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Abstract. We discuss the characterization of a π-phase shift quantum gate

acting on a qubit encoded in superpositions of coherent states. We adopt a

technique relying on some a priori knowledge about the physics underlying the

functioning of the device. A parameter summarizing the global quality of the

quantum gate is obtained by ‘virtually’ processing an entangled state. With such

an approach, we can facilitate the characterization of our gate, focusing on the

useful subspace rather than on the entire phase space.

Quantum logic is the basis of future quantum computers. For this purpose, operations

are performed on quantum systems in order to implement the desired processing steps.

Unavoidably, such operations will only be an approximation of the ideal quantum gates, and

the degree to which this approximation is acceptable is determined by the effectiveness of error

correction codes [1]. The characterization of quantum operations is then an important step in

establishing practical limits in the use of such devices.

A crucial requirement is that the system remains under controlled manipulation, and is well

preserved from coupling to the environment, so that the action of the gates is not spoiled by

decoherence. Optics offers an interesting option in this sense; within quantum optics, several
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proposals have been put forward, based on either a discrete [2] or a continuous variable

approach [3].

Recently, a different point of view emerged that aims to combine the strengths of both

worlds and encodes quantum bits (qubits) in superpositions of weak coherent states [4, 5].

The peculiarity of this approach is that the logical states |0〉 and |1〉 are represented by

two non-orthogonal (thus not mutually exclusive) states of the system, namely two coherent

states with the same amplitude and opposite phase |α〉 and |−α〉; this has been proved to be

an error-correctable approach for moderately low intensities |α| ∼ 1.5, where the overlap is

|〈α| −α〉|2 ∼ 10−4 [6]. The cost of this choice is that the gates are necessarily probabilistic,

with a success rate that depends on this overlap; remarkably, however, the comparison with

other optical schemes in terms of resources needed for scalability seems favorable [6, 7].

Gates on coherent-state qubits architecture cannot be described by ordinary rank-4 tensors,

as they are defined using non-orthogonal states as a basis. Moreover, decoherence processes

will most probably not leave the output state inside the original reduced Hilbert space spanned

by |α〉 and |−α〉; current technology is able to generate input test states with limited fidelity:

such states might have components from outside the relevant subspace. Therefore, we cannot

simply use standard techniques to perform a process tomography constrained to the qubit

subspace [8–10].

There exist more general approaches for obtaining a description of the gate as a process in

phase space [11, 12], but this complete approach may be rather expensive in terms of resources.

In fact, such a description takes into account the whole phase space, while the device actually

acts as a gate only for states of a given amplitude. Our method allows us to characterize the

gate directly in the subspace where it is effective, and we can introduce an action similar to the

Choi–Jamiolkowski isomorphism. In other words, a description in the complete phase space will

give much information that will not be used in the characterization, as it does not concern the

interesting subspace. In order to simplify data acquisition and analysis, we used a technique that

only gives us relevant parameters, although this comes at the price of having a priori information

about the gate through an exhaustive model.

In this paper, we implement a characterization of a π-phase shift gate which does not rely

on a black-box approach [9], but requires some modeling of the functioning of the gate. This is

a realistic approach, since such knowledge is needed to achieve the desired level of control. One

can then identify a small number of parameters, accessible to the experimentalist, by which the

gate process can be modeled.

In our experiment, we implemented the π-phase gate for coherent-state qubits proposed

by Marek and Fiurášek [13]. The operating principle of the gate is that coherent states

are eigenstates of the photon subtraction operator: â| ±α〉 = ±α| ±α〉. This operation thus

corresponds to a π-phase shift, up to an overall constant. In the laboratory, photon subtraction

can be approximated by a beam splitter with low reflectivity, followed by detection on a photon

counter. There have been demonstrations of such an effect [16–19], but the characterization has

focused so far on the states that could be produced by this technique, rather than on the device

itself. These gates provide a reliable way of implementing logical operations in the same vein

as other optical realizations [14, 15], hence the interest in their characterization.

