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1. Introduction

Giving a sense to the notion of mean behaviour may be counted among the
very early activities of statisticians. When confronted to large data samples, the
usual notion of Euclidean mean is too rough since the information conveyed by
the data possesses an inner geometry far from the Euclidean one. Indeed, de-
formations on the data such as translations, scale location models for instance
or more general warping procedures prevent the use of the usual methods in
data analysis. This problem arises naturally for a wide range of statistical re-
search fields such as functional data analysis for instance in [14], [16], [12] and
references therein, image analysis in [3] or [19], shape analysis in [13] with many
applications ranging from biology in [7] to pattern recognition [17] just to name
a few. To handle this issue without any assumption on the deformations, Sakoe
and Chiba in [17] present a synchronization algorithm known as the Dynamic
Time Warping (D.T.W.), aligning two curves by a time axis renormalization.
When dealing with functional data observed in a regression scheme, this idea
was generalized in [23].

For a better understanding of the deformations, another major direction has
been investigated. It consists in modeling the deformations by a parametric
warping operator, such as for instance, scale location parameters, rotations in
[6], actions of parameters of Lie groups or in a more general way deformations
parametrized by their coefficients on a given basis [5] or in an RKHS set [1].
Adding structure on the deformations enables to define the mean behaviour as
the data warped by the mean deformation, i.e. the deformation parametrized by
the mean of the parameters. Semi-parametric technics as in [12] or [22] enable
to provide sharp estimation of these parameters.

The same kind of issues arises when considering the estimation of distribu-
tion functions observed with deformations. This situation occurs often in biology,
for example when considering gene expression data obtained from microarray
technologies. A microarray is composed of several spots, containing copies of
identical expressions of genes. From each spot, a measure is obtained but before
performing any statistical analysis on such data, it is necessary to process rough
data in order to remove any systematic bias inherent to the microarray technol-
ogy. A natural way to handle this phenomena is to try to remove these variations
in order to align the measured densities, which proves difficult since the densities
are unknown. In bioinformatics and computational biology, a method to reduce
this kind of variability is known as normalization.

However, when dealing with the registration of warped distributions, the
literature is scarce. We mention here the method provided for biological com-
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putational issues known as quantile normalization in [7] and the related work
[11]. In [10] a criterion based on Wasserstein’s distance is used to match two
distributions for some particular deformation framework. In this work, we con-
sider the extension of such parametric methods to the problem of estimating a
distribution of random variables, observed in a warping framework through a
precise estimation of the particular deformation parameters.

Actually, assume that we observe n replications of a random variable ε of
law µ, and a sample (Xi)16i6n of law µ⋆ which is drawn from distribution
µ with some variations in the sense that there exists an unobserved warping
function ϕ such that we have µ⋆ = µ◦ϕ−1

⋆ . To deal with this issue, we assume a
parametric model for the warping function. We consider that the deformations
follow a known shape which depends on parameters, specific for each sample.
Hence there is a parameter θ⋆ such that ϕ⋆ = ϕθ⋆ . This parameter represents
the warping effect that undergoes the sample (Xi)16i6n, which must be removed
by inverting the warping operator. Hence, we will estimate, in a semi-parametric
framework, the parameter θ⋆.

For this, inspired by the matching criterion provided in [12], we warp the
observations and construct an estimator θ̂n of θ⋆ by minimizing the energy
needed to align all the distribution µ⋆ to the distribution µ . That is to say,
we will minimize the cost of transport of the mass charged by µ⋆ on the mass
charged by µ. Hence, to quantify the alignment between the two probabilities,
it seems natural to us to consider the Wasserstein distance, see for instance
in [21] or [2] for the connections between this distance and mass transport. We
will obtain a result of consistency under general assumptions, in particular we
will not assume the compactness of the support of µ. This estimator of θ⋆ will
enable us to obtain an consistent estimator of the structural distribution µ.
Under stronger assumptions, following the proof in [10], we will also obtain a
result of convergence in law for θ̂n.

The paper is organized as follows : the description of our model and the
definitions of the estimators are given in Section 2. Section 3 is devoted to
the convergence results obtained for the estimators of θ⋆ and µ. In Section 4,
a new framework is introduced to study the asymptotic comportment of the
deformation estimates with a result about their convergence in distribution.
Section 5 generalize the model to the case several deformations are observed.
Section 6 presents some examples of deformations which fall in the scope of our
study. Finally some applications to real data are provided in Section 7. The
proofs are postponed to the Appendix.

2. Statistical model for distribution deformations

In this section, we will define a model for deformations of random variables and
recall some useful definitions.

First, consider the following notations. In all the paper, we denote by ‖.‖ the
euclidean norm on R

k for all k ∈ N, k > 2. For a given sample Y = (Y1, . . . , Yn),
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we denote by Y(1) 6 · · · 6 Y(i) 6 · · · 6 Y(n) its order statistics.

For i = 1, . . . , n and j = 1, 2, set εij real i.i.d. random variables with unknown
distribution µ defined on an Borel set Ia ⊂ R. We will consider a deformation
of these real-valued observations. Hence, we consider a family of deformation
functions, indexed by parameters θ ∈ Θ, for Θ a compact and convex subset of
R

d, which warps a point x onto another point ϕθ(x). The shape of the defor-
mation is modelled by the known function ϕ while the amount of deformation
is characterized by the parameter θ. More precisely, we consider deformation
functions that verify

For all θ ∈ Θ, ϕθ :
Ia → Ib
x 7→ ϕθ(x)

is invertible and increasing (A1)

where Ia, Ib are subsets of R possibly unbounded.
We assume that we observe

{
εi1, 1 6 i 6 n

Xi = ϕθ⋆ (εi2) , 1 6 i 6 n
(2.1)

where θ⋆ is the unknown deformation parameter in Θ ⊂ R
d. We point out that

this amounts to saying that one of the signal will be taken as a reference onto
which will be aligned all the other warped observations. This assumption is also
necessary is most of the literature on warped data.

Our aim is to estimate the parameter θ⋆ ∈ Θ. For this, we will study a
criterion based on a registration procedure for the distributions µ⋆ = µ ◦ ϕ−1

θ⋆

of the element of the i.i.d. sample (X1, . . . , Xn) and the distribution µ of ε1j .
To compute the distance between the distributions, we will need the following
probabilistic tools.

If F is a distribution function , we define the quantile function associated by

F−1 (t) = inf {x ∈ R, F (x) > t} .
Recall that if Fn is the empirical distribution associated to a sample (Y1, . . . , Yn),
then we have

F−1
n (t) = Y(i) for

i− 1

n
< t 6

i

n
.

A natural distance to measure the deformation cost to align two distributions
is given by the Wasserstein distance. For p ∈ N

⋆, consider the following set

W2 (R
p) = {P probability on R

p which admits a finite second order moment} .
Given two probabilities P and Q in W2 (R

p) we denote by P(P,Q) the set of all
probability measures π over the product set R

p × R
p with first (resp. second)

marginal P (resp. Q).
The transportation cost with quadratic cost function, or quadratic trans-

portation cost, between these two measures P , Q is defined as

T2(P,Q) = inf
π∈P(P,Q)

∫
‖x− y‖2 dπ.
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The quadratic transportation cost allows to endow the set W2 (R
p) with a

metric by setting

W2(P,Q) = T2(P,Q)1/2.

Note that we will use W2 metrics in this work. This choice is led by the issue
of optimal matching between cloud points, see for instance in [4]. Yet other
choices

W r
r (P,Q) = inf

π∈P(P,Q)

∫
d(x, y)rdπ

are possible for different r and other distances d on R
p. In particular, the earth-

mover distance which corresponds to r = 1 could be used with more complicated
calculations. However the study of this criterion falls beyond the scope of this
paper. More details on Wasserstein distances and their links with optimal trans-
port problems can be founded in [15].

