
HAL Id: hal-00748836
https://hal.science/hal-00748836

Submitted on 17 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Integration of Hardware Accelerators for
Dynamically Reconfigurable Architecture

Clément Foucher, Fabrice Muller, Alain Giulieri

To cite this version:
Clément Foucher, Fabrice Muller, Alain Giulieri. Fast Integration of Hardware Accelerators
for Dynamically Reconfigurable Architecture. 7th International Workshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC 2012) joint IEEE CAS, Jul 2012, York, United
Kingdom. pp.1 - 7, �10.1109/ReCoSoC.2012.6322902�. �hal-00748836�

https://hal.science/hal-00748836
https://hal.archives-ouvertes.fr

Fast Integration of Hardware Accelerators for
Dynamically Reconfigurable Architecture

Clément Foucher, Fabrice Muller, and Alain Giulieri
University of Nice-Sophia Antipolis,

Laboratoire d’Électronique, Antennes et Télécommunications (LEAT)/CNRS

{Clement.Foucher, Fabrice.Muller, Alain.Giulieri}@unice.fr

I. INTRODUCTION

Reconfigurable hardware offers an alternative to static hard-
wired Intellectual Property blocks (IPs) found in Application-
Specific Integrated Circuits (ASICs). Field-Programmable
Gate Arrays (FPGAs) can be used to bring reconfigurable
hardware resources in designs. FPGA are seen as IPs that can
adapt various behaviors depending on the needs. Reconfig-
urable hardware then makes applications taking advantage of
hardware more flexible and even self-adaptive.

Their naturally dynamic nature also offers a way to create
static designs. Indeed, implementing circuitry on a FPGA
instead of an ASIC enables hardware to be updated even after
a product release by distributing the new bitstream. They also
offer prototyping capabilities, allowing a design to be tested
without the need of silicon hard printing.

But the most exciting strength of reprogrammable hardware
lies in its dynamic nature, offering software-like flexibility.
Moreover, an aspect of reconfigurable hardware, Partial Dy-
namic Reconfiguration (PDR) is enhancing these perspectives.
PDR enables part of a reconfigurable device to be changed on
the fly without affecting the remaining part, continuing to run
during the reconfiguration.

Without PDR, reconfigurable devices must be reconfigured
at once, leading to consider the whole device as monolithic.
For FPGA-hosted multi-IP designs, it is then impossible to
change only one IP at a time, and the reconfiguration process
suspended the whole design run. Reconfigurable devices,
which used to be considered somehow as offline reconfigurable
are now able to change their behavior online using PDR. This
leads reconfigurable devices to enter a new stage, because the
dynamic nature of hardware can be taken into consideration
at runtime even for designs with multiple IPs.

However, the partial reconfiguration process is still in its
early stages. The complexity of partial reconfiguration man-
agement and the need to adapt existing IPs are major issues in
system designs. In some cases, this leads system designers to
neglect the use of dynamic hardware in favor of more software
resources, or static hardware using ASICs.

We developed a platform called the Simple Parallel platform
for Reconfigurable Environment (SPoRE), which provides
automatic management of PDR. SPoRE offers a way to
integrate static legacy IPs in dynamic applications without

needed adaptation, simply by describing the IP interface using
generic syntax. Moreover, SPoRE enhances the prototyping
capabilities of FPGAs as it allows fast parallel deploiements,
which can be used to process testbenches on multiple FPGAs
simultaneously. The SPoRE platform was originally presented
in [1], in which we describe the SPoRE theoretical platform
and implementations of this platform.

In our methodology, an application is designed as a set of
computing elements implementing algorithms, called kernels.
Applications are then regarded as dataflow graphs made of
virtual kernels linked by data. Then, independently from
the application, the kernels are given one or various imple-
mentation(s). Implementation choice, IPs reconfiguration, and
communication between kernels are handled automatically by
a runtime manager. Applications can also be automatically
distributed on various execution nodes linked by a network.