Testing quantum gates demands operating them with at least two different orthogonal

bases [20]. Here the computational basis {|α〉, |−α〉} is trivial, while equal real superpositions

can be obtained by the manipulation of a squeezed vacuum. As shown in figure 1, this

state is produced using an optical parametric amplifier (OPA), pumped in the collinear
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Figure 1. Left: scheme of the experiment. The main laser is a pulsed Ti:sapphire

at λ= 850 nm, pulsed at a repetition rate of 800 kHz (Coherent Mira 900

with a cavity dumper), with a pulse width of 200 fs. The light pulses are

frequency doubled by a crystal of potassium niobate (SHG) in order to produce

a pump beam for the OPA. This OPA produces a squeezed vacuum, which is

then transformed into a squeezed one-photon by photon subtraction6. This is

performed by directing a small fraction of the beam on the avalanche photodiode

APD0 by a beam splitter BS0 and conditioning the measurement on a detection

event. Either the squeezed vacuum or the squeezed photon is used as the input

of the tested gate, constituted by a beam splitter BS1 and the APD1. Both beam

splitters are realized by a sequence of a half-wave plate and a polarizer, so that

we could tune both reflectivities to R = 10%. This also allows us to take them

out of the path of the input for a direct measurement. A small portion of the main

laser is used as a local oscillator (LO) for a homodyne detector (HD); the phase

ϕ is scanned by means of a piezo actuator. Right: visual representation of the

phenomenological model. Symbols are defined in the main text.

regime. For sufficiently weak intensities, the OPA generates a good approximation of an even

superposition |+〉 =N+ (|α〉+|−α〉), where N+ is a normalizing factor5. The odd superposition

|−〉 =N− (|α〉 − | −α〉) results from the application of the gate [17]. In our experiment, this is

implemented by the beam splitter BS0 and the avalanche photodiode APD0. These two states

can be used to test the behavior of a second gate constituted by BS1 and APD1.

Although the states we can produce do have marked signatures of the ideal behavior, such

as a change in the parity, current technology limits us to some approximations of coherent-state

qubits [19, 21], which are not fully suitable for a direct characterization of the gate. In a direct

comparison of the observed output to the ideal, it would be hard to deconvolve the errors due to

the imperfections of the gate and those due to the input state itself.

5 The normalization factor Nθ,φ of an arbitrary superposition Nθ,φ(cos θ
2
|α〉 + eiφ sin θ

2
| −α〉) is equal to [1 +

sin θ cosφ exp(−2α2)]−1/2. In the particular case of a superposition |±〉 =N±(|α〉 ± | −α〉), the normalization

factor is N± = [2(1 ± exp(−2α2))]−1/2.
6 Denoting by Ŝ the squeezing operator, a photon subtracted squeezed state is, up to the normalization, â Ŝ|0〉 ∝
Ŝâ†|0〉, which is a squeezed one-photon state.
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These limitations can be relaxed if one concedes to experimentalists some a priori

knowledge about the physics of their gate: a model can then be derived and used for such a

deconvolution and thus to obtain the behavior of the device for ideal inputs. This is somehow

similar to the analysis in [23] to estimate the origin of decoherence in polarization quantum

gates. In our case, we can rely on a simple phenomenological model [21], which is grounded on

a more rigorous multi-mode treatment [22].

This model is illustrated in figure 1 for the case of single-photon subtraction. We consider a

perfect squeezer, i.e. a collinear OPA, which can reduce noise by s = e−2r times the shot noise.

The process is spoiled by parasite amplification that can be described by a fictive non-collinear

OPA injected on one side with the squeezed vacuum; its gain is expressed as h = cosh2(γ r).

Once we trace out the fictitious idler mode, we obtain the following expression for the Wigner

function: W (x, p)∝ e− x2

hs+h−1 e− p2

h/s+h−1 .

This is the squeezed state that is fed into the gate. This consists of a beam splitter with

transmissivity T ≃ 1 (T = 0.9 in our implementation) and an avalanche photodiode (APD) of

efficiency κ whose signal is used as a trigger event. The mode of the squeezed vacuum is filtered

by a single-mode fiber and a spectral filter; this operation, however, is performed with finite

accuracy. There is then a fraction ξ of the events that originate from photon subtraction on the

correct mode; the remaining 1 − ξ are actually non-correlated events that corrupt the functioning

of the gate.

