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Synchrony as a Tool to Establish Focus of Attention for Autonomous

Robots

Syed Khursheed Hasnain, Philippe Gaussier and Ghiles Mostafaoui1

Abstract— With technology and artificial intelligence ad-
vancements, the notion of professional service robots has
emerged. Consequently, robots must share their physical and
social space with human beings. How can robots select a
partner among many interactants and how can they focus
their attention on regions of interest? As psychologists consider
synchrony as an important parameter for social interaction, we
hypothesize that in the case of social interaction, people focus
their attention on regions of interest where the visual stimuli
are synchronized with their inner dynamics. Then, we assume
that a mechanism able to detect synchrony between internal
dynamics of a robot and external visual stimuli (optical flow)
can be used as a starting point for human robot interaction.
This kind of mechanism can also be involved in more complex
tasks of interaction such as partner selection. Inspired by
human psychological and neurobiological data, we propose
a synchrony-based neural network architecture capable of
selecting the robot partner and of locating focus of attention.

I. INTRODUCTION

Human verbal interaction is not only speech dependent, in

fact, many non-verbal behaviors such as facial expressions,

pauses during discussion, hand movements and some other

gestures are also involved. In other words, when two hu-

mans interact, they generate interpersonal interactions which

synchronizes naturally between the two agents watching each

other [1]. Studies of dyadic interactions show that synchrony

is a necessary condition for interaction between an infant and

its mother. An infant stops interacting with its mother when

she stops synchronizing with it [2]. Condon and Ogston also

described that when two persons are engaged in a discussion

their behaviors are temporally correlated [3]. In addition,

Rochat [4] has underlined the self-imitiation where an infant

reproduce their own actions, he proposed that the systematic

repetition of self produced actions could serves as a primary

source of knowledge about the self and basic process by

which infants gain self-reflective capabilities. Trevarthen and

Hubley [5] suggested that imitation by mothers can be

assumed as a tactic to get the attention of their babies.

In physics, the earliest known scientific discussion of

synchronization started in 1657 when the famous Dutch

physicist Christiaan Huygens observed and described the

synchronization phenomenon working with pendulum clocks

[6]. Blekhman [7] did similar experiments and observed

two stable synchronization states (anti-phase and in-phase).

Flashing of fireflies, Cricket chirping, pacemaker cells in

1S. K. Hasnain, P. Gaussier and G. Mostafaoui are with Neurocybernetic
team, ETIS, ENSEA, University of Cergy-Pontoise, 95302 France.
syed-khursheed.hasnain at ensea.fr, gaussier
at ensea.fr and ghiles.mostafaoui at ensea.fr

the heart circadian rhythm and people’s clapping show the

synchronization is a quite general property in living systems

[6] [8].

Michalowski et al. developped a dancing robot to analyse

the properties and significance of synchronized movement in

general social interaction [9]. Murtaza et al. [10] proposed

a tracking method to synchronize the robot (steps) with

musical beats. Crick et al. programmed a robot for drumming

(with human drummers) by integrating multiple sensors

input (oscillatory). They showed that precise synchroniza-

tion between humans and robot can be achieved by fusing

multiple sensors input although incoming data is imperfect

[11]. Ikegami and Iizuka [12] used the genetic algorithm

technique and showed that coupling and turn-taking between

two agents are sensitive to the dynamics of interaction.

One of the major concerns of interactive robotics is how

to focus on salient features among various visual stumuli. In

fact, focusing attention and discriminating useful data from

the others reduce significantly the big amount of incoming

information from sensors and keep computational resources

available for other important tasks. A good example of Focus

of Attention (FOA) is the cocktail party where humans are

able to focus their attention on one interesting voice in a

noisy room.

From the above discussion, it is clear that synchrony

is a crucial parameter for social interaction as well as

largely witnessed in natural (dynamical) systems. In this

paper, we use immediate synchronous imitation (adaptation

of other’s synchronous behavior) as a communication tool.

In other words, robot imitates the other agent, if it detects

synchrony between its internal dynamics and the interactant’s

movements. This approach addresses the question “who

to imitate” discussed by Dautenhahn and Nehaniv [13].

The paper is organized as follows: In section 2, materials

and methods are defined. Section 3 describes a model of

dynamical interaction (for two agents). In section 4, the

architecture to select an interacting partner among various

interacting agents using synchrony information is presented.

Section 5 explains the concept and the architecture of focus

of attention (FOA) by predicting synchrony informationand

finally, before concluding, section 6 details the experimental

results.

II. MATERIALS AND METHODS

We used a minimal setup for our experiments as shown

in fig. 1. Components of our experiment includes Nao robot,

basic automata (1 degree of freedom), human and cameras.

