is regular
closed, it follows that

a = cl int(a) =
∨

i∈I

〈ai, bi;Ui〉 in Reg(e) .

In particular, if a is completely join-irreducible, then it must be one of the 〈ai, bi;Ui〉.
Conversely, by Corollary 5.4, every element of the form 〈a, b;U〉 is completely join-
irreducible in Reg(e). �

6. The arrow relations between clopen sets

Lemma 2.1 makes it possible to express the join-dependency relation on a finite
lattice in terms of the arrow relations ր and ց. Throughout this section, let e

be a transitive relation on a set E. We shall not necessarily assume finiteness of e,
except in Corollary 6.4 where we are dealing with the relation D (for Lemma 2.1
assumes finiteness). By using the dual automorphism x 7→ x⊥ (cf. Lemma 3.3),
x⊥ ց y iff x ր y⊥, for all x,y ∈ Reg(e); hence statements involving ց can
always be expressed in terms of ր. Furthermore, the completely meet-irreducible
elements of Reg(e) are exactly the elements of the form p⊥, where p is a completely
join-irreducible element of Reg(e). As every such p is clopen (cf. Theorem 5.8), we
get p⊥ = e \ p. Therefore, we obtain the following lemma.

Lemma 6.1. p ր q⊥ iff p∩ q 6= ∅ and p∩ q∗ = ∅, for all join-irreducible clopen

sets p and q. Furthermore, if q = 〈c, d;V 〉, where (c, d, V ) ∈ F(e), then p ր q⊥

implies that ∅ 6= p ∩ q ⊆ [c]
e
× [d]

e
.
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Proof. Only the second part of Lemma 6.1 requires a proof. From p ր q⊥ and the
first part of Lemma 6.1 it follows that p∩ q 6= ∅ and further, using equation (5.1),

p ⊆ (q∗)
c ⊆

(
q \ ([c]

e
× [d]

e
)
)
c

= qc ∪ ([c]
e
× [d]

e
) ,

so p ∩ q ⊆ [c]
e
× [d]

e
. �

From Lemma 6.2 to Lemma 6.6, we shall fix (a, b, U), (c, d, V ) ∈ F(e). Further,
we shall set p = 〈a, b;U〉, q = 〈c, d;V 〉, U c = [a, b]

e
\ U , and V c = [c, d]

e
\ V .

Lemma 6.2. p ր q⊥ implies that [c, d]
e
⊆ [a, b]

e
.

Proof. By Lemma 6.1 we can pick (x, y) ∈ p ∩ q ⊆ [c]
e
× [d]

e
, thus x ≡e c and

y ≡e d; furthermore, as (x, y) ∈ p, we get a Ee x ⊳e y Ee b. The desired conclusion
follows from the transitivity of Ee. �

Lemma 6.3. Suppose that c = d. Then p ր q⊥ iff a = b = c = d, U ∩ V ⊆ {a},
and U c ∩ V c ⊆ {a}.

Proof. Suppose first that p ր q⊥. From q∗ = q \ {(c, c)} (cf. (5.1)) it follows that

p ∩ q = {(c, c)} , (6.1)

and thus (c, c) ∈ 〈a, b;U〉, which rules out a 6= b (cf. Definition 5.1). Hence a = b
and c belongs to ({a} ∪ U c) ∩ ({a} ∪ U) = {a}, so a = c. Now let x ∈ U c ∩ V c.
Then (x, a) belongs to p ∩ q, thus, by (6.1), x = a. The proof of the containment
U ∩ V ⊆ {a} is similar.

Conversely, suppose that a = b = c = d, U ∩ V ⊆ {a}, and U c ∩ V c ⊆ {a}.
Then any (x, y) ∈ p ∩ q satisfies x ∈ U c ∩ V c, thus x = a. Likewise, y = a, so
p ∩ q = {(a, a)}. By Lemma 6.1, it follows that p ր q⊥. �

As a noteworthy consequence, we obtain that if e is finite and q is a clepsydra,
then there is no p such that pD q.

Corollary 6.4. Let e be finite. If c = d, then the relation pD q does not hold.

Proof. Suppose that p D q, so there exists a join-irreducible element r such that
p ր r⊥ and r ր q⊥. By Lemma 6.3, a = b = c = d and there exists W ⊆ [a]

e

such that r = 〈a, a;W 〉 and the sets U ∩W , U c ∩W c, V ∩W , and V c ∩W c are all
contained in {a}. Since all these subsets are contained in [a]

e
, this means that each

pair (U \ {a},W \ {a}) and (V \ {a},W \ {a}) is complementary within [a]
e
\ {a},

hence U \ {a} = V \ {a}, equivalently U ∪ {a} = V ∪ {a}. Therefore, p = q,
contradicting the definition of the relation D. �

Lemma 6.5. Suppose that a = b and c 6= d. Then p ր q⊥ iff a ≡e c ≡e d,
({a} ∪ U) ∩ V 6= ∅, and ({a} ∪ U c) ∩ V c 6= ∅.

Proof. Suppose first that p ր q⊥. It follows from Lemma 6.2 that a ≡e c ≡e d.
Any element (u, v) ∈ p∩q satisfies that u ∈ ({a}∪U c)∩V c and v ∈ ({a}∪U)∩V .
Conversely, if a ≡e c ≡e d, u ∈ ({a} ∪ U c) ∩ V c, and v ∈ ({a} ∪ U) ∩ V , then
(u, v) ∈ p ∩ q. From c 6= d, c ≡e d, and q ⊆ [c, d]

e
× [c, d]

e
it follows that

q∗ = q \ ([c]
e
× [d]

e
) = ∅; whence p ∩ q∗ = ∅. �

Lemma 6.6. Suppose that a 6= b and c 6= d. Then p ր q⊥ iff [c, d]
e
⊆ [a, b]

e
and

∅ 6= e ∩
(
(U c ∩ V c)× (U ∩ V )

)
⊆ [c]

e
× [d]

e
.
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Proof. Suppose first that p ր q⊥. It follows from Lemma 6.2 that [c, d]
e

⊆

[a, b]
e
. Any element (u, v) ∈ p ∩ q belongs to e ∩

(
(U c ∩ V c)× (U ∩ V )

)
, thus

this set is nonempty. Moreover, any element (u, v) of this set belongs to q \
q∗, thus u ≡e c and v ≡e d. Conversely, suppose that [c, d]

e
⊆ [a, b]

e
and

∅ 6= e ∩
(
(U c ∩ V c)× (U ∩ V )

)
⊆ [c]

e
× [d]

e
. Observing that p ∩ q = e ∩(

(U c ∩ V c)× (U ∩ V )
)
, it follows that p ∩ q is both nonempty and contained in

[c]
e
× [d]

e
; the latter condition implies that p ∩ q∗ = ∅. We get therefore the

relation p ր q⊥. �

Corollary 6.7. Suppose that e is antisymmetric, a 6= b, and c 6= d. Then p ր q⊥

iff (c, d) ∈ p and V = (]c, d]
e
\ U) ∪ {d}.

7. Bounded lattices of regular closed sets

Let e be a transitive relation on a (possibly infinite) set E. Suppose, until the
statement of Proposition 7.2, that e is antisymmetric (i.e., the preordering Ee is
an ordering), then some information can be added to the results of Section 6. First
of all, the clepsydras (cf. Definition 5.1) are exactly the singletons {(a, a)}, where
a ⊳e a. On the other hand, if a 6= b, then 〈a, b;U〉 determines both the ordered
pair (a, b) and the set U . (Recall that a clepsydra is never bipartite, so it cannot
have the form 〈a, b;U〉 with a 6= b.)

Let us focus for a while on arrow relations involving bipartite join-irreducible
clopen sets. We set

U↾c,d = (U ∩ ]c, d]
e
) ∪ {d} , for all (c, d) ∈ e and all U ⊆ E .

Observe that (c, d, U↾c,d) ∈ F(e). The following lemma is a restated variant of
Corollary 6.7.

Lemma 7.1. Let (a, b, U), (c, d, V ) ∈ F(e) with a 6= b and c 6= d, and set Ũ =

(E \ U)↾a,b. Then 〈a, b;U〉 ր 〈c, d;V 〉
⊥

iff [c, d]
e
⊆ [a, b]

e
and V = Ũ↾c,d.

This yields, in the finite case, a characterization of the join-dependency relation
on the join-irreducible clopen sets.

Proposition 7.2. Suppose that E is finite, e is antisymmetric, and let (a0, b0, U0),
(a1, b1, U1) ∈ F(e) with a0 6= b0 and a1 6= b1. Set pi = 〈ai, bi;Ui〉 for i < 2. Then

p0 D p1 in the lattice Reg(e) iff [a1, b1]e $ [a0, b0]e and U1 = U0↾a1,b1
.

Proof. Suppose first that p0 D p1. By Theorem 5.8, Lemma 2.1, and the observa-
tions at the beginning of Section 6, there exists (c, d, V ) ∈ F(e) such that, setting
q = 〈c, d;V 〉, the relations p0 ր q⊥ and q ր p⊥

1 both hold. It follows from
Corollary 6.4 that c 6= d. By Lemma 7.1, [a1, b1]e ⊆ [c, d]

e
⊆ [a0, b0]e and, setting

Ũ0 = (E \U0)↾a0,b0
and Ṽ = (E \V )↾c,d, V = Ũ0↾c,d and U1 = Ṽ ↾a1,b1

; clearly Ṽ =

U0↾c,d, whence U1 = U0↾a1,b1
. Since p0 6= p1, it follows that [a1, b1]e $ [a0, b0]e.