Hereafter, we will consider distributions on R. In this case the Wasserstein
distance can be computed directly using the inverse distribution functions, as

W 2
2 (P,Q) =

∫ 1

0

(
F−1 (t)−G−1 (t)

)2
dt, (2.2)

where F (resp. G) is the distribution function associated to P (resp. Q). The reg-
istration procedure we consider is an extension to point cloud estimation of the
methodology pioneered in [12] and deeply studied in [22]. Wasserstein distance
is actually a powerful tool to study similarities between point distributions, see
in [8] or [9].

Recall that our aim is to align the law µ⋆ of the observations Xi on the law
µ. Hence a natural idea is to apply the inverse deformation operator to these
observations. More precisely for all candidate θ, and to each observation Xi, we
can apply the inverse deformation of parameter θ. Hence we can compute the
following random variables

Zi (θ) = ϕ−1
θ (Xi) . (2.3)

Now, denote by µ⋆ (θ) the common law of the elements of the i.i.d. sample
Z (θ) = (Z1 (θ) , . . . , Zn (θ)). We have µ⋆ (θ) = µ⋆ ◦ ϕθ = µ ◦ ϕ−1

θ⋆ ◦ ϕθ.

Let

µn
⋆ (θ) =

1

n

n∑

i=1

δZi(θ) and µn
j =

1

n

n∑

i=1

δεij

the empirical laws associated with the samples (Zi (θ))16i6n and (εij)16i6n for
j = 1, 2. Then µn

⋆ (θ) = µn
2 ◦ ϕ−1

θ⋆ ◦ ϕθ.
We note F⋆ the distribution function associated with the law µ⋆ and F the
distribution function associated with the law µ, Fn

⋆ the empirical distribution
function of the random sample (X12, . . . , Xn2) and Fn the empirical distribution
function of the random sample (ε11, . . . , εn1).
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Consider the following assumption necessary to compute the Wasserstein’s
distance between the warped samples

For all θ ∈ Θ, ϕ−1
θ (·) is in L2 (µ⋆) , that is ϕ−1

θ ◦ ϕθ⋆(·) ∈ L2 (µ) . (A2)

Then introduce the following criterion

M : θ 7→ M (θ) = W 2
2 (µ⋆ (θ) , µ) . (2.4)

For θ = θ⋆, we get µ⋆ (θ
⋆) = µ. Hence the distributions are the same for the

true parameter θ⋆, and the criterion M reaches its minimum at this point.
The estimation of this criterion is given by its corresponding empirical ver-

sion, which is

Mn (θ) = W 2
2 (µn

⋆ (θ) , µ
n
1 ) . (2.5)

It can be computed using (2.2) and the order statistics associated with the
sample (Zi (θ))16i6n and (εi1)16i6n

Mn (θ) =
1

n

n∑

i=1

[
Z(i) (θ)− ε(i)1

]2
.

The estimator of θ⋆ is finally defined as

θ̂n ∈ argmin
θ∈Θ

Mn (θ) . (2.6)

Our aim is thus twofold.

• First, study the asymptotic comportment of this M-estimator.
• Then, using this estimator, estimate the template measure µ with a plug-in

procedure

µ̂n =
1

2

(
1

n

n∑

i=1

δϕ−1

θ̂n
(Xi)

+ µn
1

)
=

1

2

(
µn
⋆

(
θ̂n
)
+ µn

1

)
(2.7)

We point out that we restrict ourselves to distributions on R and not Rp. As
a matter of fact, the statistical analysis of the estimates and their asymptotic
behaviour in distribution require a particular study of the asymptotic expan-
sion of Mn that can not be achieved using the general expression of Wasserstein
metrics. Indeed, we will need to express W2 with quantile functions, estimated
by the corresponding order statistics, which can only be done in the one di-
mensional case. The extension of this work to the case where distributions are
multidimensional deserves a specific method which will be the subject of a future
work.
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3. Consistent estimation of the deformation parameters and the

distribution template

The main objective of this section is to study the consistency of the estimator
defined in (2.6) as

θ̂n ∈ argmin
θ∈Θ

Mn (θ) .

In addition of assumptions A1 and A2, we consider the following regularity
assumptions on the deformation functions.

For all x ∈ Ib, ϕ
−1
θ :

Λ → Ia
λ 7→ ϕ−1

θ (x)
is continuously differentiable. (A3)

We denote its partial differential with respect to the variable θ on θ0 by
∂ϕ−1

θ0
(x) ∈ R

d.

The family
(
∂ϕ−1

θ (·)
)
θ∈Θ

has an envelope in L2 (µ⋆) , (A4)

that is sup
θ∈Θ

∥∥∂ϕ−1
θ (x)

∥∥ 6 H(x), H ∈ L2 (µ⋆) .

It remains to have the following inequality

sup
θ∈Θ

∥∥∂ϕ−1
θ ◦ ϕθ⋆ (x)

∥∥ 6 G(x)

with G ∈ L2 (µ) .
These two assumptions are required in order to get bounds for the empirical

processes.
The last assumption is related to the identifiability of the model. More pre-

cisely it ensures that M admits an unique minimum on Θ at the parameter of
interest, θ⋆.

For all θ 6= θ⋆ ∈ Θ, there exists a set A (A5)

such that µ (A) > 0 and ϕ−1
θ ◦ ϕθ⋆ 6= Id on A.

Finally, recall that Θ is a compact and convex subset of Rd.

3.1. Estimation of θ⋆

Assume we observe Xi, i = 1, . . . , n and εi1, i = 1, . . . , n, defined in (2.1). The
following theorem proves the consistency of the estimator of the deformation
parameter.

Theorem 3.1. Under assumptions A1 to A5, θ̂n ∈ argminθ∈ΘMn (θ) con-
verges in probability to θ⋆ when n tends to infinity .
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The estimate of θ⋆ is defined as an M-estimator. Hence its study follows the
classical guidelines stated for instance in [20]. More precisely, its consistency can
be obtained by establishing the uniform convergence of the criterion, that is

sup
θ∈Θ

|Mn (θ)−M (θ)| n→∞−−−−→ 0 in probability

under the following condition of identifiability

for all ε > 0, inf
Θ∩B(θ⋆,ε)c

M(θ) > 0.

So according to Theorem 5.7 p.45 in [20], these two results enable to obtain
Theorem 3.1.

The uniform convergence is obtained through the followings steps

- We first prove the pointwise convergence of Mn to M in probability. It
involves classical properties of the Wasserstein distance about the conver-
gence of empirical measures.

- Next we obtain the following property of "uniform continuity"

for all ε > 0, lim sup
n→∞

P

(
sup

‖θ1−θ2‖6ν

∣∣Mn

(
θ1
)
−Mn

(
θ2
)∣∣ > ε

)
ν→0−−−→ 0.

This part is the most important, and especially requires assumption A4.

We conclude by using arguments of compactness and continuity. The latter, in
addition to assumption A5, are used to obtain the condition of identifiability.
The details of the proof are given in the Appendix.

3.2. Reconstruction of the measure µ

Theorem 3.1 enables to get a sharp approximation of the true parameters of
deformations with the estimator θ̂n. This entails that the observations can be
aligned by computing the inverse transformation applied to the observations.
Actually when n is sufficiently large, ϕ−1

θ̂n
(Xi) = ϕ−1

θ̂n
◦ ϕθ⋆ (εi2) is very close to

εi2. So a natural estimator of the measure µ is given by

µn
⋆

(
θ̂n
)
:=

1

n

n∑

i=1

1ϕ−1

θ̂n
(Xi)

.

The following theorem proves the consistency of µn
⋆

(
θ̂n
)
.

Theorem 3.2. Under assumptions A1 to A5, µn
⋆

(
θ̂n
)

converges in the Wasser-

stein distance sense to the measure µ in probability :

W2

(
µn
⋆

(
θ̂n
)
, µ
)

n→∞−−−−→ 0 in probability.
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Using the warped observations to estimate the template distribution has some
advantages. First it can be viewed as a mean to increase the size n of the sample
(εi1)16i6n. Of course, µn

⋆ will not perform as well as µn
1 , but since θ̂n is close

to θ, we can expect that the plugged-in distribution estimate behaves roughly
as the empirical measure. However, to quantify this conjecture, results on the
exact rate of convergence of the Wasserstein distances are needed, which are
difficult Theorems out of the scope of this paper.

