Multi-objective local search for mining Pittsburgh classification rules

Julie Jacques, Julien Taillard, David Delerue, Laetitia Jourdan, Clarisse Dhaenens

To cite this version:

HAL Id: hal-00749712
https://hal.archives-ouvertes.fr/hal-00749712
Submitted on 8 Nov 2012
Multi-objective local search for mining Pittsburgh classification rules

J. Jacques1,3, J. Taillard1, D. Delerue1, L. Jourdan2,3, and C. Dhaenens2,3

1 Société ALICANTE, 50 Rue Philippe de Girard, 59113 Seclin, France
\texttt{julie.jacques@alicante.fr, julien.taillard@alicante.fr, david.delerue@alicante.fr}

2 INRIA Lille Nord Europe, 40 Av. Halley, 59650 Villeneuve d’Ascq, France
\texttt{laetitia.jourdan@inria.fr, clarisse.dhaenens@lifl.fr}

3 LIFL, Université de Lille 1, Bât. M3, 59655 Villeneuve d’Ascq cedex, France

1 Context

Classification rule mining aims to extract, from known data, rules predicting a chosen fact – called class, which can be for example cardiovascular risk in a medical context. The following rule is an example of what can be extracted:

\[\text{diabetes and age > 70} \rightarrow \text{cardiovascular risk} \]

Training data is composed of observations (sells, credit approvals, patients...) each of them having some attributes (e.g.: items sold, salary, diagnosis...). The obtained prediction rules are understandable, in contrast to models found by neural networks or support vector machines. Decision trees (C4.5, Oblique-DT, DT-GA) are another popular method but have a drawback when multiple contexts can explain a same class, since they are not able to find overlapping rules. This can happen in medical data, e.g. cardiovascular risk is higher when both high blood pressure and diabetes are found than when only diabetes or high blood pressure is found.

2 Multi-objective local search for classification rule mining

A large number of available rules can be generated from a small number of attributes; exploring all of them to extract only the interesting ones is a costly task, even impossible when a lot of attributes are available. Therefore combinatorial optimization methods are candidate methods to deal with rule mining; they are able to deal with large search spaces. Two major rule encodings are available; Michigan is the common one, where each solution is a single rule. In Pittsburgh encoding each solution is a set of rules. This encoding increases the search space and adds complexity for mutation and cross-over operators but allows finding complementary rules, like in medical data. Accuracy is often used as a fitness function. Accuracy measure counts good classifications provided by a rule: true positives and false negatives, over all classifications given by this rule. A rule with an accuracy of 1 makes no wrong classification, while a rule with an accuracy of 0.7 is wrong for 30% of observations. Another popular criterion is Minimum description length (MDL) principle [4], an application of Occam’s razor: given two equivalent rules, the simplest rule (the shortest) must be preferred.

Multi-objective approach can handle mining rules on multiple criteria, obtaining rules having both good performance and simplicity. Many multi-objective methods were proposed for rule mining and most of them are detailed in Srinivasan and Ramkrishnan’s review [5]. Methods using an aggregation of objectives can give interesting results, like learning classifier systems (LCS), including GAStSt [1] and XCS [6]. Most of them are based on genetic algorithms, especially NSGA-II. But one of them uses GRASP which is a greedy algorithm.

We propose a multi-objective model, based on 2 criteria: maximizing accuracy and minimizing the number of terms (MDL principle). We implemented a Dominance-based multi-objective local search (DMLS), which is a population-based local search algorithm dedicated to multi-objective and has proven to give at least as good results as NSGA-II on several problems [3]. Moreover, DMLS is easier to parameter than a GA and does not need any cross-over operator. Our solution encoding is Pittsburgh. Each of our rules-sets contains only partial classification rules (e.g.: only rules predicting cardiovascular risk), avoiding rule inconsistency.
3 Results

3.1 Experiments

Fernández et al compared 22 state-of-the-art classification rule mining algorithms on 30 datasets, providing their obtained accuracy on each dataset [2]. We compared our method to the results they obtained. In the proposed datasets, we selected 5 of them with less continuous attributes since our model was designed to handle discrete attributes. When continuous attributes were available (crx, hea and hep datasets), we discretized each attribute in 10 bins. According to Fernández et al protocol, our algorithm was run 25 times for each dataset. Datasets are split into 5-fold cross-validation: 20% of observations in each fold. Then 4 folds are used for training, 1 for evaluation. For each available partition, the algorithm was run 5 times. After each run, obtained rule sets are merged into one rule set, on which we can compute accuracy.

Results are available in Table 3.1. We selected among the 22 available, the 10 algorithms giving the best results. For each dataset (bre, crx, hea, hep, tic) we selected the best obtained accuracy by these algorithms. Then we computed the relative error to the best for each algorithm. A value of 0 indicates the algorithm that obtained the best accuracy. Our results are available in the first column.

![Table 1.](image)

<table>
<thead>
<tr>
<th></th>
<th>MOCA</th>
<th>XCS</th>
<th>SIA</th>
<th>Oblique-DT</th>
<th>CORE</th>
<th>GAssist</th>
<th>OCEC</th>
<th>DT-GA</th>
<th>HIDER</th>
<th>C4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>bre</td>
<td>0.0000</td>
<td>0.0074</td>
<td>0.0795</td>
<td>0.1672</td>
<td>0.0325</td>
<td>0.0200</td>
<td>0.1333</td>
<td>0.0278</td>
<td>0.0000</td>
<td>0.0144</td>
</tr>
<tr>
<td>crx</td>
<td>0.0008</td>
<td>0.0067</td>
<td>0.2404</td>
<td>0.0727</td>
<td>0.0411</td>
<td>0.0060</td>
<td>0.0000</td>
<td>0.0043</td>
<td>0.0625</td>
<td>0.0124</td>
</tr>
<tr>
<td>hea</td>
<td>0.0686</td>
<td>0.0194</td>
<td>0.1563</td>
<td>0.0759</td>
<td>0.0675</td>
<td>0.0000</td>
<td>0.0259</td>
<td>0.0352</td>
<td>0.0962</td>
<td>0.0056</td>
</tr>
<tr>
<td>hep</td>
<td>0.0500</td>
<td>0.0000</td>
<td>0.0667</td>
<td>0.0750</td>
<td>0.1111</td>
<td>0.0472</td>
<td>0.1222</td>
<td>0.0944</td>
<td>0.0639</td>
<td>0.1250</td>
</tr>
<tr>
<td>tic</td>
<td>0.2650</td>
<td>0.1448</td>
<td>0.0000</td>
<td>0.0971</td>
<td>0.1458</td>
<td>0.0467</td>
<td>0.1860</td>
<td>0.1716</td>
<td>0.2991</td>
<td>0.1400</td>
</tr>
</tbody>
</table>

Table 1. Relative error to the best for some state-of-the-art classification rule mining algorithms

3.2 Discussion

Table 3.1 shows that our method obtained the best solutions on bre dataset. When outperformed, it is each time by different algorithms, moreover on crx the obtained accuracy is very close to the best. Furthermore, these results are obtained with a local search, which is easier to configure than most of evaluated algorithms that are GA. Bad results on tic and hea datasets suggest neighborhood operators may be weak regarding those used by GA: GAssist with a similar model but more operators obtained better results. A future work could focus on improving our operators.

References