To avoid the limitation of the Nao’s camera which is limited



Fig. 1. Setup for our experiments. (a) basic automata (1 degree of freedom,
assembled in the lab) (b) Nao robot (c) & (d) Overall setup for human-robot
and robot-robot interaction.

to 10 Hz (frame rate) through the ethernet connection, a new

camera has been added. The frame rate for our experiments

is 30 Hz. Robot’s head is used to show where the robot

focuses its attention.

Phase locking value (PLV) is used to investigate the

interaction dynamics between two signals. PLV is a prac-

tical method presented by Lachaux et al [14] for de-

tecting EEG synchrony in a band of frequencies. The

phase locking value for the two signals is defined as

PLVn,r = 1

T
|
∑T

t=1
exp(i(φn − φr))|. Where T is the

number of samples in each window and φn − φr is

the phase difference between two signals. Synchronization

leads the PLV value at 1 and on the contrary close to

zero. The videos of our experiments based on proposed

architectures can be found on the following web site:

http://www.etis.ensea.fr/neurocyber/Videos/synchro/

III. HUMAN ROBOT INTERACTION USING

OPTICAL FLOW

Here, we propose a model based on dynamical interactions

of two agents. Agent 1 (Nao robot) dynamically adopts or

imitates the behavior of agent 2 (either human or basic

automata). Our aim is to provide minimal capabilities to Nao

to interact with other agents by dynamically adopting the fre-

quency and phase of the other agents. Optical flow represents

the visual stimuli and it is input for our architecture.

A. Oscillator Model

The oscillator model shown in the fig. 2 is similar to [15].

It is made of two neurons N1 and N2, fed by a constant

signal and multiplied by the parameter α1 and α2. These two

neurons inhibit each other proportionality to the parameter

β. The frequency of the oscillator depends on the parameters

α1, α2 and β.

N1(n+ 1) = N1(n)− βN2(n) + α1 (1)

N2(n+ 1) = N1(n) + βN2(n) + α2 (2)

In addition, reservoir of oscillators (echo state network)

could be used to work with a larger range of frequencies.

B. Dynamical Interaction Model

As shows in fig. 2, the oscillator is connected with Nao

(robot’s arm) and oscillates normally at its own frequency

and amplitude. Motion in the visual field of Nao (we restrict

our motion up-down only) is estimated by an optical flow

algorithm, velocity vectors are then converted into positive

and negative activities. If the perceived movements are in

the upward direction, the oscillator gets the positive activity

and its amplitude increases on the positive side depending

on the quantity of energy induced. Similarly, if the negative

activity is perceived, the amplitude goes down. Fig. 3(e) is a

snapshot taken during an experiment illustrating the optical

flow functioning. There are two moving objects in the field

of view of Nao. One moves upward and it is transformed

to positive activities by the optical flow (shown by black

color) while the other moves downward and transformed into

negative activities (gray and unfilled).

These positive and negative activities will be learnt by the

robot and modifies the oscillator accordingly. When an agent

interacts with Nao, Nao’s oscillator can be modified within

certain limits otherwise it continues to its default frequency.

Mathematical equation of the oscillator can be rephrased as

N1(n+ 1) = N1(n)− βN2(n) + α1 + γf ′ (3)

Where f ′ is the induced energy, f ′ may be either positive or

negative. γ is the coupling scaling factor

Fig. 3 (column 1) shows an agent (human) comeing in the

visual field of Nao and trying to interact by imitating NAO.

Initially, both are unsynchronized (see fig. 3(b) (column

1)). PLV (indicator of synchrony) has its lowest value.

Fig. 3(a) and 3(b), column (2) shows after some time of

interaction both Nao and human are synchronizing little by

little similar to pendulum coupling. Their increasing PLV

value also shows the emerging synchrony. In the column 3

of fig. 3(a) and 3(b), it is clearly shown that both agents are

completely synchronized and the corresponding PLV value

has its highest possible range. Fig. 3(c) shows Lissajous

curve between N(t) (Nao’s oscillation) and H(t) (human’s

movements). The shape of the curve is an ellipse indicating

that both signals are almost identical.

Interesting facts are observed during experiments. Some of

these observations were also made by Pantaleone in his study

on analysis of metronomes synchronization [17]. First, if the

natural frequency of the two agents (in his case two pendu-

lums) differs by more than a certain limit, synchronization

will not occur but the range of interacting frequency (that can

be synchronized with Nao) can be augmented by increasing

the coupling energy (f ′) that feeds to the Nao’s oscillator.

