A new fingerprint to predict nonribosomal peptides activity.

Abstract : Bacteria and fungi use a set of enzymes called nonribosomal peptide synthetases to provide a wide range of natural peptides displaying structural and biological diversity. So, nonribosomal peptides (NRPs) are the basis for some efficient drugs. While discovering new NRPs is very desirable, the process of identifying their biological activity to be used as drugs is a challenge. In this paper, we present a novel peptide fingerprint based on monomer composition (MCFP) of NRPs. MCFP is a novel method for obtaining a representative description of NRP structures from their monomer composition in fingerprint form. Experiments with Norine NRPs database and MCFP show high prediction accuracy (>93 %). Also a high recall rate (>82 %) is obtained when MCFP is used for screening NRPs database. From this study it appears that our fingerprint, built from monomer composition, allows an effective screening and prediction of biological activities of NRPs database.
Type de document :
Article dans une revue
Journal of Computer-Aided Molecular Design, Springer Verlag, 2012, 26 (10), pp.1187-94. <10.1007/s10822-012-9608-4>


https://hal.archives-ouvertes.fr/hal-00750002
Contributeur : Maude Pupin <>
Soumis le : jeudi 8 novembre 2012 - 17:41:01
Dernière modification le : vendredi 8 janvier 2016 - 01:06:55
Document(s) archivé(s) le : samedi 9 février 2013 - 03:51:02

Fichier

fingerprint_nrps_jcamd2012.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Ammar Hasan Abdo, Ségolène Caboche, Valérie Leclère, Philippe Jacques, Maude Pupin. A new fingerprint to predict nonribosomal peptides activity.. Journal of Computer-Aided Molecular Design, Springer Verlag, 2012, 26 (10), pp.1187-94. <10.1007/s10822-012-9608-4>. <hal-00750002>

Exporter

Partager

Métriques

Consultations de
la notice

353

Téléchargements du document

181