The finite efficiency of the homodyne detection (HD) has to be taken into account; for the

sake of simplicity, we introduce the homodyne loss 1 − η before the beam splitter rather than

before the HD; then we correct the efficiency of the APD as κ/η. This has the advantage of

simplifying the calculations and is strictly equivalent to the use of homodyne loss just before

the HD and an APD efficiency of κ . In the limit of small efficiency, we can describe the action

of the APD simply as the annihilation operator â acting on the reflected mode, which is finally

traced out.

We thus obtain a parameterization of the Wigner function, which depends on a few

parameters; some of them are inherent to the state: the squeezing s and the parasitic gain h;

others describe the action of the gate: the modal purity ξ and the transmissivity T ; and finally

the homodyne efficiency η describes the detection. These can be either directly measured by a

classical signal, as is the case for T , or inferred by a best fit on the quadrature histograms. For

our analysis, we extrapolate the results for the generated state, by imposing η→ 1. The same

modeling is applied when considering the double photon subtraction.

For our purpose, it is crucial to note that the functioning of the gate is well described

by only two parameters: the reflectivity of the beam splitter T and the modal purity ξ [22].

These parameters can be accessed experimentally by using a set of states as a probe. In our

case, coherent inputs are not useful, as they are less sensitive to faulty events. We thus use the

squeezed vacuum, approximating the even cat state, as a probe to estimate these parameters. We

then need to check the consistency of the model: in order to do that, we need to feed a different

known state, predict the output using the derived parameters and compare such a prediction

against the experiment. As this second probe, we used a squeezed photon as an approximation

of the odd cat state.

In more detail, we carried out homodyne measurements on the squeezed vacuum, from

which we estimated its density matrix ρ0. This is the starting point of our model, from which

we can calculate the expected action of the gate, given this state as the input. From a fit, we can

derive the value of ξ . At this point, we use a squeezed photon as the input; as before, its density
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Figure 2. Quadrature distributions of a photon-subtracted squeezed photon.

The points are the measured values, while the solid lines are the prediction

of the model, based on the outcomes from a squeezed state. Each histogram

is calculated from 10 000 quadrature points. We can attribute some noise

to fluctuations during the long acquisition time, due to the low two-photon

subtraction rate (∼6 events s−1).

matrix ρ1 is reconstructed by homodyning. The model is now used to estimate the output, fixing

T and ξ at the same values as we found in the first case. Finally, we check the consistency of

the expected and measured outputs.

Typical results are shown in figure 2; we plot six different histograms of quadrature

distributions, where the points show the experimental results and the solid lines the prediction

of our model. We emphasize that the parameters are not fitted to the data, but derived from

previous measurements on the squeezed vacuum. This gives us evidence of the reliability of our

predictions.

By using this model, we can estimate the action of the gate on an ideal arbitrary input

in the form |ψθ,φ〉 =Nθ,φ(cos θ

2
|α〉 + eiφ sin θ

2
| −α〉), with θ and φ defining the Bloch sphere

of the qubit [19]. For the amplitude |α| of the coherent states we need an estimation of what

experimental limits are. For this, we have taken the value |α| = 0.92 giving maximal fidelity

between our squeezed photon and an ideal odd superposition.

Our analysis is summarized in figure 3, where we plot a table of the fidelity Fθ,φ of the

output state with the ideal |ψ−θ,φ〉. The fidelities for our experimental conditions are depicted in

figure 3(a). The first remark concerns the variation of the operation over different directions of

the Bloch sphere. Better results at the poles with respect to the equator are expected, due to the

fact that the high transmission makes coherent states largely insensitive to the modal purity ξ .

Furthermore, our analysis shows that odd superpositions work better than the even ones. The

limit ξ = 1 (figure 3(b)) reveals that it is an intrinsic feature of the gate: it results from the fact

that our APD has a low efficiency and to a lesser extent that it cannot resolve the photon number.