With low coupling scaling factor (γ) both agents can be

synchronized if their natural frequency differs by more than

few percents. Similarly, higher scaling factor (γ) leads to

higher range of frequencies. For this human-robot interaction

the default frequency of Nao’s oscillator was 0.428 Hz



Fig. 2. (a) Oscillator model made of two neurons N1 and N2 (b) Selection of Partner: select a interacting partner on the basis of synchrony detection
among various interacting agents. (c) Shows attentional mechanism architecture.

Fig. 3. Describes how the two agents are synchronized. (a) Shows two
signals (human and Nao’s modifiable oscillator). (b) PLV measurement. (c)
Lissajous curve N(t) (Nao’ oscillation) and H(t) (Human’s movements),
curve’s ellipse shape indicates that both signals are identical (d) Lissajous
curve between two different time values of Nao (N(t) and N(t + 5)).
(e) Optical flow function: Upward movements shows as black and realized
by +ve activities while downward motion perceived as −ve activities and
shown by black color. (f) Real image seen by camera that corresponds to
the optical flow shown in (e)

while human’s interacting frequency (measured by adding

the active pixels of motion estimation) was between 0.4615
Hz to 0.476 Hz (7.8% to 11% higher to the Nao’s frequency)

with the scaling factor of γ=0.15 and the corresponding

∆f (largest possible difference in frequencies that can still

lead to synchronization) is about 15%, 0.3 coupling scaling

factor leads to ∆f = 29% with little varying amplitude and

γ=0.5 scaling factor results to ∆f = 72% but this higher

coupling introduces saturation of amplitude. Second, for the

same parametric conditions, if the natural frequencies of

both agents are the same no phase lag was observed but

as the ∆f increases to a certain limit phase lag increases

too and beyond the limit (∆f ) stated above it ends up with

asynchronous state. We experienced 00 to 900 of phase shift

in our experiments. Better performances and control can

be obtained using Rowat-Selverston CPG (Central Pattern

Generator) but for sake of simplicity, we will not present it

in this paper.

IV. SELECTION OF PARTNER

We proposed a neural network architecture (Fig. 2(b))

that selects an interacting partner on the basis of synchrony

detection among various interacting agents. The architecture

can be divided into two parts. One part is related to the

dynamical interaction illustrated before. Previously, the mod-

ifiable Nao’s oscillator controlling the arm movement was

directly connected to the optical flow. Now, the coupling is

made through oscillator-prediction module (f”). The reason

of this indirect coupling is to make sure that the architecture

will entertain the visual stimuli (optical flow) that are similar

to its own motion (learnt in oscillator-prediction module).

Equation of modifiable oscillator can be rewritten as

N1(n+ 1) = N1(n)− βN2(n) + α1 + +γf ′′ (4)

Where f ′′ is the energy induced by the Oscillator-

prediction module to the modifiable oscillator. Other vari-

ables remains the same.

The Oscillator-prediction block (represented by y′) is

linked to the robot’s oscillator (represented by y) with a non

modifiable link and the image (represented by X) with a

modifiable link. The Oscillator-prediction (y′) module learns

the robot’s oscillation as a weighted sum of image pixels.



The neuron activity in the Oscillator-prediction (y′) can

be computed using X → y′ synapses by equation 5 that

corresponds to the predicted future value.

x
y′

i (t) =
∑

kǫX

W
X→y′

ik xX
k (5)

The learning of X → y′ synaptic weights can be computed

(equation 6) by a Normalized Least Mean Square (NLMS)

algorithm [19].

W
X→y′

ij (t+ dt) = W
X→y′

ij (t) + αη.
x
y
i (t)− x

y′

i (t)∑
kǫX

xX
k (t)2 + σ1

.x
X
j (t)

(6)

η is synaptic learning modulation, α is the learning rate

and W
X→y′

ij represents the synaptic weights from Image

neuron j to Oscillator − prediction neuron i, x
y
i is the

activity transmitted to neuron i by the oscillator, it is a

target signal for Normalized Least Mean Square (NLMS)

algorithm. In online learning case, the introduction of η

is necessary for convergence. It modulates randomly the

learning speed by introducing a randomization effect that

suppresses the negative effects of the temporal regularities

of input data. The normalization term
∑

kǫX xX
k (t)2 +σ1 is

specific to the NLMS. To avoid the divergence of the weights

(if the image value is too small), σ1 is a constant having

small value.