In this article, we go in detail in the IP interface we
developed. We present the IP interface description generic
syntax enabling the kernel virtualization. Also, we present
the IP encapsulation principle allowing the automatic interface
handling process. We then present the results conducted on a
sample application running on SPoRE.

First, section II presents related work already conducted in
interface handling and reconfigurable platforms. Section III
outlines the SPoRE applications architecture allowing kernel
virtualization. Then, section IV goes in detail the interface
handling mechanism. Afterwards, section V explains how we
integrate legacy hardware IPs in SPoRE. Finally, section VI
presents a sample application building process and results of
its execution on a SPoRE implementation. We finish by a
conclusion including development perspectives in section VII.

II. RELATED WORK

In this section, we take a look at related work in the field
of hardware/software automatic interface handling, as well as
reconfigurable platforms.

The most common way to interface hardware IPs in a
system is to plug them on a bus. Buses can adapt various
topologies depending notably on bandwidth requirements.
Lately, a new kind of buses has emerged for designs with
high number of IPs: the Network-on-Chip (NoC) paradigm,
implementing real networks with routing and message passing
directly on a chip [2].

http://unice.fr
http://leat.unice.fr
mailto:Clement.Foucher@unice.fr
mailto:Fabrice.Muller@unice.fr
mailto:Alain.Giulieri@unice.fr

Standard buses [3] use a register description to handle IPs
access, with a master accessing a slave’s memory mapping.
The bus low-level protocol is generally standard, allowing
transaction-based accesses through wrappers avoiding dealing
directly with the bus signals. However, the master has to be
aware of slave protocol itself, knowing which transactions
must be done to obtain the expected result. For software-
centered platforms, this is generally done using a driver that
transforms high-level calls in bus-level transactions.

Using NoCs, the low-level protocol can match a standard
message-passing protocol. For example, it is possible to imple-
ment NoC that supports the Message Passing Interface (MPI)
[4], thus enabling MPI-aware IPs to directly use the standard
protocol. But this kind of NoC is still unconventional and at
this time, only existing in specific systems.

In static systems, in which the hardware does not change,
the driver use is still relevant. But reconfigurable systems
add application-dependent hardware, which is instantiated on
reconfigurable resources depending on the application needs.
Thus, applications must be aware of the specific reconfigurable
IPs interface. Applications are then deeply dependent on
specific IPs, which can restrict IPs re-use. The IP interface
handling thus needs a higher level standardization in order to
allow its use in reconfigurable systems.

A bus virtualization initiative is Open Core Protocol (OCP)
[5], which provides a bus-independent protocol allowing IPs
communication. It specifies higher-level interface specification
than a bus that can be built around any kind of bus using
a wrapper interface that will transform OCP transactions
in bus-specific transactions. OCP defines standard read/write
operations, including burst that allows reduced latency for
transactions on multiple data words. It also adds broadcast
operations that can be used to allow interactions between more
than two IPs in a single transaction. Moreover, locked read-
and-write are supported to allow mutual exclusion operations.

OCP-compatible IPs then communicate between them using
the virtual OCP bus, allowing IP re-use between OCP designs.
This adds interesting portability capabilities, but do not allow
direct re-use of legacy IPs. Moreover, this protocol is still
low level, thinking in terms of transactions that require the
knowledge of the remote IP functioning.

Another standardization initiative is OpenFPGA CoreLib
[6]. CoreLib aims at defining standard interfaces for hardware
IPs interaction in order to guarantee interoperability, even for
IPs not using a bus. This aims at enhancing internal FPGAs
routing capabilities, using which point-to-point communica-
tion performances can supersede a bus’s one.

CoreLib defines three interfaces characteristics: structural,
temporal and control. Structural interface defines the signals
used and their category: clock, reset, control and data. More-
over, this interface defines the nature of the signal: floating
point value, integer, etc. Temporal interface is used to char-
acterize signals timing: pipeline description, interval between
control and data, etc. Finally, control interface describes the
IP’s synchronization with the rest of the system, e.g. how to
start the IP and how to know work is done.