However, as the transmissivity T increases (figure 3(c)), Fθ,φ also increases and becomes more

regular with respect to φ. Indeed, the probability of having several photons reflected to the APD

decreases as T increases and therefore the fact that the APD does not resolve the number of
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Figure 3. Fidelities of the output states for arbitrary ideal inputs: (a) for our phase

gate; (b) for a perfect modal purity ξ = 1; (c) for a device with T = 0.99; (d) for

our device with α = 1.2. The angles θ and φ are the spherical coordinates on the

Bloch sphere.

photons becomes less important. For superpositions with θ = π/4 the limit value of 0.83 (when

T → 1) is almost reached for T = 0.99. The downside is that the probability of success of the

gate decreases proportionally to (1 − T ). Finally, we see that as α increases (figure 3(d)), Fθ,φ
also becomes more regular with respect to φ, but reaches lower values, as the probability to have

several photons sent to the APD is higher.

As a more general comment, we conclude that, although the value ξ = 0.83 ± 0.04 might

be considered satisfactory in our experiment, as it causes marked non-Gaussian features, the

operation of the gate is heavily influenced by the modal purity. This sets a strong requirement

for realizing such gates.

The results in figure 3 provide us with extensive information about our device, but fail

in delivering a conclusive answer on how good the gate is overall. As mentioned before,

associating a quantum process with this operation limited to the qubit subspace is hard: for

instance, we cannot formally use Jamiołkowski’s isomorphism and derive a process matrix [24],

by which we could obtain the fidelity of our process with a target operation. However, we can

still retain the underlying physical idea behind the isomorphism, so as to obtain a single figure

to describe the quality of the gate.

Let us briefly recall Jamiołkowsi’s construction; given a process E on a space of dimension

d, we can associate univocally a matrix by considering a maximal entangled state |9〉 =
1√
d

∑d

j=1 | j〉| j〉, for a given choice of basis {| j〉}16 j6d of the system. The process matrix is then

obtained through the application of the process E to one of the modes of the entangled state,

what can be formally written as χ = I ⊗ E (|9〉〈9|), which is a state in a larger Hilbert space.

When a distance between two processes is needed, we can then rely on the measures holding

for states in the extended space; in particular, the fidelity between two processes is given by the

fidelity between the corresponding states: F(E1, E2)= F(χ1, χ2) [10, 15, 25].

The underlying physical motivation is in some sense an application of quantum parallelism.

Since we are interested in the overall behavior of the gate, we need to estimate its action on all

the inputs at the same time: this amounts to feeding in the gate half of an entangled pair. In
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Figure 4. Fidelity of an entangled output from the phase gate with the ideal

entangled state: we can note a linear increase of the overlap with the modal purity

ξ . The red dot corresponds to our experimental parameters.
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Figure 5. Fidelity between |�〉 and the ideal bit-flipped state |9+〉. The red dot

corresponds to our experimental parameters.

light of these considerations, we can adopt as a reasonable figure of merit a fidelity between

entangled states. Here we will use as a probe the state |8+〉 = 1√
2
(|+〉|+〉+|−〉|−〉), but actually

the result does not depend on this choice (see the appendix).

We then consider the fidelity F between the entangled output as would be produced by

our device and the ideal target state |�〉 = Î ⊗ â|8+〉/‖ Î ⊗ â|8+〉‖. Our results are shown in

figure 4: the limiting factor of the performances is mostly the worst-case scenario of an even

superposition. We found that F = 0.78 ± 0.04 for the experimentally observed gate (ξ = 0.83).

Let us emphasize that the ideal target state differs from the bit flip state |9+〉 =
1√
2
(|+〉|−〉+|−〉|+〉) which would be obtained by an ideal phase gate. This is due to the fact that

the states |α〉 ± | −α〉 have different normalization coefficients N±. Such a problem becomes
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negligible for large enough values of α, i.e. when the two states |±α〉 become nearly orthogonal.