Now we consider the complete scenario. For the selection

of partner, the architecture works in two phases: learning

phase and testing phase. During the learning phase, NAO

oscillates according to its standard frequency (no visual

stimulus). NAO looks at its own hand. This initiates two

processes. First the oscillator prediction module which was

zero due to non availability of visual stimuli starts now

predicting robot’s modifiable oscillator as a weighted sum

of its own visual stimuli. The oscillator-predication mod-

ule learns the optical flow associated to its motion. As a

consequence, it modifies the oscillator (as described in the

dynamical interaction section) and this process of learning

and adaptation to each other works continuously and settle

down after some time. This process of adjustment can be as-

sumed as a basic process by which infants gain self reflective

abilities as underlined by Rochat [4]. Once the learning is

over, the architecture can be tested for multiple agents. When

an agent interacts with a similar frequency, weights (that are

already learnt on modifiable links) are associated with the

visual activities induced by the human movements and Nao’s

modifiable oscillator adopts the interacting frequency and

phase. If the interacting frequency is different from the learnt

one, the weights (modifiable links) can not be associated with

the visual stimuli and NAO continues to move at its default

frequency. The same is true for multiple agents case. Among

two interactants only the agent having a similar frequency

as Nao is selected.

In this experiment, three agents are involved, in addition

to NAO and human, a basic automata is introduced (Figure

1(d)). The coupling scaling factor (γ) was 0.07, Naos default

frequency was 0.407 Hz, automata’s synchronized frequency

was 0.4318 (6% higher) and human synchronized frequency

was 0.36 (11% low) to 0.38 (6% less than default frequency).

When a subject interacts with a frequency close to the learnt

one, the network selects this agent as a good interacting

partner and NAO modifiable oscillator synchronizes with it.

Initially, both agents move with close frequencies (within

an allowable range) but after some time of interaction NAO

adopts human movements and both oscillate with exactly

the same frequency corresponding to the human motion.

Good results are obtained with this architecture, these are

collectively shown in the next sections.

V. ATTENTIONAL MECHANISM

In this section, we used prediction of synchrony as a

parameter to attract the attention (FOA) of a robot. If two

visual stimuli are present at the same time and only one of

them has the same frequency as Nao, Nao will synchronize

with the ”interacting” partner (the one oscillating almost at

the same frequency as Nao) but NAO will not be able to

locate the good interacting partner in its visual field, because

this algorithm works on the perceived energy irrespective of

the agent location. The proposed FOA algorithm dynamically

learns and locates the selected interacting agent using spatial

predictions.

Fig. 2(c) shows the architecture of FOA. During inter-

action, the selection of partner algorithm selects a good

interacting partner and synchronize NAO’s movements, the

image-prediction module ( X ′′) learns the spatial location of

these movements as a weighted sum of Nao’s synchronized

frequency and able to predict the corresponding movements.

After a short while, an other agent comes and moves with

a different frequency (lower or higher than Nao), X ′′ which

already learnt synchronized rhythmic motion of optical flow

predicts strongly the first agent even in the presence (in the

visual field) of the unsynchronized one (because the predic-

tion is made by the weighted sum of the learnt frequency).

To determine the correct interacting partner and to dis-

criminate between multiple stimuli, our algorithm modulates

the current visual stimuli with the image-prediction X ′′.

A merging block is used to compute a weighted average

of these current results (modulation) and results of the

previous iteration (see Fig. 2). The higher values of this

merging block are then correlated to the location of syn-

chronous movements. All the pixels of the merging block

are projected on the x axis (i.e all pixels in each column

are added). Then a Winner Takes All (WTA) selects the

highest activated column. This selected column indicates

the location of the synchronized movement and the robot

can point to the synchronized region to show the current

Focus of Attention (FOA). The robot always focus with the

synchronized posture even if the partner changes his location.

For this experiment the resolution of the predicted image of

optical flow is 32× 24 (32 columns or location), these 32

possible locations are realized in 600 (−300 to 300) circular

angles which are fed to the motor according to corresponding

columns (column zero refers to −300 while 32th column



Fig. 4. (a) Nao’s oscillations along with interacting agent (b) Fluctuating
angle of FOA according to the rhythmic motion (c) It describes the
interactant’s location in front of Nao.

corresponds to 300) and 00 when the agent stands in front

of Nao.

The learning rule for movement-prediction (X ′′) module is

almost the same and the weights are normalized to smoothing

the learning processes. The activity of neurons in (X ′′) can

be computed using y → X ′′ synapses by (7). The learning

of y → X ′′ synaptic weights can be computed by :

xX′′

j (t) =
∑

iǫy

x
y
iW

y→X′′

ij (7)

W
y→X′′

ij (t+ dt) = W
y→X′′

ij (t) + ǫ.x
y
i (t).U

X
j (t) (8)

Where xj is the activity of neuron in X ′′ group,

xi is the neuron of conditional group (Oscillator) and

Uj is inconditional stimulus (Image) and defined as

(Uj =
∑

i inconditional Xi.Wij), weights are normalized as

[Wij =
Wij∑
i
Wij

] .