Conversely, suppose that [a1, b1]e $ [a0, b0]e and U1 = U0↾a1,b1
. In particular,

p0 6= p1. Set U c

0 = [a0, b0]e \ U0. We shall separate cases, according to whether or
not a1, b1 belong to U0. In each of those cases, we shall define a certain join-irre-
ducible element q = 〈c, d;V 〉 of Reg(e), with a0 Ee c ⊳e d Ee a1 and V = U c

0↾c,d,
hence only c and d will need to be specified. Each of the desired arrow relations
will be inferred with the help of Corollary 6.7.
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Case 1. a1 ∈ {a0} ∪ U c

0 and b1 ∈ {b0} ∪ U0. We set c = a1 and d = b1. Then
p0 ր q⊥ (because (a1, b1) ∈ p0) and q ր p⊥

1 (because (a1, b1) ∈ q).

Case 2. a1 ∈ {a0} ∪ U0 and b1 ∈ {b0} ∪ U0. We set c = a0 and d = b1. Then
p0 ր q⊥ (because (a0, b1) ∈ p0) and q ր p⊥

1 (because (a1, b1) ∈ q).

Case 3. a1 ∈ {a0} ∪ U c

0 and b1 ∈ {b0} ∪ U c

0 . We set c = a1 and d = b0. Then
p0 ր q⊥ (because (a1, b0) ∈ p0) and q ր p⊥

1 (because (a1, b1) ∈ q).

Case 4. a1 ∈ {a0} ∪ U0 and b1 ∈ {b0} ∪ U c

0 . We set c = a0 and d = b0. Then
p0 ր q⊥ (because (a0, b0) ∈ p0) and q ր p⊥

1 (because (a1, b1) ∈ q).

In each of those cases, p0 ր q⊥ and q ր p⊥
1 , hence, as p0 6= p1 and by

Lemma 2.1, p0 D p1. �

By using the standard description of the congruence lattice of a finite lattice via
the join-dependency relation (cf. Freese, Ježek, and Nation [16, § II.3]), Proposi-
tion 7.2 makes it possible to give a complete description of the congruence lattice
of Reg(e) in case e is antisymmetric. Congruence lattices of permutohedra were
originally described in Duquenne and Cherfouh [11, § 4]. An implicit description
of congruences of permutohedra via the join-dependency relation appears in Santo-
canale [30]; in that paper, similar results were established for multinomial lattices.

By Lemma 6.5 together with the antisymmetry of e, if p ր q⊥ and p is a
clepsydra, then so is q. Hence, by Corollary 6.4, p D q implies (in the finite,
antisymmetric case) that neither p nor q is a clepsydra. By Proposition 7.2, we
thus obtain the following result.

Corollary 7.3. Let e be an antisymmetric, transitive relation on a finite set. Then

the join-dependency relation on the join-irreducible elements of Reg(e) is a strict

ordering.

Example 7.4. The transitivity of the relation D, holding on the join-irreducible
elements of Reg(e) for any antisymmetric transitive relation e, is quite a special
property. It does not hold in all finite bounded homomorphic images of free lattices,
as shows the lattice L9 (following the notation of Jipsen and Rose [21]) represented
on the left hand side of Figure 7.1. The join-irreducible elements marked there by
doubled circles satisfy p D q and q D r but not p D r.

p

q

r
L9 L9 ‖ L10

Figure 7.1. Bounded lattices with non-transitive join-dependen-
cy relation

The lattice L9 is not orthocomplemented, but its parallel sum with its dual
lattice L10, denoted there by L9 ‖ L10, is orthocomplemented. As L9, the parallel
sum is bounded and has non-transitive relation D.
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In the non-bounded case, the reflexive closure of the relation D on Reg(e) may
not be transitive. This is witnessed by the lattice Bip(3) = Reg([3] × [3]), see
Lemmas 8.5 and 8.6.

Definition 7.5. A family (ei | i ∈ I) of pairwise disjoint transitive relations is
orthogonal if there are no distinct i, j ∈ I and no p, q, r such that p 6= q, q 6= r,
(p, q) ∈ ei, and (q, r) ∈ ej .

In particular, if (ei | i ∈ I) is orthogonal, then
⋃

i∈I ei is itself a transitive
relation.

Proposition 7.6. The following statements hold, for any orthogonal family

(ei | i ∈ I) of transitive relations:

(i) A subset x of e is closed (resp., open in e) iff x∩ei is closed (resp., open
in ei) for each i ∈ I.

(ii) Reg(e) ∼=
∏

i∈I Reg(ei), via an isomorphism that carries Clop(e) onto∏
i∈I Clop(ei).

Proof. The proof of (i) is a straightforward exercise. For (ii), we define ϕ(x) =
(x ∩ ei | i ∈ I) whenever x ⊆ e, and ψ(xi | i ∈ I) =

⋃
i∈I xi whenever all xi ⊆ ei.

By using (i), it is straightforward (although somewhat tedious) to verify that ϕ
and ψ restrict to mutually inverse isomorphisms between Reg(e) and

∏
i∈I Reg(ei),

and also between Clop(e) and
∏

i∈I Clop(ei). �

Set ∆A = {(x, x) | x ∈ A}, for every set A. By applying Proposition 7.6 to
the 2-element family (e,∆A), we obtain the following result, which shows that
Reg(e ∪∆A) is the product of Reg(e) by a powerset lattice.

Corollary 7.7. Let e be a transitive relation and let A be a set with e ∩∆A = ∅.

Then Reg(e ∪∆A) ∼= Reg(e)× (PowA) and Clop(e ∪∆A) ∼= Clop(e)× (PowA).

Duquenne and Cherfouh [11, Theorem 3] and Le Conte de Poly-Barbut [22,
Lemme 9] proved that every permutohedron is semidistributive (in the latter paper
the result was extended to all Coxeter lattices). This result was improved by Cas-
pard [7], who proved that every permutohedron is a bounded homomorphic image
of a free lattice; and later, by Caspard, Le Conte de Poly-Barbut, and Morvan [8],
who extended this result to all finite Coxeter groups. Our next result shows exactly
to which transitive (not necessarily antisymmetric) relations those results can be
extended.

Theorem 7.8. The following are equivalent, for any transitive relation e on a

finite set E:

(i) The lattice Reg(e) is a bounded homomorphic image of a free lattice.

(ii) The lattice Reg(e) is semidistributive.

(iii) The lattice Reg(e) is pseudocomplemented.

(iv) Every connected component of the preordering Ee either is antisymmetric

or has the form {a, b} with a 6= b while (a, b) ∈ e and (b, a) ∈ e.

Proof. (i)⇒(ii) is well-known, see for example Freese, Ježek, and Nation [16, The-
orem 2.20].

(ii)⇒(iii) is trivial.
(iii)⇒(iv) follows immediately from Proposition 3.5.
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(iv)⇒(i). Denote by {Ei | i < n} the set of all connected components of Ee and
set ei = e ∩ (Ei × Ei) for each i < n. By Proposition 7.6, it suffices to consider
the case where e = ei for some i, that is, Ee is connected. It suffices to prove that
the join-dependency relation on Reg(e) has no cycle (cf. Freese, Ježek, and Nation
[16, Corollary 2.39] together with the self-duality of Reg(e)). In the antisymmetric
case, this follows from Corollary 7.3. If E = {a, b} with a 6= b while (a, b) ∈ e and
(b, a) ∈ e, then Reg(e) is isomorphic to the lattice Bip(2) of all bipartitions of a
two-element set (cf. Section 3). The relation D on the join-irreducible elements
of Bip(2), represented on the right hand side of Figure 7.2, has no cycle. �

The Hasse diagram of the lattice Bip(2) is represented on the left hand side of
Figure 7.2. On the right hand side of Figure 7.2 we represent (the digraph of) the
relation D on the join-irreducible elements of Bip(2). The join-irreducible elements
of Bip(2) are denoted there by

a0 = {(1, 2)} , a1 = {(1, 1), (1, 2)} , a2 = {(2, 2), (1, 2)} ,

b0 = {(2, 1)} , b1 = {(1, 1), (2, 1)} , b2 = {(2, 2), (2, 1)} .

In order to allay the confusion that might arise from the ordering of the lattice and
its relation D being incompatible (e.g., pDq implies that p � q), we mark the edges
of the relation D with arrows, so for example a0 < a1, a1 D a0, and ¬(a0 D a1).

Corollary 7.9. Let e be a finite transitive relation. If Reg(e) is semidistributive,

then the join-dependency relation defines a strict ordering on the join-irreducible

elements of Reg(e).