4. Asymptotic analysis of the deformation parameters

4.1. Assumptions

Now we add to assumptions A1 to A5 the following regularity conditions on
the deformation functions.

ϕ−1 is C2 with respect to (θ, x) on θ × Ib. (AL1)

We denote by ∂ϕ−1
θ (x) its partial derivative with respect to the first variable

at the point (θ, x) and by dϕ−1
θ (x) its partial derivative with respect to the

second variable at the point (θ, x).
Consider the following restrictions on the distribution µ⋆, which is the dis-

tribution of observations (Xi)16i6n.

µ⋆ is a law with compact support [α;β] ⊂ Ib. (AL2)

F⋆ is C1 and F ′
⋆ = f⋆ > 0 on its support. (AL3)

Actually these assumptions are required to prove the convergence in distri-
bution of the empirical quantile functions.

Note that using the relation F⋆ = F ◦ϕθ⋆ which is due to A1, we obtain that
AL2 and AL3 imply that F is continuously differentiable with strictly positive
derivative denoted by f .

4.2. Asymptotic distribution of the deformation estimates

Theorem 4.1.

Set Φ =
∫ 1

0
∂ϕ−1

θ⋆

(
F−1
⋆ (t)

)
∂ϕ−1

θ⋆

(
F−1
⋆ (t)

)T
dt ∈ R

d×d.

Under assumptions A1 to A5 and AL1 to AL3, and if Φ is invertible, then

√
n
(
θ̂n − θ⋆

)
⇀ (Φ)

−1
∫ 1

0

∂ϕ−1
θ⋆

(
F−1
⋆ (t)

)

f(F−1(t))
[G2(t)−G1(t)] dt (4.1)

where G1 and G2 are independent standard Brownian bridges.
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The proof, given in the Appendix, is done for d = 1 that is θ⋆ ∈ Θ ⊂ R
d = R.

The generalization in higher dimension comes straightforward.
Remark that
∫ 1

0

∂ϕ−1
θ⋆

(
F−1
⋆ (t)

)

f(F−1(t))
[G2(t)−G1(t)] dt ∼

N
(
0; 2

∫

[0;1]×[0;1]

∂ϕ−1
θ⋆

(
F−1
⋆ (t)

)

f(F−1(t))

∂ϕ−1
θ⋆

(
F−1
⋆ (s)

)

f(F−1(s))
(min(s, t)− st) dsdt

)
.

The matrix Φ is invertible for instance in the case where the vector space gen-
erated by the family

{
∂ϕ−1

θ⋆

(
F−1
⋆ (t)

)}
t∈(0;1)

has an orthogonal complementary
reduced to zero. In the classical deformation families studied later, this matrix
is always invertible.

5. Extensions to multiple deformations

Our model can be easily extended to the case where we observe several defor-
mations of a single signal. In this case, the observation model can be written
as 




εi1, 1 6 i 6 n

Xi1 = ϕθ⋆
1
(εi2) , 1 6 i 6 n

. . .

XiJ = ϕθ⋆
J
(εiJ+1) , 1 6 i 6 n.

(5.1)

In this case, the aim is to estimate the vector θ⋆ = (θ⋆1 , . . . θ
⋆
J) by a quantity

θ̂n =
(
θ̂n1 , . . . , θ̂

n
J

)
.

We call µ⋆,j the law of X1j and its distribution function is denoted by F⋆,j .
Following our method, we consider for all j

Mn (θj) =
1

n

n∑

i=1

[
Z(i)j (θ)− ε(i)1

]2
,

where Zij (θ) = ϕθj (Xij), and choose

θ̂nj ∈ arg min
θj∈Θ

Mn (θj) .

Then, assume assumption A1 to A3. Instead of assumption A4, one has to
assume that for all j

sup
θ∈Θ

∥∥∥∂ϕ−1
θ ◦ ϕθ⋆

j
(x)
∥∥∥ 6 Gj(x)

with Gj ∈ L2 (µ).
The last assumption related to the identifiability of the model should also be

reformulated as "for all θ 6= θ⋆j ∈ Θ, there exists a set A such that µ (A) > 0

and ϕ−1
θ ◦ ϕθ⋆

j
6= Id on A."
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Then the convergence in probability of the whole vector θ̂n comes straight-
forward from Theorem 3.1.

The convergence in Wasserstein sense of the measures 1
n

∑n
i=1 1ϕ−1

θ̂n
j

(Xij)
is

also a simple consequence of Theorem 3.2.

Concerning the convergence in law, assume d = 1, AL1, AL2 for all µ⋆,j and
AL3 for all F⋆,j , 1 6 j 6 J .

Then, slight modifications of the proof of Theorem 4.1 lead to the following
result of convergence in law

√
n
(
θ̂n − θ⋆

)
⇀ Z

where

Zj =

(∫ 1

0

∂ϕ−1
θ⋆
j

(
F−1
⋆,j (t)

)2
dt

)−1 ∫ 1

0

∂ϕ−1
θ⋆
j

(
F−1
⋆,j (t)

)

f(F−1(t))
[Gj(t)−G0(t)] dt

with (G0,G1, . . . ,GJ) are independent standard brownian bridges.

We point out that we only consider the asymptotic with respect to n, the
number of points per individuals. Another interesting but yet different point of
view would be to tackle the case where J is large with respect to n.

6. Examples of deformation families

Now we provide some examples of admissible deformations, which undergo pre-
vious set of assumptions.

6.1. Example 1 : Location/scale model

ϕθ (x) = θ2x+ θ1

This choice of deformation is related to observations

Xij = µ⋆
j + σ⋆

j εij 1 6 i 6 n 1 6 j 6 J

where εij are random independent variables drawn from an unknown distribu-
tion µ. It corresponds to an ANOVA model with heterogenous variances.
Here θ = (θ1, θ2) ∈ Θ ⊂ R

2. The deformation function ϕθ is invertible on R if
θ2 6= 0. ϕθ is non decreasing if θ2 > 0, then we must choose Θ as a compact
convex subset of R× (0;+∞).

We have ϕ−1
θ (x) = x−θ1

θ2
= ϕ

(
−θ1
θ2

, 1

θ2
)
(x), and ϕ−1

θ (ϕβ (x)) = xβ2+β1−θ1
θ2

which is in L2 (µ) if µ ∈ W2 (R).

Moreover ∂ϕ−1
θ (x) =

(
−1
θ2

, θ1−x
θ2

2

)
and

∥∥∂ϕ−1
θ (x)

∥∥ =

√(
−1
θ2

)2
+
(

θ1−x
θ2

2

)2
.

Hence supθ∈Θ

∥∥∂ϕ−1
θ (·)

∥∥ ∈ L2 (µ⋆) if µ ∈ W2 (R).
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In conclusion, assumptions A1 to A5 are verified as soon as Θ is a compact
convex of R× (0;+∞) and µ ∈ W2 (R) is different from the Dirac mass at zero.

Now, remark that ∂ϕ−1
θ

(
F−1
⋆ (t)

)
= −1

θ⋆
2

(
1, F−1(t)

)
. Hence, the matrix Φ

defined in Theorem 4.1 is

Φ =
1

(θ⋆2)
2

(
1 E [ε]

E [ε] E
[
ε2
]
)
.

Then it is invertible if ε is not constant a.e. which is necessary to get the
invertibility of F⋆.

In the particular case of a translation model, θ2 = 0, i.e ϕθ (x) = x + θ, the
assumptions are also easily tractable : if Θ is compact and convex in R and
µ ∈ W2 (R), A1 to A5 are verified.

The case of the scale model, that is ϕθ (x) = θx, can also be considered as
a particular case. Here, assumptions A1 to A4 are verified if µ ∈ W2 (R), and
Θ is a compact interval included in (0;+∞). A5 holds if µ is different from the
Dirac mass at zero.