The combination of these three interfaces allows standard
interaction between two hardware IPs, without having to
know the details of their functioning. All these interfaces
are described using Spirit Consortium IP-XACT standard [7],
an XML-based standard for describing IPs interfaces. IP-
XACT interface description can be automatically generated,
thus providing direct interface specifications without needing
a manual investigation.

Nevertheless, CoreLib is hardware oriented, and would be
difficult to adapt in heterogeneous architectures such as High
Performance Reconfigurable Computing, that are software-
centered.

These two examples are interesting from an interface point
of view, but lacks high level support for heterogeneous appli-
cations involving software units. We now focus on complete
environments providing interfaces between hardware and soft-
ware kernels.

Of notable interest is the Berkeley Operating system for
ReProgrammable Hardware (BORPH) [8], which integrates
the reconfigurable hardware accelerators as standard tasks in
a Linux system. This is more than a simple interface, rather
a complete Linux-based operating system. BORPH extends
the software processes UNIX interface standard to hardware
processes. This allows handling hardware processes the same
way as software one, using the standard I/Os. As an example,
BORPH makes possible using a pipe in a console between a
hardware process and a software one.

The generalization of UNIX interface to hardware IPs
allows using them in a tried and tested standard environment.
It notably allows to easily change a process implementation
from software to reconfigurable hardware without having to
change the whole application. However, the specific protocol
used to communicate with hardware tasks involves a dedicated
conception of the IPs targeting BORPH, then impacting IP re-
usability.

RAMPSoCVM [9] provides an automated management of
reconfigurable resources with MPI access. Built on recon-
figurable resources, the platform allows instantiating various
software units, linking them using a reconfigurable NoC. A
central unit is used as a server and distributes work to clients,
serving as a virtualization layer hiding the actual platform
implementation to the software application. All units have a
bootloader that is able to load MPI applications and a MPI
layer interfacing with the NoC. This approach proposes a stan-
dard interface for reconfigurable platforms, but would require
a specific MPI interface to include hardware accelerators.

III. APPLICATION DESCRIPTION

In SPoRE, a single kernel, carrying out a specific compu-
tation, can have multiple implementations, both hardware and
software. Different hardware implementations can then pro-
vide different algorithms and levels of parallelization resulting
in different performance versus area ratios. Moreover, a single
hardware kernel can then be synthesized targeting various
hardware technologies to allow its use on various platforms.
The hardware/software capability of the platform ensures

Reconfigurable zone

Bitstream

How to
configure IP

How to provide data to / get
results from IP

Configuration
data

Input
data

Output
data

Data

Virtualization
layer

Actual
implementation

Hardware
resources

Fig. 1. Virtualization layer between data to process and actual hardware
implementation.

a kernel will always be schedulable, even when hardware
resources are exhausted. The same as hardware, it is also
possible to provide different binaries using different instruction
sets for software kernels in order to allow portability.

In order to allow providing multiple implementations for a
single kernel, we introduce a virtualization layer between the
virtual kernel and the actual kernel implementation interface.
This means a kernel will always be handled the same way,
regardless of its actual implementation. Figure 1 illustrates
the principle on a hardware implementation. On one side, the
application provides references to data. Data includes both
configuration used to set the kernel’s context and the input
data that has to be processed by the kernel. On the other side,
a kernel implementation provides a bitstream or a binary that
is able to carry out the required computations on the targeted
platform. The virtualization layer then provides the required
information on how to adapt data to this specific kernel, using
what we call accessors.

The general structure of an application is made of a hier-
archy of descriptor files, as presented on figure 2. At the top
level, the job descriptor describes a list of threads to execute,
i.e. kernels along with their input and output data. The general
application is then represented by a job descriptor, referencing
the virtual kernels to execute on the platform. If the platform
is made of multiple nodes, a global scheduler will split the
application in various job descriptors that will be dispatched
on the nodes as sub-applications. The job descriptor contains
references to kernels descriptors, as well as data files for
input and output data, and a context representing the kernel
configuration. At this point, there is no notion of the kernels
implementations, and the application is then totally portable.
A thread ability to be scheduled is done by looking at it
input data: if the whole required data exists, the thread can
be launched.