Proof. By using Proposition 7.6, together with the characterization (iv) of semidis-
tributivity of Reg(e) given in Theorem 7.8, it is easy to reduce the problem to
the case where e is either antisymmetric or a loop a ⊳e b ⊳e a with a 6= b. In
the first case, the conclusion follows from Corollary 7.3. In the second case, the
join-dependency relation is bipartite (see the right hand side of Figure 7.2), thus
transitive. �

The lattices Bip(3) and Bip(4) are represented on Figure 7.3; they have 74
and 730 elements, respectively.

a0

a0

a1

a1

a2

a2
b0

b0

b1

b1

b2

b2

Bip(2) The relation        D           on Ji(Bip(2))

Figure 7.2. The lattice Bip(2) of all bipartitions of {1, 2} and its relation D

Example 7.10. The following example shows that none of the implications (iv)⇒(ii)
and (iv)⇒(iii) of Theorem 7.8 can be extended to the infinite case. Define e as the
natural strict ordering on the ordinal ω+1 = {0, 1, 2, . . .}∪ {ω}. As e is obviously
square-free, it follows from Theorem 4.3 that Clop(e) = Reg(e) is a lattice, namely
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Figure 7.3. The lattices Bip(3) and Bip(4)

the permutohedron P(ω +1) (cf. Example 4.5). It is straightforward to verify that
the sets

a = {(2m, 2n+ 1) | m ≤ n < ω} ∪ {(2m,ω) | m < ω} ,

b = {(2m+ 1, 2n+ 2) | m ≤ n < ω} ∪ {(2m+ 1, ω) | m < ω} ,

c = {(m,ω) | m < ω} .

are all clopen in e. Furthermore,

a ∩ c = {(2m,ω) | m < ω}
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has empty interior, so a ∧ c = ∅. Likewise, b ∧ c = ∅. On the other hand,
c ⊆ a ∪ b ⊆ a ∨ b and c 6= ∅. In particular,

a ∧ c = b ∧ c = ∅ and (a ∨ b) ∧ c 6= ∅ .

Therefore, the lattice P(ω+1) is neither pseudocomplemented, nor semidistributive.
The result that every (finite) permutohedron P(n) is pseudocomplemented orig-

inates in Chameni-Nembua and Monjardet [9].

8. Join-dependency and congruences of bipartition lattices

In this paper we are using “bipartition” as a short naming for a transitive and
cotransitive relation on [n], that is, for an element of Clop([n]× [n]). These objects
are more properly called “ordres bipartitionnaires” (Han [19]) or “bipartitional
relations” in (Hetyei and Krattenthaler [20]). The usual representation of these
objects as “ordered bipartitions”, on which the naming relies, will be recalled at
the beginning of Section 9.

The full relation [n] × [n] is transitive, for any positive integer n, and
Reg([n] × [n]) = Clop([n] × [n]) = Bip(n) (cf. Section 3), the bipartition lattice
of n. Due to the existence of exactly one ≡[n]×[n]-class (namely the full set [n]), the
description of the join-irreducible elements of Bip(n) obtained from Theorem 5.8
takes a particularly simple form.

Lemma 8.1. The join-irreducible elements of Bip(n) consist of the sets 〈U〉 =
U c×U for U ∈ Pow∗[n] (those are the bipartite ones) together with the sets 〈a, U〉 =
({a} ∪ U c)× ({a} ∪ U) for a ∈ [n] and U ∈ Pow[n] (those are the clepsydras).

The associated lower covers are immediately obtained from Corollary 5.4:

Lemma 8.2. The bipartite 〈U〉 (with U ∈ Pow∗[n]) are the atoms of Bip(n) while,
for clepsydras 〈a, U〉 (with a ∈ [n] and U ∈ Pow[n]), 〈a, U〉∗ = 〈a, U〉 \ {(a, a)}.

Lemma 8.3. Let (a, U) ∈ [n] × Pow[n] and let V ∈ Pow∗[n]. Then 〈a, U〉 D 〈V 〉
always holds (within Bip(n)).

Proof. Suppose first that (U, V ) forms a partition of [n]. It follows from Lemma 6.3

that 〈a, U〉 ր 〈a, V 〉
⊥
; moreover, considering that both V and V c are nonempty,

the relation 〈a, V 〉 ր 〈V 〉
⊥

follows from Lemma 6.5. Hence 〈a, U〉D 〈V 〉.
Suppose from now on that (U, V ) does not form a partition of [n]. We shall find

W ∈ Pow[n] such that

({a} ∪ U c) ∩W c 6= ∅ , (8.1)

V c ∩W c 6= ∅ , (8.2)

({a} ∪ U) ∩W 6= ∅ , (8.3)

V ∩W 6= ∅ . (8.4)

By Lemmas 6.5 and 6.6, this will ensure that 〈a, U〉 ր 〈W 〉
⊥

and 〈W 〉 ր 〈V 〉
⊥
,

hence that 〈a, U〉D 〈V 〉.
If U ∩ V 6= ∅, set W = U ∩ V . Then (8.3) and (8.4) are trivial, while V ∪W =

V 6= [n] and U ∪W = U 6= [n], so (8.1) and (8.2) are satisfied as well. If U ∩V = ∅,
then, as (U, V ) is not a partition of [n], we get U c ∩ V c 6= ∅; we set in this case
W = U ∪ V . Again, it is easy to verify that (8.1)–(8.4) are satisfied. �
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Definition 8.4. We say that a partition (U,U c) of [n] is extremal if either U or U c

is a singleton. The atom 〈U〉 will be called an extremal atom.

The description of the relation D on Bip(n) is completed by the following result.

Lemma 8.5. Let U, V ∈ Pow∗[n]. Then 〈U〉 D 〈V 〉 iff (U, V ) is not an extremal

partition of [n].

Proof. The relation 〈U〉 D 〈V 〉 holds iff there exists a join-irreducible p ∈ Bip(n)

such that 〈U〉 ր p⊥ and p ր 〈V 〉
⊥
. By Lemma 6.3, p cannot be a clepsydra.

Hence, by Lemma 6.6, 〈U〉D 〈V 〉 iff there exists W ∈ Pow[n] such that

U ∩W 6= ∅ , V ∩W 6= ∅ , U c ∩W c 6= ∅ , V c ∩W c 6= ∅ . (8.5)

Suppose first that (U, V ) is an extremal partition of [n], so that either U = {a}
or V = {a}, for some a ∈ [n]. In the first case, U ∩W 6= ∅ implies that a ∈ W ,
hence V ∪ W = [n], in contradiction with (8.5). Likewise, in the second case,
a ∈ W and U ∪ W = [n], in contradiction with (8.5). In any case, the relation
〈U〉 D 〈V 〉 does not hold. Conversely, suppose from now on that either (U, V ) is
not a partition of [n], or it is not extremal. Suppose first that (U, V ) is a partition
of [n] and pick (u, v) ∈ U × V . Then the set W = {u, v} meets both U and V .
Furthermore, U ∪W = U ∪{v} is distinct from [n] as V is not a singleton. Likewise
V ∪W = V ∪ {u} 6= [n]. Finally, suppose that (U, V ) is not a partition of [n]. If
U ∩V 6= ∅, then W = U ∩V solves our problem. If U c ∩V c 6= ∅, then W = U ∪V
solves our problem. In any case, (8.5) holds for our choice of W . �

Lemma 8.6. Suppose that n ≥ 3 and let U, V ∈ Pow∗[n]. Then either 〈U〉D 〈V 〉
or 〈U〉D2 〈V 〉.

Proof. By Lemma 8.5, if the relation 〈U〉D 〈V 〉 fails, then there exists a ∈ [n] such
that {U, V } = {{a}, [n] \ {a}}. Pick any b ∈ [n] \ {a} and set W = {a, b}. As
n ≥ 3, neither (U,W ) nor (W,V ) is a partition of [n]. By Lemma 8.5, it follows
that 〈U〉D 〈W 〉 and 〈W 〉D 〈V 〉. �

By using the end of Section 2 (in particular Lemma 2.2), the congruence lattice
of Bip(n) can be entirely described by the relation D∗ on Ji(Bip(n)). Hence it
can be obtained from the following easy consequence of Corollary 6.4 together with
Lemmas 8.3 and 8.6.

Corollary 8.7. Suppose that n ≥ 3 and let p, q be join-irreducible elements of Bip(n).
Then con(p) ⊆ con(q) iff either q is bipartite or p is a clepsydra and p = q.

In particular, the congruences con(p), for p a clepsydra, are pairwise incompara-
ble, so they are the atoms of ConBip(n). Each such congruence is thus determined
by the corresponding clepsydra p, and those clepsydras are in one-to-one corre-
spondence with the associated ordered pairs (a, U \ {a}). Hence there are n · 2n−1

clepsydras, and we get the following result.

Corollary 8.8. The congruence lattice of the bipartition lattice Bip(n) is obtained
from a Boolean lattice with n · 2n−1 atoms by adding a new top element, for every

integer n ≥ 3.

Corollary 8.8 does not extend to the case where n = 2: the congruence lattice
of Bip(2) is isomorphic to the lattice of all lower subsets of the poset represented
on the right hand side of Figure 7.2.
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9. Minimal subdirect product decompositions of bipartition lattices

Here and in the next sections we shall use the following useful description of
bipartitions introduced in Han [19] and studied further in Hetyei and Kratten-
thaler [20, § 2].

To every bipartition x of [n], we associate the relation ∼x on [n] defined by

p ∼x q if either {(p, q), (q, p)} ⊆ x or {(p, q), (q, p)}∩x = ∅ , for all p, q ∈ [n] .