6.2. Example 2 : Logarithmic transform

ϕθ (x) = θ log(x)

ϕθ is invertible from (0;+∞) to R for all θ 6= 0, and ϕθ is non decreasing if θ is
positive: here Θ must be contained in (0;+∞) and ε take its values in (0;+∞).

We have ϕ−1
θ (x) = exp

(
x
θ

)
, and ϕ−1

θ (ϕβ (x)) = exp
(

β log(x)
θ

)
= x

β
θ . Hence

ϕ−1
θ ∈ L2 (µ⋆) if E

[
ε

2θ⋆

θ

]
< ∞ for all θ ∈ Θ.

Moreover ∂ϕ−1
θ (x) = −x

θ2 exp
(
x
θ

)
, so ∂ϕ−1

θ (ϕβ (x)) = −β
θ2 x

β
θ log(x), and

supθ∈Θ

∣∣∂ϕ−1
θ (·)

∣∣ ∈ L2 (µ⋆) if E
[
ε

2θ⋆

θmin log2(ε)
]
< ∞ and E

[
ε

2θ⋆

θMax log2(ε)
]
< ∞

where θMax = max {θ ∈ Θ} and θmin = min {θ ∈ Θ}. In this case the conditions
are more restrictive on the law µ, but remark that the exponential distribution
verifies these conditions. Assumption of identifiability holds if µ is different from
the Dirac mass at point 1.

6.3. Example 3 : Composition ϕθ(x) = f ◦ ϕ̃θ(x)

Consider a function ϕ̃θ(x) which verifies all the assumptions A1 to A5. Then,
if f is an increasing function invertible from Ib to Ic, the deformation function
ϕθ(x) = f ◦ ϕ̃θ(x) verifies also these assumptions replacing Ib by Ic. Indeed,
assumptions A1, and A3 are immediately verified, and we have

ϕ−1
θ ◦ ϕβ = ϕ̃−1

θ ◦ f−1 ◦ f ◦ ϕ̃β = ϕ̃−1
θ ◦ ϕ̃β

and
∂ϕ−1

θ = ∂
(
ϕ̃−1
θ ◦ f−1

)
= ∂ϕ̃−1

θ ◦ f−1.
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So
∂ϕ−1

θ ◦ ϕβ = ∂ϕ̃−1
θ ◦ f−1 ◦ f ◦ ϕ̃β = ∂ϕ̃−1

θ ◦ ϕ̃β .

Hence assumptions of integrability (A2, A4) and identifiability (A5) are also
verified for the function ϕθ(x) .

The composition action allows a large number of new admissible deforma-
tions. For instance, the logit model ϕθ (x) =

1
1+exp(−θx) can be obtained by the

composition of the scale model with the function f (x) = 1
1+exp(−x) .

The study of the example 2 gives also the conditions under which the defor-
mation ϕθ (x) = xθ can be handled by our method.

7. Application to real data

In this section, we asses our methodology with application to different real
datasets coming from genetics and meteorology. In all cases, our aim is to
align the distribution of the datas, and to control the quality of our estima-
tor through their alignment. For that, we consider that data can be modelled
through (5.1). More precisely, we consider that one of the sample is a reference,
that is it corresponds to (εi1)16i6n and that the others are different deforma-
tions Xij = ϕθ⋆

j
(εij+1), for 1 6 i 6 n and 1 6 j 6 J . We compute the estima-

tors of the deformation parameters θ̂nj and the quantities Zij

(
θ̂nj

)
= ϕ−1

θ̂n
j

(Xij)

for 1 6 j 6 J , 1 6 i 6 n. Finally we plot the densities of the samples
(εi1)16i6n, and (Xij)16i6n for all j > 1 and the densities of the aligned variables(
Zij

(
θ̂n
))

16i6n
.

For its versatility, we consider the scale/location model and choose for refer-
ence the first sample.

7.1. Genes of Zebrafish

Gene expression data obtained from microarray technologies are used to mea-
sure genome wide expression levels of genes in a given organism. A microarray
may contain thousands of spots, each one containing a few million copies of
identical DNA molecules that uniquely correspond to a gene. From each spot, a
measure is obtained but observed with a systematic deformation inhering to the
microarray technology: differential efficiency of the two fluorescent dyes, differ-
ent amounts of starting mRNA material, background noise, hybridization reac-
tions and conditions. A natural way to handle this phenomena is to try remove
these variations. We apply our method to align two-channel (two-color) spot-
ted microarrays, studying the underlying molecular mechanisms of differentially
expressed genes of the popular Swirl data set, which can be downloaded from
http://bioinf.wehi.edu.au/limmaGUI/DataSets.html. This experiment was con-
ducted using zebrafish as a model organism to study early development in verte-
brates. Swirl is a point mutation in the BMP2 gene that affects the dorsal-ventral
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body axis. Ventral fates such as blood are reduced, whereas dorsal structures
such as somites and the notochord are expanded. One of the goals of the exper-
iment is to identify genes with altered expression in the swirl mutant compared
to wild-type zebrafish. A total of four arrays were performed in two dye-swap
pairs with 8448 probes. The Fig. 1 and Fig. 2 show the estimated densities of
unnormalized individual-channel intensities for two-color microarrays and its
corresponding print-tip loess normalization within arrays, respectively. We can
see that the normalization on the observations provide a good normalization of
the densities, which enable a better comparison of the gene effects. Note that
this dataset has been fully studied in [11].

Figure 1: Densities for individual-
channel intensities for zebrafish mi-
croarray data.

Figure 2: Densities for individual-
channel intensities for zebrafish mi-
croarray data after normalization.

7.2. Temperature probes

We observe temperatures measured at 5 different probes located around the
same area but with different conditions (different heights, different sun expo-
sure conditions, different wind conditions ...). The mean temperature is recorded
daily during more than 5 years. The outcome of the experiment is then 5 cloud
points, consisting of 19918 random sample. To provide a template of the distri-
bution of the temperatures, the 5 different distributions have to be normalized
in order to remove the variability due to the location of the probes and not of
the variability of the weather.
We present in Figure 3 and 4 the initial densities and the aligned densities of
the data. Estimating the deformation parameters enable here to learn a correc-
tion rule. Then, this modification can be applied directly to the data in order
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to get an online rescaled information of the observed temperature at this point
without the need for registrating the data.

Figure 3: Density of temperature
data

Figure 4: Density of normalized
temperature data

7.3. Conclusion

In all the cases, we can see that our methodology performs well. Working di-
rectly on the data enables a better comparison by reducing the variability due
to extra effects. To our knowledge, there are few methodologies aligning random
variables by matching their distribution even if many authors have focused on
registration methods for functional data. Yet, our aim is no to compete with
normalization procedures but rather to show that the semi-parametric model
we consider behaves well in practice with the advantage of providing particu-
lar estimates of the deformation parameters, which can be used for statistical
inference on the data. Moreover, aligning the data enables to learn an auto-
matic correction that can be applied to new data in order to align the data
automatically.

8. Appendix section

8.1. Proof of Theorem 3.1

We start by proving the uniqueness of the minimum of the criterion M(θ).
STEP 0 : Identifiability

We have already remarked that M (θ⋆) = 0 = minθ∈Θ M (θ).
Set θ ∈ Θ. We have M (θ) = 0 if and only if W 2

2 (µ⋆ (θ) , µ) = 0, that is

ϕ−1
θ ◦ ϕθ⋆ = Id µ a.s.
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Hence under assumption A5 θ⋆ is the only minimizer of M .

Now we aim to show that the empirical criterion Mn converges uniformly to
M in probability. The proof follows three steps, beginning with the study of the
pointwise convergence.

STEP 1

For all θ in Θ,

|Mn (θ)−M (θ)| n→∞−−−−→ 0 in probability .

Proof.

We have to prove that W2 (µ
n
⋆ (θ) , µ

n
1 )

n→∞−−−−→ W2 (µ⋆ (θ) , µ)
It comes almost directly from the following result about the convergence in

the Wasserstein sense of the empirical measures which is stated in [18] p. 63.
If Pn is the empirical law of an i.i.d. sample Y1, . . . , Yn with law P ∈ W2 (R),

then
W2 (Pn, P )

n→∞−−−−→ 0 a.s.