The lower level is made of the kernels themselves. A kernel
is represented by a kernel descriptor, which contains the list of
the different available implementations. Each implementation
provides an actual mean to process computations: reference
to a bitstream or a binary file. On each platform, or each

Job descriptor

Accessors

Actual
implementation

Data

Descriptors

Kernel descriptor

Implementation

Impl.
port desc.

Impl.
cont. desc

 Binary
Bitstream

Implementation
control descriptor

Implementation port
descriptor

Implementation

Impl.
port desc.

Impl.
cont. desc

 Binary
Bitstream

Thread

 Kernel
descriptor

Input data

Output data

Initial context

Thread

 Kernel
descriptor

Input data

Output data

Initial context

Context

Save Restore

Behavior

Start Stop

Suspend Resume

Parameter

Set

Return value

Get Ready hint

Fig. 2. Application structure hierarchy.

node for a multi-node platform, all implementations may not
be available due to the reconfigurable hardware technology
and/or software instruction set.

With each implementation comes two descriptors: the im-
plementation control descriptor and the implementation port
descriptor. These are these two files that contain the accessors,
describing how to interact with the implementation.

IV. ACCESSORS

The accessors contained in both implementation control and
port descriptors implement the actual kernel implementation
virtualization. Indeed, a single data file, e.g. containing a
kernel initial configuration, can match any implementation of
a kernel, the corresponding accessor describing how to feed
the implementation with this data.

The implementation control descriptor contains the acces-
sors that define the base kernel control transactions, such as
starting and stopping the IP, or saving and restoring the context
for preemption-capable IPs. We call input data parameters and
output data return values, as an analogy with software pro-
cedures. The port descriptor contains the dataflow accessors,
indicating for each parameter how to feed the IP, and for return
values how to check if the data is ready and retrieve it.

For hardware kernels, accessors structure contains a se-
quence of bus-based actions to execute over an IP. Each action
has a direction and a type. Direction can be either read or write,
while type can be single action over register, FIFO action over
register, action over memory range or pointer type action. For
write action, the value can be provided as constant (e.g. “Write
0x80000000”) or as reference to a data file (e.g. “Write value
#X from data file #Y”). Data size and count is provided (e.g.
“10 elements of 4 bytes”) to indicate the data characteristics.
Finally, an offset indicates the address of the register on which
to proceed to the action.

Software kernels do the same, except that instead of reg-
isters, we represent parameters. The offset is then replaced

Computing cell

Kernel controller Kernel host
(reconfigurable)

Implemented kernel

Control reg

Data reg

IP reg. 0

IP reg. 1

IP reg. n-1

IP reg. 0

IP reg. 1

IP reg. n-1

IP master
interface

0

Cell master
interface

Register array

IP slave
interface
registers

Cell
management

Output isolation

IP registers mapping

B
u

s

Fig. 3. Hardware IP wrapper.

by the parameter number. Moreover, software kernels support
string parameters, while hardware kernels only have values.
Software implementation control descriptor also makes the
distinction between binaries belonging to the environment or
provided specifically for the application. It is then possible to
call system executables like in a console, by providing their
path.

Thus, by indicating a sequence of such actions, an accessor
provides a complete step-by-step procedure to carry on for a
particular interaction. For hardware IPs, the ones having a sole
slave interface will require providing the data directly to the IP
registers. But if a master interface is available, pointer actions
allows interacting directly with memory. Pointer parameters
will be executed on two steps: interaction with memory
and interaction with IP. Interaction with memory consists in
reserving enough memory space to contain the data, and fill it
with actual data if this is an input parameter. Then, the pointer
is given to the IP as an address, and data size if needed. Using
pointer actions, the dataflow between two kernels can be done
without reading or writing to the memory, simply giving the
source IP’s output pointer to the sink IP. Software kernels only
support pointer parameters for now, as we did not implement
signal handling.

V. HARDWARE IP WRAPPING

We want to make possible using legacy IPs, possibly static,
i.e. not designed for a reconfigurable environment, the only
requirement being that there must be bus-based. For dataflow
IPs not disposing of a bus interface, it will still be possible
to add a wrapping interface adapting registers actions to the
actual IP signals.