Then ∼x is an equivalence relation, the equivalence classes of which can be enu-
merated as X1, . . . , Xm in a unique way such that

i < j ⇔ (p, q) ∈ x , whenever i 6= j in [m] , p ∈ Xi , and q ∈ Xj .

The sets Xi, for i ∈ [m], will be called the blocks of x. For each i ∈ [m], either
Xi×Xi ⊆ x, in which case we set εi = +1 and say that Xi is an underlined block, or
(Xi×Xi)∩x = ∅, in which case we set εi = −1 and say that Xi is a non-underlined

block.
The bipartition x can be recovered from the Xi and the εi, by

(p, q) ∈ x ⇔ (∃i, j ∈ [m])
(
p ∈ Xi , q ∈ Xj ,

and
(
either i < j or (i = j and εi = +1)

))
.

We shall call (Xε1
1 , . . . , X

εm
m ) the ordered bipartition representation of x, and write

x = Xε1
1 ⊕ · · · ⊕Xεm

m . We shall also, occasionally, write Xi instead of X−1
i (non-

underlined blocks) and Xi instead of X+1
i (underlined blocks). In particular,

〈U〉 = U c ⊕ U and 〈a, V 〉 = (V c \ {a})⊕ {a} ⊕ (V \ {a})

whenever U ∈ Pow∗[n], a ∈ [n], and V ∈ Pow[n].
As in Hetyei and Krattenthaler [20, § 6], we say that a permutation ρ of [n] is

compatible with a bipartition x if
(
(p, q) ∈ x and (q, p) /∈ x

)
⇒ ρ−1(p) < ρ−1(q) , for all p, q ∈ [n] .

Notation 9.1. For any positive integer n, we define

• G(n), the set of all bipartite join-irreducible elements of Bip(n) (i.e., those
of the form U c × U , where U ∈ Pow∗[n]);

• K(n), the (∨, 0)-subsemilattice of Bip(n) generated by G(n);
• θn, the congruence of Bip(n) generated by all Ψ(p), for p ∈ G(n);
• S(n,p), the (∨, 0)-subsemilattice of Bip(n) generated by G(n) ∪ {p}, for
each p ∈ Ji(Bip(n)).

By the results of Section 8, the D∗-minimal join-irreducible of Bip(n) are exactly
the clepsydras 〈a, U〉, where a ∈ [n] and U ⊆ [n] (note that the clopen set 〈a, U〉 is
uniquely determined by the ordered pair (a, U \ {a})). This is proved in Section 8
for n ≥ 3, but it is also trivially valid for n ∈ {1, 2} (cf. Figure 7.2). Hence the
minimal subdirect product decomposition of Bip(n), given by (2.1), is the subdirect
product

Bip(n) →֒
∏

a∈[n] , U⊆[n]\{a}

(
Bip(n)/Ψ(〈a, U〉)

)
. (9.1)

By Lemma 2.2, the factors of the decomposition (9.1) are exactly the lattices
Bip(n)/Ψ(〈a, U〉) ∼= S(n, 〈a, U〉). Likewise, we can also observe that Bip(n)/θn ∼=
K(n). We shall now identify, within Bip(n), the elements of S(n, 〈a, U〉).
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Definition 9.2. An element a ∈ [n] is an isolated point of a bipartition x if
(a, i) ∈ x and (i, a) ∈ x iff i = a, for each i ∈ [n]. We denote by isol(x) the set of
all isolated points of x.

Lemma 9.3. Let x =
∨

i∈I xi in Bip(n). Then any isolated point a of x is an

isolated point of some xi.

Proof. It suffices to prove that (a, a) ∈ xi for some i. As x is the transitive closure
of the union of the xi, there are a positive integer ℓ and a = a0, a1, . . . , aℓ−1 ∈ [n]
such that, setting aℓ = a, the pair (ak, ak+1) belongs to

⋃
i∈I xi for each k < ℓ.

As x is transitive, (a0, a1), (a1, a0) ∈ x, and a = a0 is an isolated point of x, we get
a0 = a1, so (a, a) belongs to

⋃
i∈I xi. �

Proposition 9.4. The elements of K(n) are exactly the bipartitions without isolated

points.

Proof. No bipartite join-irreducible element of Bip(n) has any isolated point, hence,
by Lemma 9.3, no element of K(n) has any isolated point.

Conversely, let x ∈ Bip(n) with no isolated point and let (i, j) ∈ x. If i 6= j,
then, by Lemma 5.5, there exists U ∈ Pow∗[n] such that (i, j) ∈ 〈U〉 ⊆ x.

If i = j, then, as x has no isolated point, there exists k 6= i such that (i, k) ∈ x

and (k, i) ∈ x. By the paragraph above, there are U, V ∈ Pow∗[n] such that
(i, k) ∈ 〈U〉 ⊆ x and (k, i) ∈ 〈V 〉 ⊆ x. Hence (i, i) ∈ 〈U〉 ∨ 〈V 〉 ⊆ x. Therefore, x
is a join of clopen sets of the form 〈U〉. �

Proposition 9.5. Let a ∈ [n] and let U ⊆ [n]. The elements of S(n, 〈a, U〉) are

exactly the bipartitions x such that

(i) isol(x) ⊆ {a},
(ii) if isol(x) = {a}, then U c × {a} and {a} × U are both contained in x.

Proof. Every join-irreducible element of Bip(n) which is either bipartite or equal
to 〈a, U〉 satisfies both (i) and (ii) above, hence, by Lemma 9.3, so do all elements
of S(n, 〈a, U〉).

Conversely, let x ∈ Bip(n) satisfy both (i) and (ii) above. If isol(x) = ∅, then,
by Proposition 9.4, x ∈ K(n), hence, a fortiori, x ∈ S(n, 〈a, U〉).

Now suppose that isol(x) = {a}. It follows from (ii) together with the transitivity
of x that 〈a, U〉 ⊆ x. For each (i, j) ∈ x \ {(a, a)}, it follows from the argument
of the proof of Proposition 9.4 that there are U, V ∈ Pow∗[n] such that (i, j) ∈
〈U〉 ∨ 〈V 〉 ⊆ x. Hence x ∈ S(n, 〈a, U〉). �

We are indebted to the first referee for the statement of the following result,
which identifies the ordered bipartition representations (cf. Han [19], Hetyei and
Krattenthaler [20, § 2]) of the elements of K(n) and S(n, 〈a, U〉), respectively. The
proof of Lemma 9.6 is a straightforward exercise.

For a positive integer n, a ∈ [n], and U ⊆ [n], a bipartition x ∈ Bip(n) is (a, U)-
aligned if both sets (U c \{a})×{a} and {a}× (U \{a}) are contained in x (observe
that this does not imply that (a, a) ∈ x as a rule).

Lemma 9.6. The following statements hold:

(i) x ∈ K(n) iff no underlined block of x is a singleton.

(ii) x ∈ S(n, 〈a, U〉) iff either x ∈ K(n) or {a} is the only underlined singleton

block of x and x is (a, U)-aligned.
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Proposition 9.5 makes it possible to identify the factors of the minimal subdi-
rect product decomposition (9.1) of the bipartition lattice Bip(n). Observe that
a similar result is established, in Santocanale and Wehrung [31], for the permu-

tohedron P(n). In that paper, it is proved, in particular, that the corresponding
subdirect factors are exactly the Cambrian lattices of type A (cf. Reading [27]),
denoted there by AU (n), for U ⊆ [n].

Hence the lattices S(n, 〈a, U〉) can be viewed as the analogues, for bipartition
lattices, of the Cambrian lattices of type A (i.e., the AU (n)). For either U = ∅
or U = [n] (the corresponding lattices are isomorphic, via x 7→ xop), we get the
bipartition analogue of the Tamari lattice A(n) = A[n](n) (cf. Santocanale and
Wehrung [31]), namely S(n, 〈a,∅〉) (whose isomorphism class does not depend on a).

Proposition 9.7. Every lattice S(n, 〈a, U〉) is both isomorphic and dually isomor-

phic to S(n, 〈a, U c〉). In particular, S(n, 〈a, U〉) is self-dual.

We shall present two proofs of Proposition 9.7, the first one relying on the lattice
structure of Bip(n), the other one on the ordered bipartition representations that
we recalled at the beginning of Section 9.

First proof of Proposition 9.7. Writing p = 〈a, U〉, the clopen set p̃ = 〈a, U c〉 de-
pends only on p. An isomorphism from S(n,p) onto S(n, p̃) is induced by the
mapping sending a relation x to its opposite xop.

We argue next that S(n,p) is dually isomorphic to S(n, p̃). To this goal, denote
by M(p) the (∧, 1)-subsemilattice of Bip(n) generated by the set

{u ∈ MiBip(n) | (u,u∗) /∈ Ψ(p)} .

It follows from Lemma 2.2, applied to the dual lattice of Bip(n), that Bip(n)op/Ψ(p)
is isomorphic to M(p) endowed with the dual ordering of L; hence,

M(p) ∼= S(n,p) ∼= Bip(n)/Ψ(p) .

On the other hand, M(p) is dually isomorphic, via the operation x 7→ x⊥ of com-
plementation on Bip(n), to the (∨, 0)-subsemilattice S′(p) of Bip(n) generated by
the subset

G
′(p) = {r ∈ Ji(Bip(n)) | (r⊥, (r∗)

⊥
) /∈ Ψ(p)} .