Indeed, using the triangular inequality we can write

W2 (µ
n
⋆ (θ) , µ

n
1 ) 6 W2 (µ

n
⋆ (θ) , µ⋆ (θ)) +W2 (µ⋆ (θ) , µ)

+W2 (µ, µ
n
1 )

and

W2 (µ⋆ (θ) , µ) 6 W2 (µ⋆ (θ) , µ
n
⋆ (θ)) +W2 (µ

n
⋆ (θ) , µ

n
1 )

+W2 (µ
n
1 , µ) .

Hence

W2 (µ⋆ (θ) , µ)−W2 (µ
n
⋆ (θ) , µ⋆ (θ))−W2 (µ, µ

n
1 )

6 W2 (µ
n
⋆ (θ) , µ

n
1 )

6 W2 (µ
n
⋆ (θ) , µ⋆ (θ)) +W2 (µ⋆ (θ) , µ) +W2 (µ, µ

n
1 ) .

So because µn
⋆ (θ) (resp. µn

1 ) is the empirical law associated with an i.i.d.
sample of law µ⋆ (θ) ∈ W2 (R) (resp. µ ∈ W2 (R)) we conclude that for all θ

Mn (θ) = W2 (µ
n
⋆ (θ) , µ

n
1 )

n→∞−−−−→ W2 (µ⋆ (θ) , µ) = M (θ) a.s.

and consequently the convergence in probability holds, implied by the a.s. con-
vergence.

STEP 2

For all ε > 0

lim sup
n→∞

P

(
sup

‖θ1−θ2‖6ν

∣∣Mn

(
θ1
)
−Mn

(
θ2
)∣∣ > ε

)
ν→0−−−→ 0
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Proof.

Recall that

Mn (θ) =
1

n

n∑

i=1

[
Z(i) (θ)− ε(i)1

]2
.

For θ1 and θ2 in Θ, we have

∣∣Mn

(
θ1
)
−Mn

(
θ2
)∣∣ 6 1

n

n∑

i=1

∣∣∣
[
Z(i)

(
θ1
)
− ε(i)1

]2 −
[
Z(i)

(
θ2
)
− ε(i)1

]2∣∣∣ .

It can be bounded using the equality a2 − b2 = (a− b)(a+ b) by

∣∣Mn

(
θ1
)
−Mn

(
θ2
)∣∣ 6 1

n

n∑

i=1

Ai

(
θ1, θ2

)
Bi

(
θ1, θ2

)
,

where we have set

Ai

(
θ1, θ2

)
=
∣∣Z(i)

(
θ1
)
− Z(i)

(
θ2
)∣∣

and
Bi

(
θ1, θ2

)
=
∣∣Z(i)

(
θ1
)
+ Z(i)

(
θ2
)
− 2ε(i)1

∣∣ .
Using Cauchy-Schwarz’s inequality we get

∣∣Mn

(
θ1
)
−Mn

(
θ2
)∣∣ 6

√√√√ 1

n

n∑

i=1

Bi (θ1, θ2)
2

√√√√ 1

n

n∑

i=1

Ai (θ1, θ2)
2
.

We first consider √√√√ 1

n

n∑

i=1

Bi (θ1, θ2)
2
.

Using A1 and the triangular inequality
√√√√ 1

n

n∑

i=1

Bi (θ1, θ2)
2
6

√√√√ 1

n

n∑

i=1

ϕ−1
θ1

(
X(i)

)2
+ 2

√√√√ 1

n

n∑

i=1

ε2(i)1

+

√√√√ 1

n

n∑

i=1

ϕ−1
θ2

(
X(i)

)2
.

Hence √√√√ 1

n

n∑

i=1

Bi (θ1, θ2)
2
6

√√√√ 1

n

n∑

i=1

ϕ−1
θ1 (Xi)

2
+ 2

√√√√ 1

n

n∑

i=1

ε2i1

+

√√√√ 1

n

n∑

i=1

ϕ−1
θ2 (Xi)

2
.
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So

sup
‖θ1−θ2‖6ν

√√√√ 1

n

n∑

i=1

Bi (θ1, θ2)
2
62

√√√√ 1

n

n∑

i=1

sup
λ∈Θ

ϕ−1
λ (Xi)

2
+ 2

√√√√ 1

n

n∑

i=1

ε2i1.

Now we will show that

sup
‖θ1−θ2‖6ν

√√√√ 1

n

n∑

i=1

Bi (θ1, θ2)
2
= OP(1).

Using assumption A3, for λ1, λ2 ∈ Θ we can write

ϕ−1
λ1 (x)− ϕ−1

λ2 (x) = ∂ϕ−1
λ1,2 (x)

(
λ1 − λ2

)

for λ1,2 on the segment between λ1 and λ2. Then
∣∣ϕ−1

λ1 (x)− ϕ−1
λ2 (x)

∣∣ 6 sup
λ∈Θ

∥∥∂ϕ−1
λ (x)

∥∥ ∥∥λ1 − λ2
∥∥ .

So for all λ ∈ Θ, using A4

∣∣ϕ−1
λ (x)

∣∣ 6 H(x)∆ +
∣∣ϕ−1

λ0 (x)
∣∣

where λ0 ∈ Θ and ∆ is the diameter of Θ. Hence A2 implies that

sup
λ∈Θ

∣∣ϕ−1
λ (·)

∣∣2 ∈ L1 (µ⋆) (8.1)

and so we can use the Law of Large Numbers to obtain that 1
n

∑n
i=1 supλ∈Θ ϕ−1

λ (Xi)
2

and 1
n

∑n
i=1 ε

2
i1 converge in probability, hence we get

sup
θ1,θ2∈Θ2

√√√√ 1

n

n∑

i=1

Bi (θ1, θ2)
2
= OP(1).

Now we focus on
√

1
n

∑n
i=1 Ai (θ1, θ2)

2.
Using again assumption A1, we can write

Ai

(
θ1, θ2

)
=
∣∣Z(i)

(
θ1
)
− Z(i)

(
θ2
)∣∣

=
∣∣ϕ−1

θ1

(
X(i)

)
− ϕ−1

θ2

(
X(i)

)∣∣ .
Now using again a Taylor-Lagrange expansion

∣∣ϕ−1
θ1 (Xi)− ϕ−1

θ2 (Xi)
∣∣ =

∣∣∣∂ϕ−1

θ̃1,2
i

(Xi)
(
θ1 − θ2

)∣∣∣

6 sup
λ∈Θ

∥∥∂ϕ−1
λ (Xi)

∥∥ ∥∥θ1 − θ2
∥∥
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so

sup
‖θ1−θ2‖6ν

1

n

n∑

i=1

Ai

(
θ1, θ2

)2
6

1

n

n∑

i=1

sup
λ∈Θ

∥∥∂ϕ−1
λ (Xi)

∥∥2 ν2.

But under assumption A3 we can apply the Law of Large Numbers to get that
1
n

∑n
i=1 supλ∈Θ

∥∥∂ϕ−1
λ (Xi)

∥∥2 converges in probability, and so

1

n

n∑

i=1

sup
λ∈Θ

∥∥∂ϕ−1
λ (Xi)

∥∥2 = OP(1).

In conclusion

sup
‖θ1−θ2‖6ν

∣∣Mn

(
θ1
)
−Mn

(
θ2
)∣∣ 6 Vnν

2

where Vn = OP (1) is independent of ν and we obtain

lim sup
n→∞

P

(
sup

‖θ1−θ2‖6ν

∣∣Mn

(
θ1
)
−Mn

(
θ2
)∣∣ > ε

)
ν→0−−−→ 0.

STEP 3

The function θ 7→ M (θ) is continuous on Θ.

Proof.