We designed a wrapping interface taking place between
the reconfigurable core and the bus, as shown on figure 3.
We call this element the kernel controller. This interface is
notably in charge of signal isolation during reconfiguration

process. Indeed, while reconfiguring an IP, random signals
can appear on its outputs. This can be a problem if the IP
has a master interface, generating uncontrolled commands on
the bus, possibly causing unexpected requests or even causing
the bus arbiter to crash. This is solved by a multiplexer forcing
output signals to ‘0’ while reconfiguring.

Another role of the kernel manager is to include monitoring
elements. We included a timing monitor, able to measure the
execution time of the IP. This is used to obtain exact (cycle
accurate) timings for the IPs. In future, we can imagine using
these timings as a result to feed the scheduling process and
adapt the policy, thus enabling self-adaptive architectures.

To command the kernel controller, we have two registers:
a control register and a data register. The control register is
used to send a command to the kernel controller, followed
by a read or a write to the data register. Also, a read in the
control register indicates the characteristics and configuration
of the kernel controller: timer availability, kernel host connec-
tion state, etc. Thus, the computing cell, that is the couple
kernel controller/kernel host, has a register array consisting
in these two registers followed by the dynamic IP’s registers.
The register address translation is automatically handled by
the runtime environment, and do not need to be taken in
consideration in accessors writing.

VI. SPORE IMPLEMENTATION AND RESULTS

We made a SPoRE node implementation using Xilinx’s
ML507 development board [1]. ML507 is built around Virtex 5
fx70t FPGA. The PowerPC 440 integrated in the FPGA is
used to run a Linux embedded system, in charge of the node’s
management. We use a 2.6.34 embedded Linux available from
Xilinx [10]. Using a standard Linux system allows network
communications using simple socket procedures. The Linux-
based system can make decision on thread scheduling and
hardware resources reconfiguration, using the SPoRE runtime
environment. The runtime environment is also in charge of
multi-node communication and hardware resources reconfigu-
ration.

SPoRE network is composed of a data server and a global
scheduler additionally to the computing nodes. The global
scheduler is in charge of dispatching jobs over the boards.
Using the job description, the nodes then contact the data
server to download the descriptors and the bitsteams/binaries
needed for the run.

The kernel’s computation can be run on the PowerPC device
(running at 400 MHz) or using the reconfigurable computing
cells (running at 100 MHz), which interface is accessible to
the runtime environment using a Linux driver. This standard
driver allows cells interaction using the operations allowed in
the descriptors.

A specific portion of the RAM is reserved to the computing
cells for storing input and output data. This enables cell-
to-cell data transmission with minimal runtime environment
interaction, transmitting only the data address and size from
one IP to another.

TABLE I
EXECUTION TIMES OF AES ENCRYPT AND DECRYPT APPLICATIONS.

Data size 512 KiB 1 MiB 5 MiB

Software encoder execution 426,580 µs ± 0.37% 717,269 µs ± 0.63% 3,049,773 µs ± 0.83%
decoder execution 550,588 µs ± 0.87% 972,432 µs ± 0.23% 4,349,304 µs ± 0.63%
encoder execution 52,926 µs ± 0.03% 105,847 µs ± 0.02% 529,166 µs ± 0.01%
decoder execution 52,942 µs ± 0.06% 105,853 µs ± 0.01% 529,178 µs ± 0.01%

Hardware encoder reconfiguration 825 µs ± 0.67%
(1 cell) decoder reconfiguration 906 µs ± 0.12%

encoder total 53,751 µs ± 0.03% 106,673 µs ± 0.02% 529,991 µs ± 0.01%
decoder total 53,848 µs ± 0.06% 106,759 µs ± 0.01% 530,084 µs ± 0.01%

encoder execution 28,541 µs ± 0.15% 57,974 µs ± 0.08% 285,656 µs ± 0.08%
decoder execution 26,859 µs ± 0.03% 54,092 µs ± 0.04% 271,887 µs ± 0.05%