Now for each r ∈ Ji(Bip(n)),

(r⊥, (r∗)
⊥
) /∈ Ψ(p) ⇔ (G(n) ∪ {p}) ↓ r⊥ 6= (G(n) ∪ {p}) ↓ (r∗)

⊥
(by Lemma 2.2)

⇔ (∃q ∈ G(n) ∪ {p})(q ≤ (r∗)
⊥

and q � r⊥)

⇔ (∃q ∈ G(n) ∪ {p})(q ր r⊥) .

If r is bipartite, then, by Lemma 6.6, there is always q ∈ G(n) such that q ր r⊥

(for example q = r). Now suppose that r = 〈b,W 〉 is a clepsydra. By Lemma 6.3,
q ր r⊥ can occur only in case q = 〈b,W c〉; furthermore, this element belongs to
G(n) ∪ {p} iff a = b and U \ {a} =W c \ {a} (cf. Lemma 5.2). Therefore,

G
′(p) = G(n) ∪ {p̃} ,

and therefore S′(p) = S(n, p̃) is dually isomorphic to S(n,p).

Second proof of Proposition 9.7. We are indebted to the first referee of our paper
for pointing to us the dual automorphism τ defined below. Observe that this proof
yields the immediate observation that τ is involutive.
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First, writing bipartition representations in reverse order, and keeping the un-
derlinings, defines the automorphism

κ : Bip(n) → Bip(n) , x 7→ xop . (9.2)

It follows immediately from Lemma 9.6 that this automorphism maps S(n, 〈a, U〉)
onto S(n, 〈a, U c〉).

We shall now define an involutive dual automorphism τ of S(n, 〈a, U〉). For every
x ∈ S(n, 〈a, U〉) with ordered bipartition representation (Xε1

1 , . . . , X
εp
p ), we denote

by τ(x) = τa,U (x) the ordered bipartition with ordered bipartition representation

(X
ε′1
1 , . . . , X

ε′p
p ), where for every i ∈ [p], we set

(i) ε′i = −εi if either cardXi ≥ 2 or Xi = {a} and x is (a, U)-aligned.
(ii) ε′i = εi if Xi = {b} where either b 6= a or x is not (a, U)-aligned. (Neces-

sarily, εi = −1; see Lemma 9.6.)

It is obvious that τ is an involutive bijection of S(n, 〈a, U〉) onto itself. Hence
we only need to prove that τ is order-reversing. Let x,y ∈ S(n, 〈a, U〉), with

respective ordered bipartition representations (Xξ1
1 , . . . , X

ξp
p ) and (Y η1

1 , . . . , Y
ηq

q ),
such that x ⊆ y. We shall prove that τ(y) ⊆ τ(x). By Hetyei and Krattenthaler [20,
Proposition 6.4], there exists a permutation ρ of [n] which is compatible with both x

and y, thus also with both τ(x) and τ(y); and furthermore,

Every underlined Xi is contained in some underlined Yj , (9.3)

Every non-underlined Yj is contained in some non-underlined Xi (9.4)

(recall that the underlined blocks of x are the Xi such that ξi = 1). We must
verify (ii) and (iii) of [20, Proposition 6.4] for the pair (τ(y), τ(x)).

First statement. Let j ∈ [q] such that η′j = 1, we prove that there exists i ∈ [p] such
that ξ′i = 1 and Yj ⊆ Xi. If Yj is not a singleton, then ηj = −1, thus, by (9.4), there
exists i ∈ [p] such that ξi = −1 and Yj ⊆ Xi. In particular, Xi is not a singleton,
thus ξ′i = 1 and we are done. Now suppose that Yj = {b}. From η′j = 1 it follows
that b = a, ηj = −1, and y is (a, U)-aligned. By (9.4), there exists i ∈ [p] such
that a ∈ Xi and ξi = −1. If Xi is not a singleton, then ξ′i = 1 and we are done.
The remaining case is where Xi = {a}. Since ρ is compatible with both x and y,
Xi = Yj = {a}, and y is (a, U)-aligned, x is also (a, U)-aligned, thus ξ′i = −ξi = 1
and we are done.

Second statement. Let i ∈ [p] such that ξ′i = −1, we prove that there exists j ∈ [q]
such that η′j = −1 and Xi ⊆ Yj . Suppose first that Xi is not a singleton. Hence

ξi = 1, thus, by (9.3), there exists j ∈ [q] such that Xi ⊆ Yj and ηj = 1. Since Yj
cannot be a singleton, η′j = −1 and we are done. Suppose from now on that
Xi = {b}. There exists a unique j ∈ [q] such that b ∈ Yj , and we must prove that
η′j = −1. Suppose, to the contrary, that η′j = 1. Necessarily, ηj = −1. By (9.4),
there exists ı ∈ [p] such that ξı = −1 and Yj ⊆ Xı. From {b} = Xi ⊆ Yj ⊆ Xı

it follows that ı = i and Xi = Yj = {b}. Since η′j = 1, it follows that b = a
and y is (a, U)-aligned. Since Xi = Yj = {a} and ρ is compatible with both x

and y, it follows that x is also (a, U)-aligned, thus −1 = ξı = ξi = −ξ′i = 1, a
contradiction. �

Remark 9.8. Set S(n, k) = S(n, 〈1, {2, 3, . . . , k + 1}〉), for all integers n and k with
0 ≤ k < n. Observe that S(n, 〈a, U〉) ∼= S(n, cardU), for each a ∈ [n] and each
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U ⊆ [n] \ {a}. Furthermore, it follows from roposition 9.7 that S(n, 〈a, U〉) ∼=
S(n, 〈a, [n] \ (U ∪ {a})〉), hence S(n, k) ∼= S(n, n − 1 − k), and hence the factors
of the minimal subdirect product decomposition (9.1) of Bip(n) are exactly the
lattices S(n, k) where n > 0 and 0 ≤ 2k < n.

The lattices S(3, 0) and S(3, 1) are represented on the left hand side and the right
hand side of Figure 9.1, respectively.

Figure 9.1. The bipartition-Cambrian lattices S(3, 0) and S(3, 1)

10. The lattice endomorphisms of Bip(n)

For a Coxeter element c in a finite Coxeter group, Reading’s projection map πc
↓

(cf. Reading [29, page 419]) exhibits the Cambrian lattice associated to c as a
lattice retract of the corresponding Coxeter lattice (weak order), see Reading [29,
Theorem 1.2]. In particular, the lattices A(n) and AU (n) are lattice-theoretical
retracts of P(n) (this originates in Björner and Wachs [5] and is stated formally in
Santocanale and Wehrung [31]).

In this section, we shall show that the behavior of the “bipartition-Cambrian
lattices” S(n, k) (cf. Remark 9.8) is quite opposite to the one of Cambrian lattices
of type A. In particular, for n ≥ 3, S(n, k) is never a lattice retract of Bip(n)
(Corollary 10.16). This result will be achieved by proving that Bip(n) has no other
lattice endomorphism than the “obvious” ones (Theorem 10.1).

Throughout this section we shall fix an integer n ≥ 3. Further, we shall denote
by 1 the unit element of Bip(n), that is, 1 = [n]× [n].

Denote by Sn the permutation group of [n]. For every σ ∈ Sn, the assignment

fσ : a 7→ {(σ(x), σ(y)) | (x, y) ∈ a} (10.1)

defines an automorphism of the lattice Bip(n), which commutes with the transpo-
sition automorphism κ defined in (9.2).

Define the standard automorphisms of Bip(n) as those of the form either fσ or
κ ◦ fσ. The standard automorphisms of Bip(n) form a subgroup of the automor-
phism group of Bip(n), isomorphic to Sn ×S2. It will follow from Theorem 10.1
that every automorphism of Bip(n), for n ≥ 3, is standard. Theorem 10.1 does not
extend to n = 2: there are 570 nonconstant lattice endomorphisms of Bip(2), 514
lattice endomorphisms preserving the bounds, while the group of automorphisms
of Bip(2) is the 8-element dihedral group (cf. Figure 7.2).

Theorem 10.1. Let n be an integer, n ≥ 3. Then every nonconstant lattice endo-

morphism of Bip(n) is a standard automorphism.

The proof of Theorem 10.1 will be organized as follows. We will first prove, in
Lemma 10.3, that the zero element in Bip(n) has more upper covers than any other
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element of Bip(n). This, together with the observation that the atoms of Bip(n) all
generate the same congruence (Corollary 8.7) and join to 1 (Lemma 10.4) will
show (Lemma 10.10) that any nonconstant lattice endomorphism f of Bip(n)
must preserve the zero, and, dually, the unit. This will yield, for every U ∈
Pow∗[n], a unique atom 〈g(U)〉 below f(〈U〉) (Lemma 10.12), with g a permutation
of Pow∗[n] (Lemma 10.11) preserving complementary pairs (Lemma 10.13). A pre-
liminary study of join-covering relations among join-irreducible elements of Bip(n)
(Lemma 10.8), will enable us to prove that g preserves unordered extremal par-
titions (Lemma 10.15), which will yield a standard automorphism g ≤ f (i.e.,
g(x) ⊆ f(x) for every x ∈ Bip(n)). By applying that result to the dual endomor-
phism x 7→ f(xc)c, we will obtain a standard automorphism g′ with f ≤ g′, and
then our conclusion will be a consequence of the following well-known result.