Let (θn)n∈N
be a sequence of Θ such that θn

n→∞−−−−→ θ0. We will show that
W 2

2

(
µ⋆ (θ

n) , µ⋆

(
θ0
)) n→∞−−−−→ 0, that is M (θn)

n→∞−−−−→ M
(
θ0
)
. For this we will

use the following equivalence.
If (Pn)n∈N

is a sequence in W2 (R) and P ∈ W2 (R), then

W2 (Pn, P )
n→∞−−−−→ 0

if and only if
Pn ⇀ P and E

[
Y 2
n

]
→ E

[
Y 2
]

where Yn follows the law Pn and Y the law P .
This characterization of the convergence in the Wasserstein’s sense is proved

for instance in [18]. Recall that Z1 (θ) = ϕ−1
θ ◦ ϕθ⋆ (ε12).

We first show that E
[
Z2
1 (θ

n)
] n→∞−−−−→ E

[
Z2
1

(
θ0
)]

. Thanks to (8.1) , we have
for all θ ∈ Θ,

|Z1 (θ)| =
∣∣ϕ−1

θ (X1)
∣∣ 6 H̃ (X1)

with H̃ (X1) ∈ L2.
Moreover using the regularity of ϕ−1 with respect to the deformation param-

eter we have the a.s. convergence

Z1 (θ
n)

2
= ϕ−1

θn (X1)
2 n→∞−−−−→ ϕ−1

θ0 (X1)
2
= Z1

(
θ0
)2

.
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Hence we obtain E
[
Z2
1 (θ

n)
] n→∞−−−−→ E

[
Z2
1

(
θ0
)]

.
In addition, we proved the a.s. convergence of Z2

12 (θ
n) to Z2

12

(
θ0
)
, which

implies the weak convergence µ⋆ (θ
n) ⇀ µ⋆

(
θ0
)
.

From this we deduce that W 2
2

(
µ⋆ (θ

n) , µ⋆

(
θ0
)) n→∞−−−−→ 0 and consequently

M (θn)
n→∞−−−−→ M

(
θ0
)

if θn n→∞−−−−→ θ0 : M is continuous on Θ.

CONSEQUENCE

If Θ is compact, then

sup
θ∈Θ

|Mn (θ)−M (θ)| n→∞−−−−→ 0 in probability.

Proof.

Set ε and δ two real positive numbers. Thanks to the steps 2 and 3, we can
choose ν0 such that

lim sup
n→∞

P

(
sup

‖θ1−θ2‖6ν0

∣∣Mn

(
θ1
)
−Mn

(
θ2
)∣∣ > ε

)
6 δ

and
sup

‖θ1−θ2‖6ν0

∣∣M
(
θ1
)
−M

(
θ2
)∣∣ 6 ε.

With the compactness of Θ, we can find a sequence
(
θk
)
16k6m

in Θ such that

Θ ⊂ ∪m
k=1B

(
θk, ν0

)
. Now for θ ∈ Θ ∩B (θp, ν0)

|Mn (θ)−M (θ)| 6 |Mn (θ)−Mn (θ
p)|+ |Mn (θ

p)−M (θp)|+ |M (θp)−M (θ)|

sup
θ∈Θ

|Mn (θ)−M (θ)| 6 sup
‖θ1−θ2‖6ν0

∣∣Mn

(
θ1
)
−Mn

(
θ2
)∣∣+

max
16k6m

∣∣Mn

(
θk
)
−M

(
θk
)∣∣+ sup

‖θ1−θ2‖6ν0

∣∣M
(
θ1
)
−M

(
θ2
)∣∣

Hence
(
sup
θ∈Θ

|Mn (θ)−M (θ)| > 3ε

)
⊂

(
sup

‖θ1−θ2‖6ν0

∣∣Mn

(
θ1
)
−Mn

(
θ2
)∣∣ > ε

)
∪
(

max
16k6m

∣∣Mn

(
θk
)
−M

(
θk
)∣∣ > ε

)
.

So

P

(
sup
θ∈Θ

|Mn (θ)−M (θ)| > 3ε

)
6 P

(
sup

‖θ1−θ2|6ν0

∣∣Mn

(
θ1
)
−Mn

(
θ2
)∣∣ > ε

)

+

m∑

k=1

P
(∣∣Mn

(
θk
)
−M

(
θk
)∣∣ > ε

)
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And with the step 1, we deduce that for all δ and ε > 0

lim sup
n→∞

P

(
sup
θ∈Θ

|Mn (θ)−M (θ)| > 3ε

)
6 δ.

Hence,

sup
θ∈Θ

|Mn (θ)−M (θ)| n→∞−−−−→ 0 in probability.

Finally we complete the proof as follows.
Using the result of identifiability together with the continuity of M and the

compactness of Θ, we deduce that for all ε > 0

inf
Θ∩B(θ⋆,ε)c

M > 0.

Following the M-estimation theorem of [20] (th 5.7 p.45), this result combining
with the uniform convergence in probability of Mn to M leads to the consistency
of the estimator.

8.2. Proof of Theorem 2.7

Recall that µn
2 is the empirical law of the sample (ε12, . . . εn2). Then we have

W2

(
µn
⋆

(
θ̂n
)
, µ
)
6 W2

(
µn
⋆

(
θ̂n
)
, µn

2

)
+W2 (µ

n
2 , µ) .

With the convergence of empirical measures in the Wasserstein sense used in
the step 1 in the proof of Theorem 3.1 we get the a.s. convergence of W2 (µ

n
2 , µ)

to 0 when n tends to infinity.
Second, ϕθ is non decreasing for all θ, so we have

W 2
2

(
µn
⋆

(
θ̂n
)
, µn

2

)
=

1

n

n∑

i=1

(
ϕ−1

θ̂n

(
ϕθ⋆

(
ε(i)2

))
− ε(i)2

)2

=
1

n

n∑

i=1

(
ϕ−1

θ̂n
(ϕθ⋆ (εi2))− εi2

)2
,

and with a Taylor expansion of θ 7→ ϕ−1
θ (Xi) between θ̂n and θ⋆, we obtain

ϕ−1

θ̂n
(ϕθ⋆ (εi2)) = εi2 + ∂ϕ−1

θ̃n
i

(Xi)
(
θ̂n − θ⋆

)

for θ̃ni in the segment between θ̂n and θ⋆. So

W 2
2

(
µn
⋆

(
θ̂n
)
, µn

2

)
6

[
1

n

n∑

i=1

sup
λ∈Θ

∥∥∂ϕ−1
λ (Xi)

∥∥2
]∥∥∥θ̂n − θ⋆

∥∥∥
2

.
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But we showed in the step 2 of the proof of Theorem 3.1 that
[
1
n

∑n
i=1 supλ∈Θ

∥∥∂ϕ−1
λ (Xi)

∥∥2
]
=

OP(1), and the consistency of the estimator θ̂n implies that
∥∥∥θ̂n − θ⋆

∥∥∥ n→∞−−−−→ 0 in

probability. Hence we deduce that W 2
2

(
µn
⋆

(
θ̂n
)
, µn

2

)
n→∞−−−−→ 0 in probability.

In conclusion,

W2

(
µn
⋆

(
θ̂n
)
, µ
)

n→∞−−−−→ 0 in probability.

8.3. Proof of Theorem 4.1

For sake of simplicity, we prove the theorem in the case where d = 1.
Here we introduce new notations.
We note D]α;β] the set of distribution functions of measures that concentrate

on ]α;β] and S the Skorohod space, that is the space of cadlag functions on R̄

endowed with the supremum norm ‖ ‖∞. Recall that the cadlag functions are
defined as the right continuous functions which admit a limit from the left.

ℓ∞(0; 1) is the set of functions bounded on (0; 1), and for I = Ib or I = [α;β],
ℓ∞ ((0; 1); I) is the set of functions bounded on (0; 1) with values in I. ℓ∞,m(0; 1)
denotes the set of bounded and measurable functions on (0; 1) . Recall that
[α;β] ⊂ Ib.

On the spaces ℓ2∞(0; 1) and ℓ2∞,m(0; 1) we consider the norm ‖h‖∞,2 = max (‖h1‖∞ , ‖h2‖∞)
where h = (h1, h2). Finally we denote by Qn

⋆ the empirical quantile function
(Fn

⋆ )
−1 and Qn = (Fn)−1 .