This requirement can be made quantitative by evaluating the fidelity between the target states

|�〉 and |9+〉, which is simply

F = |〈�|9+〉|2 = 1

2
(1 + tanh(2α2)). (1)

This fidelity is plotted in figure 5 and gives us an idea of the values of |α| required for the

protocol to work correctly, in the sense that the cat-state qubit is ‘good enough’ for correctly

implementing the desired quantum phase gate. For our value α = 0.92, F = 0.967.

Summarizing, we have quantified the quality of a simple (π-phase shift) quantum gate

for ‘cat-state’ qubits, by evaluating either the fidelity between an arbitrary input state |ψθ,φ〉 =
Nθ,φ(cos θ

2
|α〉 + eiφ sin θ

2
| −α〉) and the corresponding output state, or the action of the gate on

half of an entangled state. This second approach gives a single figure, F = 0.78 in our case.

The method is relatively independent of the quality of the quantum states used to probe the

gate, but requires some a priori knowledge and modeling of the gate. It appears thus as a stable

approach for obtaining both a ‘quality evaluation’ from a single number and a full description

by concatenating simple but efficient theoretical modeling of the gate.
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Appendix. Invariance of the fidelity with the input entangled state

In the main text, we have considered the case when half of the entangled state |8+〉 =
1√
2
(|+〉|+〉 + |−〉|−〉) is used as the input of the gate. Here we show that the result does not

actually depend on the choice of the Bell state. For this purpose, let us consider the general

case |9〉 = 1√
2

(

|+〉|µ〉 + eiφ|−〉|ν〉
)

, where |µ〉 corresponds to either |+〉 or |−〉, whereas |ν〉
corresponds to the opposite ket: |ν〉 = | −µ〉.

The superoperator E describing the action of the gate can be decomposed into two parts

E (good) and E (bad) corresponding respectively to the correct and faulty events: E = ξ E (good) + (1 −
ξ) E (bad). First, we note that by linearity we can calculate separately the action of the gate for

the correct heralding events and for the faulty ones, and then sum the results with the correct

weighting.

Let us now focus on E (good), the reasoning being similar for E (bad). For a given initial state

ρ =
∑

x,y=+,− cxy|x〉〈y|, the operator E (good) is nonlinear. However, as it is modeled with linear

operators and partial traces, its nonlinearity comes only from the final normalization. One can

thus write it as a linear operator Ẽ (good) giving a non-normalized output state Ẽ (good)(ρ), which

is then normalized by its trace: E (good)(ρ)= Ẽ (good)(ρ)/Tr{Ẽ (good)(ρ)}. We denote by the symbol

ζxy the action of Ẽ (good) on the operator |x〉〈y|. Under the operator I ⊗ Ẽ (good), the state |9〉〈9|
is transformed into

χ̃ = 1

2
(|+〉〈+| ⊗ ζµµ + |−〉〈−| ⊗ ζνν + eiφ|−〉〈+| ⊗ ζνµ + e−iφ|+〉〈−| ⊗ ζµν). (A.1)
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Then, we note that â|µ〉 = α
Nµ

Nν
|ν〉. Introducing cµν = N 2

µ

N 2
ν
, the ideal target state is

|�〉 = Î ⊗ â|9〉
‖Î ⊗ â|9〉‖

= 1
√

cµν + cνµ
(
√

cµν|+〉|ν〉 + eiφ√cνµ|−〉|µ〉). (A.2)

We then consider the fidelity between the normalized state χ = χ̃/Tr{χ̃} and |�〉. This has

the explicit expression

F = 〈�|χ |�〉 = 1

2 Tr{χ̃}(cµν + cνµ)
(cµν〈ν|ζµµ|ν〉 + cνµ〈µ|ζνν|µ〉 + 〈µ|ζνµ|ν〉 + 〈ν|ζµν|µ〉),

(A.3)

which does not depend on the choice of φ and is invariant with exchanging µ and ν. The same

reasoning applies when considering faulty trigger events. In case one would prefer to use the

bit-flipped state as the target state, the fidelity would be different but still independent of the

choice of the initial Bell state.
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