Lemma 10.2 (folklore). Let f and g be automorphisms of a finite poset P , and
let x ∈ P . If f(x) ≤ g(x), then f(x) = g(x). In particular, distinct automorphisms

are incomparable with respect to the pointwise ordering.

Proof. If f(x) < g(x), then x < f−1(g(x)), hence, setting h = f−1g, we get
an infinite ascending sequence x < h(x) < h2(x) < · · · < hn(x) < · · · in P , a
contradiction. �

Lemma 10.3. If n ≥ 3, then the degree (i.e., the number of upper covers plus the

number of lower covers) of every x ∈ Bip(n) is at most 2n − 2. In particular, if

x 6= ∅, then x has less than 2n − 2 upper covers.

Note that Lemma 10.3 does not not extend to the case n = 2, as it can easily be
seen from the Hasse diagram of Bip(2) in Figure 7.2.

Proof of Lemma 10.3. Let x = Xε1
1 ⊕· · ·⊕Xεm

m (cf. Section 9) and set ni = cardXi,
for each i ∈ [m]. If x = ∅, then the upper covers of x are the 〈U〉, for U ∈ Pow∗[n]
(cf. Lemma 8.2) and we are done. The case where x = 1 follows from applying the
dual automorphism x 7→ xc.

Suppose from now on that x 6= ∅ and x 6= 1; that is, m ≥ 2. By Hetyei and
Krattenthaler [20, Theorem 5.1], the upper and lower covers of x can be evaluated
according to the following rules:

(1) Merge two adjacent blocks Xεi
i , X

εi+1

i+1 with εi = εi+1 into a new block
(Xi ∪Xi+1)

εi .
(2) Split a block Xεi

i into two new adjacent blocks Y εi , Zεi .
(3) Exchange the polarity εi of a singleton block Xεi

i .

Let Ni, for i ∈ {1, 2, 3}, be the number of upper and lower covers of x obtained
according to rules (1), (2), and (3), respectively. Let N be the degree of x. It is
immediate that N1 ≤ m− 1 and

N2 +N3 ≤
∑

ni≥2

(2ni − 2) + card{i | ni = 1} ≤

m∑

i=1

(2ni − 1) =
( m∑

i=1

2ni

)
−m,

whence

N = N1 +N2 +N3 ≤
( m∑

i=1

2ni

)
− 1 . (10.2)

We claim that
∑m

i=1 2
ni ≤ 2n−1. Pick bi ∈ Xi, for i ∈ [m]. Since m ≥ 2 and n ≥ 3,

the sets X =
⋃m

i=1

(
Pow(Xi) \ {∅}

)
and B = {{bi, bj} | i 6= j} are both contained
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in Pow∗[n]. Since m ≥ 2 and B ∩X = ∅, it follows that
m∑

i=1

2ni −1 =
m∑

i=1

(
2ni − 1

)
+m−1 ≤

m∑

i=1

(
2ni − 1

)
+

(
m

2

)
= card(X∪B) ≤ 2n−2 ,

which proves our claim. The desired conclusion follows from (10.2). �

Lemma 10.4. The following statements hold.

(i) J × I ∈ Bip(n) iff [n] = I ∪ J , for all I, J ⊆ [n].
(ii) 〈U〉 ∨ 〈V 〉 = 1 iff V = U c, for all U, V ∈ Pow∗[n].

Proof. (i) is obvious.
(ii) It follows from (i) that a = (U c ∪ V c) × (U ∪ V ) belongs to Bip(n). Since

〈U〉 ∨ 〈V 〉 is contained in a, it follows that 〈U〉 ∨ 〈V 〉 = 1 implies that a = 1, that
is, V = U c.

Assume, conversely, that V = U c, and pick (u, v) ∈ U × U c. Let x, y ∈ [n], we
prove that (x, y) ∈ 〈U〉 ∨ 〈U c〉. Since this holds whenever (x, y) ∈ 〈U〉 ∪ 〈U c〉, it
remains to check the case where {x, y} ⊆ U and the case where {x, y} ⊆ U c. In the
first case, the desired conclusion follows from (x, v) ∈ 〈U c〉 and (v, y) ∈ 〈U〉. In the
second case, it follows from (x, u) ∈ 〈U〉 and (u, y) ∈ 〈U c〉. �

From now on we shall denote by P the set of all atoms of Bip(n) (that is, the
set of all 〈U〉, for U ∈ Pow∗[n]) and by Q the set of all nonzero elements of Bip(n)

containing exactly one atom. The clepsydras ãx and b̃x defined by

ãx = [n]× {x} = {x}c ⊕ {x} = 〈x,∅〉 and b̃x = {x} × [n] = {x} ⊕ {x}c = 〈x, [n]〉 ,

for x ∈ [n], all belong to Q, with respective lower covers

ax = {x}c×{x} = {x}c⊕{x} = 〈{x}〉 and bx = {x}×{x}c = {x}⊕{x}c = 〈{x}c〉 .

Lemma 10.5. Q = P ∪ {ãx | x ∈ [n]} ∪ {b̃x | x ∈ [n]}.

Proof. Let p = 〈x, U 〉, with U ⊆ {x}c, be a clepsydra. The distinct bipartitions
u = U c × U and v = (U c \ {x})× (U ∪ {x}) are properly contained in p, thus, if
p ∈ Q, then either u or v is not an atom, that is, either u = ∅ or v = ∅, which
easily implies that either p = ãx or p = b̃x.

Now let c ∈ Q \ P . By Lemmas 8.1 and 8.2, c is the join of the atoms and of
the clepsydras below it. Since c ∈ Q \ P , there is at least a clepsydra below c.

Every such clepsydra belongs to Q, thus it has the form either ãx or b̃x. Since the
lower covers of those clepsydras, that is, all the ax and bx, are pairwise distinct,
it follows that there is exactly one clepsydra below c, which, by symmetry, may
be assumed to be ãx. Since c ∈ Q, the only atom below c is ax. Therefore,
c = ãx ∨ ax = ãx. �

Lemma 10.6. Let I ⊆ [n]. Then
∨

i∈I ai ⊆
∨

i∈I ãi = [n] × I and
∨

i∈I bi ⊆∨
i∈I b̃i = I × [n]. Furthermore, if card I ≥ 2, then the equality holds everywhere.

Proof. A simple application of the dual automorphism x 7→ xop reduces the state-
ment about the bi to the one about the ai. Then the only nontrivial statement to
establish is that if card I ≥ 2, then [n] × I is contained in a =

∨
i∈I ai. We must

prove that any (x, i) ∈ [n]× I belongs to a. If x 6= i, then (x, i) ∈ ai ⊆ a. Suppose
now that x = i. Since card I ≥ 2, there exists j ∈ I \ {i}. From (i, j) ∈ aj and
(j, i) ∈ ai it follows again that (i, i) ∈ a. �
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Lemma 10.7. The set {ai | i ∈ [n]}∪{bi | i ∈ [n]} generates Bip(n) as a sublattice.

Proof. It follows immediately from Lemma 10.6 that ãi = (ai ∨ aj) ∩ (ai ∨ ak),
thus, a fortiori, ãi = (ai ∨ aj) ∧ (ai ∨ ak) whenever i, j, k are distinct. A similar

formula holds for b̃i. Finally, if card I, cardJ ≥ 2 we get J× I =
∨

i∈I ai∩
∨

j∈J bj ;

if I ∪ J = [n], then J × I ∈ Bip(n), thus, a fortiori, J × I =
∨

i∈I ai ∧
∨

j∈J bj .

Since all join-irreducible elements of Bip(n) have one of the forms ai, bi, ãi, b̃i,
or J × I above (with card I, cardJ ≥ 2), and since the join-irreducible elements
generate Bip(n) as a sublattice, the conclusion follows. �

Lemma 10.8. Let k ∈ [n] and let I and J be disjoint subsets of [n]. Then ak ⊆∨
i∈I ai ∨

∨
j∈J bj iff ak ⊆

∨
i∈I ãi ∨

∨
j∈J b̃j, iff either k ∈ I or {k}c ⊆ J .

Proof. If {k}c ⊆ J , then, since n ≥ 3 and by Lemma 10.6,

ak ⊆ {k}c × [n] ⊆
∨

j∈J

bj ⊆
∨

i∈I

ai ∨
∨

j∈J

bj .

Further, it is trivial that k ∈ I implies ak ⊆
∨

i∈I ai ∨
∨

j∈J bj .

Conversely, suppose that ak ⊆
∨

i∈I ãi ∨
∨

j∈J b̃j . By Lemma 10.6, it follows

that {k}c × {k} = ak is contained in ([n] × I) ∨ (J × [n]) = ([n] × I) ∪ (J × [n])
(we use here the disjointness of I and J). It follows easily that either k ∈ I or
{k}c ⊆ J . �

Remark 10.9. Lemma 10.8 shows that {bj | j 6= i} is the unique nontrivial min-
imal join-cover of ai made of extremal atoms (cf. Definition 8.4). However, by
Lemma 8.5, ai has many other minimal join-covers.