VI. RESULTS

The focus of attention mechanism is tested in a simple way

and results are shown in fig. 4, where in (a) Nao’s oscillations

along with the interacting agent are shown. Fig.4(b) indicates

the angle of FOA according to the rhythmic motion and

finally fig.4(c) describes the interactant’s location in front

of Nao. At start, no visual stimuli is presented to Nao, the

FOA moves randomly between −300 and 300. After 500

time units (16.6 sec.), a synchronized motion is introduced

from the left side (−28.30) of Nao. This interaction results

in turning the FOA to the synchronized location as shown

in fig. 4. As the interacting agent moves a little to right

side −2.70 consequently our architecture force the FOA to

relocate itself in the direction of the correct motion. Next,

the agent moves to the left side 25.40 of the Nao and FOA

again follows the agent. The same sequence is repeated again

to verify that FOA always followed the interactant. Fig. 4

corresponds to the experiment shown on the video available

on our website.

After this simple experiment, we examine our selection of

partner algorithm along with FOA architecture by extending

the experiment to the case of two agents : an Automata (one

DoF) and a human (only one of them is synchronized at a

time). Results show that when the Automata moves similarly

to Nao’s movements while human oscillates with a different

frequency, Nao synchronizes with the Automata (by selection

of partner algorithm) and FOA mechanisms turns towards

Automata but if the human adapts his frequency close to

Nao, Nao alignes itself with the human and FOA moves

towards human.

These results of both algorithms are shown in fig. 5 by two

sets of graphs. Fig. 5(a) shows the onset of the experiment,

where the Automata enters in the visual field of Nao from

the left side (about −200) and imitates it. Consequently, both

become synchronized with each other using our selection

of partner algorithm. Fig. 5(a1) sketches the signals of

Nao modifiable oscillator, and Automata illustrating how

they become synchronized. Fig. 5(a3) shows the PLV value

(measure of synchrony) of the two agents. Initially, PLV is

low but as the interaction gets longer it increases to maxi-

mum. Fig. 5(a4) depicts FOA mechanisms during interaction

with the Automata. Fig. 5(a2) shows signals of Nao and

human illustrating that initially there is no interaction by

human from the right side of the robot. After 700 time

units (23sec)human comes with a different frequency. He

does not succeed in disturbing the selection of partner (PLV

remains high for robotic arm) and FOA remains towards the

Automata.

In continuation of this experiment, the automata is tuned

to a low frequency and human instructed to imitate Nao

(fig. 5(b1 & b2)). As a result, Nao switches the synchronized

region, from left (−20.30) to right side (about 400). The

PLV related to human increases to the highest value while

the Automata PLV shifts to a low value (fig. 5(c3)) while

FOA shifts from the automata to the human (fig. 5(c4)).

After 2650 time units (88.3 sec), the Automata is tuned to

its previous frequency again and human instructed to make

different oscillations. Consequently, this induces a switch of

the recognized interacting partner (again) as well as FOA

(fig. 5(b)).

VII. CONCLUSIONS

In this paper, we proposed a novel approach for building

autonomous robots that can interact with multiple agents

and select an interacting partner among several agents on

the basis of synchrony detection. We applied our neural net-

work model on a humanoid robot (Nao), where experiments

showed that when multiple agents interact with Nao and only

one of them is synchronized, Nao selects the synchronized

one as an interacting partner. We also showed that synchrony

prediction could be used as a way to establish focus of

attention. The idea to use synchrony can be assumed as a

robust way of interaction because in contrast to the verbal

communication where all the information directly related

to words (that can be wrongly understood) here the robot

extracts information not by a single word but by the way of



Fig. 5. Results: Every set has 4 graphs with same sequence where first time series of every set shows the raw signals of Nao oscillations along with
robotic arm while second contains raw signals of Nao along with human and third time series shows the PLV (quality of synchrony) for the pairs of
interacting agents and finally, forth shows the FOA angle of Nao which follows the synchronized region. (a) shows start of experiment with single agent
and then disturbed by the other agent. (b) Multiple agent having different frequencies interact (one of them with same as Nao) and Nao always selects
similar frequency partner.

interacting. In other words, the way of interacting could be

more important then the transmitted information. The only

way to interact with robot is not only to show something

but also to repeat it and correct it and to be truly engaged

in interaction with it. In future works, we are planing to

implement our algorithm on mobile robots to test its impact

on the interactive teaching of complex tasks.
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