We start by the computation of the first and second derivatives of Mn.

Differentiability of Mn

We have

Mn (θ) =
1

n

n∑

i=1

[
ϕ−1
θ

(
X(i)

)
− ε(i)1

]2
.

Hence Mn is C2 on Θ under AL1, and

∂Mn (θ) =
2

n

n∑

i=1

∂ϕ−1
θ

(
X(i)

) [
ϕ−1
θ

(
X(i)

)
− ε(i)1

]
.

We can also write,

∂Mn (θ) = 2

∫ 1

0

∂ϕ−1
θ (Qn

⋆ (t))
[
ϕ−1
θ (Qn

⋆ (t))−Qn(t)
]
dt. (8.2)

Moreover

∂2Mn (θ) =
2

n

n∑

i=1

∂ϕ−1
θ

(
X(i)

) [
∂ϕ−1

θ

(
X(i)

)]
+
2

n

n∑

i=1

∂2ϕ−1
θ

(
X(i)

) [
ϕ−1
θ

(
X(i)

)
− ε(i)1

]
.
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So

∂2Mn (θ) = 2

∫ 1

0

∂ϕ−1
θ (Qn

⋆ (t))
2
+∂2ϕ−1

θ (Qn
⋆ (t))

[
ϕ−1
θ (Qn

⋆ (t))−Qn(t)
]
dt.

(8.3)

The regularity of Mn allows a Taylor expansion

∂Mn

(
θ̂n
)
= ∂Mn (θ

⋆) + ∂2Mn

(
θ̃n
)(

θ̂n − θ⋆
)

for θ̃n between θ̂n and θ⋆. Using that Mn admits a minimum on θ̂n we have

−∂Mn (θ
⋆) = ∂2Mn

(
θ̃n
)(

θ̂n − θ⋆
)
.

We set ∂Mn (θ
⋆) = Ψ (Fn, Fn

⋆ ), ∂
2Mn

(
θ̃n
)
= Φ

(
Fn, Fn

⋆ , θ̃
n
)
.

The aim of the following is to show that Ψ is Hadamard differentiable in
order to apply a Delta method to get

√
n(−∂Mn (θ

⋆)) ⇀ Z for some random
variable Z.

Convergence in law of ∂Mn (θ⋆).
We have Ψ = χ ◦Ψ0 where

Ψ0 (F, F⋆) =
(
F−1, F−1

⋆

)

is defined on D]α;β]J with values in ℓ2∞,m((0; 1), [α;β]).
χ is defined from ℓ2∞,m ((0; 1), [α;β]) to R with

χ (g1, g2) = 2

∫ 1

0

∂ϕ−1
θ⋆ (g2(t))

[
ϕ−1
θ⋆ (g2(t))− g1(t)

]
dt.

Now consider the following lemma.

Lemma 8.1. Let G : IJb → R a continuous function. Then, if [α;β] ⊂ Ib,

G̃ :
(
ℓJ∞,m ((0; 1); [α;β]) , ‖ ‖∞,J

)
→ R

(g1, . . . , gJ) 7→
∫ 1

0

G (g1(u), . . . , gJ(u)) du

is continuous. If G is continuously differentiable, then G̃ is Hadamard differen-
tiable tangentially to ℓJ∞,m ((0; 1)) with

DG̃ (g1, . . . , gJ) [h1, . . . , hJ ] =

∫ 1

0

DG (g1(u), . . . , gJ(u)) [h1(u), . . . , hJ(u)] du.
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Using AL1, we apply this lemma for J = 2 to

G(x1, x2) = ∂ϕ−1
θ⋆ (x2)

[
ϕ−1
θ⋆ (x2)− x1

]

and we deduce that χ is Hadamard differentiable tangentially to ℓ2∞,m (0; 1).
Moreover, for k1, k2 ∈ ℓ2∞,m (0; 1)

Dχ (g1, g2) [k1, k2] =2

∫ 1

0

d∂ϕ−1
θ⋆ (g2(t)) [k2(t)]

[
ϕ−1
θ⋆ (g2(t))− g1(t)

]
dt

+2

∫ 1

0

∂ϕ−1
θ⋆ (g2(t))

[
dϕ−1

θ⋆ (g2(t)) [k2(t)]− k1(t)
]
dt

Under AL2 and AL3 we can apply Theorem 8.2 in Section 8.5 which ensures
that Ψ0 is Hadamard differentiable at (F, F⋆) tangentially to C2 [α;β], with

DΨ0 (F, F⋆) [h1, h2] = −
(
h1 ◦ F−1

f ◦ F−1
,
h2 ◦ F−1

⋆

f⋆ ◦ F−1
⋆

)

for (h1, h2) ∈ C2 [α;β]. Hence, with the regularity of the functions F⋆ and F ,
we obtain that DΨ0 (F, F⋆)

(
C2 [α;β]

)
⊂ ℓ2∞,m (0; 1). Thus we can apply the

chain rule to the composed function Ψ = χ ◦ Ψ0 to get that Ψ is Hadamard
differentiable at (F, F⋆) tangentially to C2 [α;β] with

DΨ(F, F⋆) [h] = Dχ (Ψ0 (F, F⋆)) [DΨ0 (F, F⋆) [h]]

for h = (h1, h2) ∈ C2 [α;β] .

Under A1, we have F⋆ = F ◦ ϕ−1
θ⋆ . Hence, F−1

⋆ =
(
F ◦ ϕ−1

θ⋆

)−1
= ϕθ⋆ ◦ F−1

and we obtain ϕ−1
θ⋆

(
F−1
⋆ (t)

)
= F−1(t). This leads to

DΨ(F, F⋆) [h1, h2] =

2

∫ 1

0

∂ϕ−1
θ⋆

(
F−1
⋆ (t)

)
[
dϕ−1

θ⋆

(
F−1
⋆ (t)

)
[
−h2

(
F−1
⋆ (t)

)

f⋆
(
F−1
⋆ (t)

)
]
− −h1

(
F−1(t)

)

f (F−1(t))

]
dt,

Moreover, if we differentiate the equality F⋆(x) = F ◦ϕ−1
θ⋆ (x) we obtain that

f⋆(x) = dϕ−1
θ⋆ (x) f ◦ ϕ−1

θ⋆ (x).
Hence f⋆(F−1

⋆ (t)) = dϕ−1
θ⋆ (F−1

⋆ (t))f◦ϕ−1
θ⋆

(
F−1
⋆ (t)

)
= dϕ−1

θ⋆ (F−1
⋆ (t))f◦F−1(t),

and we can simplify

DΨ(F, F⋆) [h1, h2] = 2

∫ 1

0

∂ϕ−1
θ⋆

(
F−1
⋆ (t)

)

f(F−1(t))

[
h1

(
F−1(t)

)
− h2

(
F−1
⋆ (t)

)]
dt

With the independence of the different samples and the convergence in law
of the empirical distribution functions which is stated in Theorem 8.4 in Section
8.5, we know that

√
n

(
Fn − F

Fn
⋆ − F⋆

)
⇀

(
G1 ◦ F
G2 ◦ F⋆

)
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in the product space (S2, ‖ ‖∞,2) where G1 and G2 are independent standard
Brownian bridges .

Hence we can apply Theorem 8.3, the functional Delta method which is stated
in section 8.5 with the following correspondences : A is the Skohorod space, Aφ =
D]α;β]2, A0 = C2[α;β] (we have (G1 ◦ F,G2 ◦ F⋆) ∈ A0). Hence, computing
Ψ(F, F⋆) = 0 we obtain

√
n(−∂Mn (θ

⋆)) ⇀ −DΨ(F, F⋆) [G1 ◦ F,G2 ◦ F⋆]

in R.

Next we will show that Φ
(
Fn, Fn

2 , θ̃
n
)
→ Φ (F, F⋆, θ

⋆) in probability.

Convergence of ∂2Mn.