From now on we shall fix a nonconstant lattice endomorphism f of Bip(n). We
shall prove that f is a standard automorphism. The main part of the argument
consists of proving that there exists a standard automorphism g such that g ≤ f .

Lemma 10.10. f−1{∅} = ∅ and f−1{1} = {1}.

Proof. We claim that f(p) 6= f(∅), for every atom p of Bip(n). Suppose, to the
contrary, that f(p) = f(∅). This means that con(p) is contained in the kernel
of f , hence, by Corollary 8.7, con(q) is also contained in the kernel of f , that is,
f(q) = f(∅), for every atom q. By Lemma 10.4(ii), it follows that f(1) = f(∅), a
contradiction since f is nonconstant.

Now suppose that f(∅) 6= ∅. It follows from Lemma 10.3 that f(∅) has less than
2n−2 upper covers in Bip(n). For every atom p of Bip(n), it follows from our claim
that there exists an upper cover ap of f(∅) such that ap ⊆ f(p). Since Bip(n)
has 2n − 2 atoms, there are distinct atoms p and q of Bip(n) such that ap = aq;
denote by a the common value. It follows that a ⊆ f(p)∧ f(q) = f(p∧q) = f(∅),
a contradiction. This proves that f(∅) = ∅. If f(a) = ∅ for some a 6= ∅, then
f(p) = ∅ for some atom p, in contradiction with the claim. Hence f−1{∅} = {∅}.

By applying the above result to the endomorphism x 7→ f(xc)c, we obtain that
f−1{1} = {1}. �

It follows from Lemma 10.10 that for every U ∈ Pow∗[n], there exists g(U) ∈
Pow∗[n] such that 〈g(U)〉 ⊆ f(〈U〉).

Lemma 10.11. The map g is a permutation of Pow∗[n].
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Proof. It suffices to prove that g is one-to-one. Suppose that g(U0) = g(U1) = V ,
for V ∈ Pow∗[n] and distinct U0, U1 ∈ Pow∗[n]. By using Lemma 10.10, we get

〈V 〉 ⊆ f(〈U0〉) ∧ f(〈U1〉) = f(〈U0〉 ∧ 〈U1〉) = f(∅) = ∅ ,

a contradiction. �

Our next lemma shows that the elements f(p), for an atom p, all belong to Q.

Lemma 10.12. Let U ∈ Pow∗[n]. Then g(U) is the unique V ∈ Pow∗[n] such that

〈V 〉 ⊆ f(〈U〉). In particular, f(〈U〉) belongs to Q.

Proof. Let V ∈ Pow∗[n] such that 〈V 〉 ⊆ f(〈U〉) and suppose that V 6= g(U). By
Lemma 10.11, there exists U ′ ∈ Pow∗[n] such that V = g(U ′). Necessarily, U ′ 6= U ,
hence

〈V 〉 ⊆ f(〈U〉) ∧ f(〈U ′〉) = f(〈U〉 ∧ 〈U ′〉) = f(∅) = ∅ ,

a contradiction. �

Lemma 10.13. g(U c) = g(U)c, for every U ∈ Pow∗[n].

Proof. Set V = g(U). By Lemma 10.11, V c = g(U ′) for some U ′ ∈ Pow∗[n].
From Lemma 10.4 it follows that 1 = 〈V 〉 ∨ 〈V c〉, thus 1 = f(〈U〉) ∨ f(〈U ′〉) =
f(〈U〉 ∨ 〈U ′〉), and thus, by Lemma 10.10, 1 = 〈U〉 ∨ 〈U ′〉. By Lemma 10.4 again,
it follows that U ′ = U c. �

Lemma 10.14. Let m be a positive integer, let x ∈ Bip(n), let U ∈ Pow∗[n],
and let U1, . . . , Um ∈ Pow∗[n]. Then 〈U〉 ⊆

∨m
i=1〈Ui〉 ∨ x implies that 〈g(U)〉 ⊆∨m

i=1〈g(Ui)〉 ∨ f(x).

Proof. We may assume that U 6= Ui for each i ∈ [m]. By Lemmas 10.5 and 10.12,
for every i, the element pi = f(〈Ui〉) is either equal to 〈g(Ui)〉 or to a clepsydra
with lower cover 〈g(Ui)〉. Since f is a join-homomorphism and by the definition
of g, we get 〈g(U)〉 ⊆ f(〈U〉) ⊆

∨m
i=1 pi ∨ f(x). Let I be a minimal subset of [m]

such that

〈g(U)〉 ⊆
∨

i∈I
pi ∨

∨
i∈[m]\I

〈g(Ui)〉 ∨ f(x) ,

and suppose that I is nonempty. Pick j ∈ I. By the minimality assumption on I,
pj is a clepsydra with lower cover (pj)∗ = 〈g(Uj)〉 and we obtain

〈g(U)〉 6⊆
∨

i∈I\{j}
pi ∨

∨
i∈[m]\I

〈g(Ui)〉 ∨ (pj)∗ ∨ f(x) ,

hence 〈g(U)〉D pj , which is impossible since pj is a clepsydra and by Lemma 6.4.
Hence I = ∅, which proves the desired containment. �

Lemma 10.15. Let U ∈ Pow∗[n]. If either g(U) or g(U)c is a singleton, then

either U or U c is a singleton.

Proof. Suppose otherwise. It follows from Lemma 8.5 that 〈U〉 D 〈U〉c, so there
exists x ∈ Bip(n) such that 〈U〉 ⊆ 〈U c〉 ∨ x and 〈U〉 6⊆ x. A direct application of
Lemma 10.14, for m = 1, yields that

〈g(U)〉 ≤ 〈g(U c)〉 ∨ f(x) . (10.3)

Since 〈U〉 6⊆ x and 〈U〉 is an atom, f(〈U〉) ∧ f(x) = f(〈U〉 ∧ x) = f(∅) = ∅, thus,
a fortiori, 〈g(U)〉∧f(x) = ∅, and thus 〈g(U)〉 6⊆ f(x). By (10.3) and since 〈g(U c)〉
is an atom, it follows that 〈g(U)〉D 〈g(U c)〉.
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Now by Lemma 10.13, g(U c) = g(U)c. By Lemma 8.5, it follows that nei-
ther g(U) nor g(U)c is a singleton, which contradicts our assumption. �

End of the proof of Theorem 10.1. Lemma 10.15 shows that the necessarily bijec-
tive correspondence sending {U,U c} to {g(U), g(U)c} preserves extremal (unor-
dered) partitions, see Definition 8.4. As n ≥ 3, an extremal unordered partition is
uniquely identified by its singleton; thus, there exists a permutation γ ∈ Sn such
that {g({i}), g({i}c)} = {{γ(i)}, {γ(i)}c} for all i ∈ [m]; so g({i}) is either equal
to {γ(i)} or to {γ(i)}c. Say that g is positive at i, in the first case, and negative

at i, in the second case.
We want to prove that there exists a standard automorphism g ≤ f . By possibly

precomposing f with κ, we reduce the problem to the case where g is positive at 1.
From 〈{1}〉 ⊆

∨
j 6=1〈{j}

c〉 together with Lemma 10.14 we get

aγ(1) = 〈{γ(1)}〉 = 〈g({1})〉 ⊆
∨

j 6=1

〈g({j}c)〉 ,

with each 〈g({j}c)〉 ∈ {aγ(j), bγ(j)}. By Lemma 10.8, it follows that 〈g({j}c)〉 =
bγ(j) for all j 6= 1, thus, by Lemma 10.13, 〈g({j})〉 = aγ(j), and thus g is positive
at every element of [n]. Hence, for every i ∈ [n],

fγ(ai) = aγ(i) = 〈g({i})〉 ⊆ f(〈{i}〉) = f(ai) ,

and, similarly (using Lemma 10.13), fγ(bi) ⊆ f(bi). Since {x | fγ(x) ⊆ f(x)} is a
sublattice of Bip(n), it follows from Lemma 10.7 that fγ ≤ f .

By applying this result to the endomorphism x 7→ f(xc)c, it follows that there
exists γ′ ∈ Sn such that f ≤ fγ′ . Since fγ ≤ f ≤ fγ′ and by Lemma 10.2, it follows
that f = fγ = fγ′. �

Corollary 10.16. Let n ≥ 3. Then no nontrivial lattice quotient of Bip(n) can

be embedded into Bip(n) as a sublattice. In particular, neither K(n) nor S(n, k),
where 0 ≤ 2k < n, can be embedded into Bip(n) as a sublattice.

Proof. Let L be a lattice and let f : Bip(n) ։ L be a surjective lattice homomor-
phism. If g : L →֒ Bip(n) is a lattice embedding, then g◦f is a lattice endomorphism
of Bip(n), thus, by Theorem 10.1, either g ◦ f is constant (in which case f is con-
stant) or g ◦ f is an isomorphism (in which case f is an isomorphism). �

Remark 10.17. For any sets E and F and any surjective map f : F ։ E, we can
define a lattice embedding f [−1] : Bip(E) →֒ Bip(F ), preserving the bounds, by
setting

f [−1](a) = {(x, y) ∈ F × F | (f(x), f(y)) ∈ a} , for all a ∈ Bip(E) .

For an infinite set E, there is a surjective, non-injective map f : E ։ E, and then
f [−1] is not surjective (for if x 6= y and f(x) = f(y), then {x}c × {x} does not
belong to the range of f [−1]). This shows that Theorem 10.1 does not extend to the

infinite case, even for lattice embeddings preserving the bounds.
On the other hand, an easy modification of the proof of Theorem 10.1, with

joins and meets no longer necessarily finite, makes it possible to prove that Every
automorphism of the poset Bip(E) is standard (with the obvious extension of the
definition of “standard” to arbitrary sets), for any (possibly infinite) set E with at

least three elements. The proof of this result is, actually, noticeably easier than the
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one of Theorem 10.1, as atoms are automatically sent to atoms, so the proof yields
directly fγ = f (instead of only fγ ≤ f).

11. Cardinalities of the bipartition-Cambrian lattices

It is known since Reading [27, Theorem 1.3] that all Cambrian lattices of type A,
associated with the permutohedron of index n (i.e., the lattices AU (n)), have car-
dinality 1

n+1

(
2n
n

)
, which is independent of U (i.e., of the orientation). This result

actually extends to all finite Coxeter groups, as it can be seen by combining Reading
[28, Theorem 9.1] with Reading [29, Theorem 1.1]: the former gives the enumeration
of all sortable elements, while the latter says that the sortable elements are exactly
the minimal elements of the Cambrian congruence classes. Hohlweg and Lange give
in [14] a geometric interpretation of the undirected covering graphs of Cambrian
lattices of type either A or B as oriented vertex-edge graphs of the corresponding
associahedra; see Section 1 of that paper.

The following computations emphasize that the situation is quite different for
the subdirectly irreducible factors S(n, k) of Bip(n), whose size depends on k.

We shall set M(n) = cardBip(n), K(n) = cardK(n), and S(n, k) = cardS(n, k)
(cf. Remark 9.8), for all possible values of n and k. It is established in Wagner [33]
that the M(n) are characterized by the induction formula

M(0) = 1 ; M(n) = 2 ·

n∑

k=1

(
n

k

)
M(n− k) if n > 0 . (11.1)

The first entries of the sequence of numbers M(n) are

M(1) = 2; M(2) = 10; M(3) = 74 ; M(4) = 730 ; M(5) = 9,002 ; M(6) = 133,210 .

The sequence of numbers M(n) is A004123 of Sloane’s Encyclopedia of Integer
Sequences [25].

We are indebted to the first referee for suggesting us the following formulas (11.2)
and (11.3) for calculating K(n) and S(n, k), for all possible values of n and k.
We shall use the characterizations of the elements of K(n) and S(n, k) given by
Lemma 9.6. Let x ∈ Bip(n) with ordered bipartition representation (Xε1

1 , . . . , X
εp
p ).

We first count all the possibilities where x ∈ K(n). Set l = cardXp. If 2 ≤ l ≤ n,
then both underlinings of Xp are possible, and there are K(n − l) possiblities for
(Xε1

1 , . . . , X
εp−1

p−1 ), which gives 2
(
n
l

)
K(n − l) possibilities. If l = 1, then only the

underlining εp = −1 is possible, which gives n · K(n − 1) possibilities. Hence
the K(n) are given by the induction formula

K(0) = 1; K(n) = n ·K(n− 1) + 2

n∑

l=2

(
n

l

)
K(n− l) if n > 0 . (11.2)

For small values of n, these numbers are the following:

K(1) = 1 ; K(2) = 4 ; K(3) = 20 ; K(4) = 138 ; K(5) = 1,182 ; K(6) = 12,166 .

Finally, we can compute the cardinalities of the lattices S(n, k) as follows:

S(n, k) = K(n) +K(n− 1− k) ·K(k) . (11.3)

Indeed, recalling that S(n, k) = S(n, 〈1, {2, 3, . . . , k + 1}〉, if a bipartition x ∈
S(n, k) has an underlined singleton block, then this block is {1}, and furthermore,
both {1} × [2, k + 1] and [k + 2, n] × {1} are contained in x; thus, besides all
the bipartitions with no underlined singleton block (i.e., the elements of K(n)),
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we must count the bipartitions whose ordered bipartition representation has the
form (π1, {1}

+1, π2), where π1 represents a bipartition on [k+2, n], π2 represents a
bipartition on [2, k+1], and neither π1 nor π2 have any underlined singleton block.

For small values of n, the orders of the lattices S(n, k) are the following:

S(1, 0) = 2 . S(2, 0) = 5 .

S(3, 0) = 24 ; S(3, 1) = 21 .

S(4, 0) = 158 ; S(4, 1) = 142 .

S(5, 0) = 1,320 ; S(5, 1) = 1,202 ; S(5, 2) = 1,198 .

S(6, 0) = 13,348 ; S(6, 1) = 12,304 ; S(6, 2) = 12,246 .

12. Open problems

Our first problem asks for a converse to Theorem 7.8.

Problem 1. Can every finite ortholattice, which is also a bounded homomorphic
image of a free lattice, be embedded into Reg(e), for some finite strict ordering e?

A variant of Problem 1, for arbitrary finite ortholattices, is the following.

Problem 2. Can every finite ortholattice be embedded into Bip(n), for some pos-
itive integer n?

On the opposite side of Problems 1 and 2, it is natural to state the following
problems.

Problem 3. Is there a nontrivial lattice (resp., ortholattice) identity that holds in
Reg(e) for every finite strict ordering e?

Problem 4. Is there a nontrivial lattice (resp., ortholattice) identity that holds in
Bip(n) for every positive integer n?

Bruns observes in [6, §(4.2)] that the variety of all ortholattices is generated by
its finite members (actually, the argument presented there shows that “variety”
can even be replaced by “quasivariety”). This shows, for example, that Problems 2
and 4 cannot simultaneously have a positive answer.

13. Acknowledgment

The authors are grateful to the referees of the paper for their careful reading
and comments. Special thanks are due to the first referee, who went much beyond
the call of duty, suggesting various improvements to the paper, most notably to
Lemma 9.6, Proposition 9.7, and Section 11. The authors are grateful to William
McCune for his amazing Prover9-Mace4 program [23], to Ralph Freese for his lat-
tice drawing program [15], and to the authors of the Graphviz framework, available
online at http://www.graphviz.org/. Part of this work was completed while the
second author was visiting the CIRM in March 2012. Excellent conditions provided
by the host institution are greatly appreciated.

References

[1] J. Barwise and J. Etchenmendy, “Language, Proof and Logic”, in collaboration with G.
Allwein, D. Barker-Plummer and A. Liu, CSLI publications, Seven Bridges Press, New York
- London, 1999. vi+587 p. ISBN 1-889119-08-3 .

http://www.graphviz.org/


EXTENDED PERMUTOHEDRON 33

[2] M.K. Bennett and G. Birkhoff, Two families of Newman lattices, Algebra Universalis 32,
no. 1 (1994), 115–144.

[3] G. Birkhoff, “Lattice theory”. Third (new) ed., American Mathematical Society Colloquium
Publications, Vol. 25. American Mathematical Society, Providence, R.I., 1967. vi+418 p.

[4] A. Björner, Orderings of Coxeter groups, Contemp. Math. 34 (1984), 175–195.
[5] A. Björner and M.L. Wachs, Shellable nonpure complexes and posets. II, Trans. Amer. Math.

Soc. 349, no. 10 (1997), 3945–3975.
[6] G. Bruns, Free ortholattices, Canad. J. Math. 28, no. 5 (1976), 977–985.
[7] N. Caspard, The lattice of permutations is bounded, Internat. J. Algebra Comput. 10, no. 4

(2000), 481–489.
[8] N. Caspard, C. Le Conte de Poly-Barbut, and M. Morvan, Cayley lattices of finite Coxeter

groups are bounded, Adv. in Appl. Math. 33, no. 1 (2004), 71–94.
[9] C. Chameni-Nembua and B. Monjardet, Les treillis pseudocomplémentés finis, European J.

Combin. 13, no. 2 (1992), 89–107.
[10] B.A. Davey and H.A. Priestley, “Introduction to Lattices and Order”, Cambridge University

Press, New York, 2002. xii+298 p. ISBN: 0-521-78451-4 .
[11] V. Duquenne and A. Cherfouh, On permutation lattices, Math. Social Sci. 27 (1994), 73–89.
[12] S. Flath, The order dimension of multinomial lattices, Order 10, no. 3 (1993), 201–219.
[13] D. Foata and D. Zeilberger, Graphical major indices, J. Comput. Appl. Math. 68, no. 1-2

(1996), 79–101.
[14] C. Hohlweg and C. Lange, Realizations of the associahedron and cyclohedron, Discrete Com-

put. Geom. 37, no. 4 (2007), 517–543.
[15] R. Freese, Lattice Drawing, online lattice drawing program available at

http://www.math.hawaii.edu/~ralph/LatDraw/.
[16] R. Freese, J. Ježek, and J. B. Nation, “Free Lattices”, Mathematical Surveys and Monographs

42, Amer. Math. Soc., Providence, 1995. viii+293 p. ISBN: 0-8218-0389-1 .
[17] G. Grätzer, “Lattice Theory: Foundation”. Birkhäuser/Springer Basel AG, Basel, 2011.
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