We can write Φ
(
Fn, Fn

⋆ , θ̃
n
)
= φ

(
Ψ0(F

n, Fn
⋆ ), θ̃

n
)
= ∂2Mn

(
θ̃n
)
where

φ (g1, g2, θ) = 2

∫ 1

0

∂ϕ−1
θ (g2(t))

2
+ ∂2ϕ−1

θ (g2(t))
[
ϕ−1
θ (g2(t))− g1(t)

]
dt.

Using AL1 and a slight modification of Lemma 8.1, we get that the function
φ is continuous on

(
ℓ2∞,m ((0; 1) ; [α;β])× R,max

(
‖ ‖∞,2 , ‖ ‖

))
. Moreover,

θ̃n
n→∞−−−−→ θ⋆ in probability

and
Ψ0 (F

n, Fn
⋆ )

n→∞−−−−→ Ψ0 (F, F⋆) =
(
F−1, F−1

⋆

)
in probability

in the space
(
ℓ2∞,m ((0; 1) ; [α;β]) , ‖ ‖∞,2

)
. Hence

Φ
(
Fn, Fn

⋆ , θ̃
n
)

n→∞−−−−→ Φ (F, F⋆, θ
⋆) in probability,

with

Φ (F,F⋆, θ
⋆) = 2

∫ 1

0

∂ϕ−1
θ⋆

(
F−1
⋆ (t)

)2
+ ∂2ϕ−1

θ⋆

(
F−1
⋆ (t)

) [
ϕ−1
θ⋆

(
F−1
⋆ (t)

)
− F−1(t)

]
dt

that is

Φ (F,F⋆, θ
⋆) = 2

∫ 1

0

∂ϕ−1
θ⋆

(
F−1
⋆ (t)

)2
dt. (8.4)

Hence one get the result using Slutsky’s lemma.
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8.4. Proof of Lemma 8.1

We first prove the continuity of G̃.
Choose g = (g1, . . . , gJ) ∈ ℓJ∞,m ((0; 1), [α;β]). G is uniformly continuous on

the compact [α;β]
J ⊂ IJb .

For all ε, set ν(ε) such that |x− y|∞ = max (|x1 − y1| , . . . , |xJ − yJ |) 6 ν(ε)

implies |G (x1, . . . , xJ)−G (y1, . . . , yJ)| 6 ε if x, y ∈ [α;β]
J .

Set h = (h1, . . . , hJ) ∈ ℓJ∞,m ((0; 1), [α;β]) such that ‖h− g‖∞,J 6 ν(ε). Then

∣∣∣G̃(h)− G̃(g)
∣∣∣ 6

∫ 1

0

|G (g(u))−G (h(u))| du 6

∫ 1

0

εdu = ε :

G̃ is continuous.
Now we consider the Hadamard differentiability.
Let g = (g1, . . . , gJ) ∈ ℓJ∞,m ((0; 1), [α;β]), h = (h1, . . . , hJ) ∈ ℓJ∞,m(0; 1)

and ht = (ht
1, . . . , h

t
J) such that ht t→0−−−→ h ∈ ℓJ∞,m ((0; 1)) and g + tht ∈

ℓJ∞,m ((0; 1), [α;β]) for t sufficiently small. For v and w in R
J , we denote by

[v;w] the segment between these two vectors, that is

[v;w] = {sv + (1− s)w, s ∈ [0; 1]} .

Recall that we have set

DG̃ (g) [h] =

∫ 1

0

DG (g1(u), . . . , gJ(u)) [h1(u), . . . , hJ(u)] du.

First remark that DG̃ (g1, . . . , gJ) is well definite, linear and continuous on
ℓJ∞,m(0; 1).

Next, write
∣∣∣∣G̃
(
g + tht

)
− G̃ (g)− t

∫ 1

0

DG (g(u)) [h(u)] du

∣∣∣∣

6

∫ 1

0

∣∣G
(
(g(u)) + t

(
ht(u)

))
−G (g(u))− tDG (g(u))

[
ht(u)

]∣∣ du

+

∫ 1

0

∣∣tDG (g(u))
[
ht(u)

]
− tDG (g(u)) [h(u)]

∣∣ du

6

∫ 1

0

sup
k(u)∈[g(u);g(u)+tht(u)]

‖DG (k(u))−DG(g(u))‖
∥∥t
[
ht(u)

]∥∥ du

+

∫ 1

0

‖DG (g(u))‖
∥∥t
[
ht(u)

]
− t [h(u)]

∥∥ du
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with the Mean theorem applied to the function F (x) = G(g(u) + tx) −
tDG((g(u))x between x = ht(u) and x = (0, . . . , 0).

Hence for t 6= 0

1

|t|

∣∣∣∣G̃ (g + th)− G̃ (g)− t

∫ 1

0

DG (g1(u), . . . , gJ(u)) [h1(u), . . . , hJ(u)] du

∣∣∣∣

6

∫ 1

0

sup
k(u)∈[g(u);g(u)+tht(u)]

‖DG (k(u))−DG(g(u))‖ du
∥∥ht
∥∥
∞,J

+

∫ 1

0

‖DG (g1(u), . . . , gJ(u))‖ du
∥∥h− ht

∥∥
∞,J

.

But for all u, tht(u) tends to 0 while t tends to 0 , and by continuity of DG we
deduce that

sup
k(u)∈[g(u);g(u)+tht(u)]

‖DG (k(u))−DG(g(u))‖ t→0−−−→ 0

for all u.
Moreover u 7→ DG (g1(u), . . . , gJ(u)) is bounded thanks to the continuity of

DG and the fact that g ∈ ℓJ∞,m ((0; 1), [α;β]). Same arguments leads to the fact
that u 7→ DG (k(u)) is bounded for k between g and g + tht if t is sufficiently
small. Hence we can apply the dominated convergence theorem to obtain that

∫ 1

0

sup
k(u)∈[g(u);g(u)+tht(u)]

‖DG (k(u))−DG(g(u))‖ du t→0−−−→ 0.

So with the convergence of ht we conclude that

1

|t|

∣∣∣∣G̃
(
g + tht

)
− G̃ (g)−

∫ 1

0

tDG (g(u)) [h(u)] du

∣∣∣∣
t→0−−−→ 0

that is, G̃ is Hadamard differentiable tangentially to ℓJ∞,m(0; 1) with

DG̃ (g1, . . . , gJ) [h1, . . . , hJ ] =

∫ 1

0

DG (g1(u), . . . , gJ(u)) [h1(u), . . . , hJ(u)] du.

8.5. Auxiliary theorems

The following theorems are taken from [20]. The first one is Lemma 21.4 p. 307.

Theorem 8.2. Set

Ψ0 (F1, . . . FJ) =
(
F−1
1 , . . . , F−1

J

)

defined on D]α;β]J with values in ℓJ∞(0; 1)

imsart-ejs ver. 2013/03/06 file: art_une_def.tex date: November 14, 2013



Lescornel et al./ 27

Assume that for all j, Fj has a compact support [α;β] and is continuously
differentiable on its support with strictly positive derivative fj. Then Ψ0 is
Hadamard differentiable on (F1, . . . FJ) tangentially to C[α;β]J . The derivative
is the map defined on C[α;β]J :

(h1, . . . , hJ) 7→ −
(
h1 ◦ F−1

1

f1 ◦ F−1
1

, . . . ,
hJ ◦ F−1

J

fJ ◦ F−1
J

)

This one is the statement of the functional Delta method labelled as Theorem
20.8 p. 297.

Theorem 8.3. Let A and B normed linear spaces, and φ : Aφ ⊂ A → B

Hadamard differentiable at a tangentially to A0. Let Xn random variables with
values in Aφ such that rn (Xn − a) ⇀ X, where X takes its values in A0 and
rn → ∞.

Then rn (φ (Xn)− φ (a)) ⇀ Dφ(a)X.

And finally Donsker’s Theorem corresponds to Theorem 19.3 p. 266.

Theorem 8.4. If X1, . . . , Xn are i.i.d. random variables with distribution func-
tion F and empirical distribution function Fn, the sequence

√
n (Fn − F ) con-

verges in distribution in (S, ‖·‖∞) to G ◦ F where G is a standard Brownian
bridge.
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