Hardware encoder reconfiguration 1,671 µs ± 0.46%
(2 cells) decoder reconfiguration 1,820 µs ± 0.21%

encoder total 30,177 µs ± 0.15% 59,642 µs ± 0.09% 287,329 µs ± 0.08%
decoder total 28,670 µs ± 0.03% 55,912 µs ± 0.04% 273,706 µs ± 0.05%

The descriptors are written using XML, which can be easily
written and parsed using widely available libraries. We use
libxml2 [11], a free and easy XML handling library that allows
both file parsing and writing.

In order to handle hardware reconfiguration, we rely on
the Fast Reconfiguration Manager (FaRM) [12]. FaRM is an
IP that wraps the Internal Configuration Access Port (ICAP)
[13], the reconfiguration controller located inside the FPGA.
FaRM allows direct reconfiguration just by using a partial bit-
stream previously stored in the memory. Moreover, it supports
bistream compression that reduces transfers overheads.

In order to test the interface handling validity, we built a
sample application with kernels having both a software and
a hardware application. This application consists in an AES
data encryption followed by its decrypting.

For the software implementation, we rely on the OpenSSL
library [14]. OpenSSL is a cryptographic library that makes
available crypting and decrypting routines, which can be called
in an application. OpenSSL can also be built as a standalone
application that we can call using command-line. This is
the second solution we use, as SPoRE nodes’ Linux system
already includes this library.

The hardware kernels cores are taken from the OpenCores
online IP library [15] that makes available lots of freely
available IPs. OpenCores proposes an AES encrypting and
decrypting core proceeding on 128-bits words. Its interface is
very simple:

• Data signals
– Encryption key
– Input data
– Output data

• Control signals
– Ability to choose between encryption and decryption
– Load key
– Start computations
– Indication that computations are over

This interface is not based on addressable registers and
thus cannot be immediately connected to a bus. In order to
make this IP bus-compliant and allow it to interact directly

with data stored in memory, we wrapped the IP in a tiny
additional interface. This wrapper includes a light DMA to
allow direct memory data fetching, and links the IP signals to
bus-accessible registers. We also made the selection between
encryption and decryption static, resulting in two different IPs,
an AES encrypter and an AES decrypter.

The application was run on a SPoRE node containing
two computing cells. Four different partial bitstreams are
generated, in order to dispose of both AES encryption and
decryption IPs on both cells.

Then, we build the application components using our XML-
based structure. We require kernel descriptors for both en-
crypting and decrypting IPs, each containing both the software
and hardware implementations description. To build the imple-
mentations, we describe the IPs accesses methods using the
accessors. Finally, the job descriptor is built to indicate which
kernels should be called and their data links. We present the
hardware implementation control descriptor on figure 4 and
the software one on figure 5.

The whole application XML description is less than 6 KiB,
and needed only a few hours to write it. We need to add the
sum of the bitstreams size to the application weight, which
is 502 KiB. The OpenSSL library size is not counted as the
library already belongs to our system, and do not need to
be carried by the application. We also have to add the AES
hardware IPs wrapping time, which took about one day.

Then, we proceeded to various runs of the application,
using different configurations. The SPoRE runtime allows
monitoring execution times of the both hardware and software
kernels, as well as reconfiguration time for hardware ones.
The application monitoring was done using the following
configurations:

• Data size: 512 KiB, 1 MiB and 5 MiB
• Kernels nature: software, hardware using one cell and

hardware using two cells

Running the hardware kernels on n cells means the m bytes
of data are equally distributed into m

n bytes to the cells. This
allows more parallelism in the execution of the application,
which is a strength of using a hardware implementation for a

<Implementation_control_descriptor ID="19" Name="Hw AES enc. and dec. ICD">
 <Context>
 <Restore>
 <!--Cypher key-->
 <Action Type="Memory" Direction="Write" Data_reference="0"
 Offset="36" Size="4" Count="4"/>
 </Restore>
 </Context>
 <Behavior>
 <Start>
 <Action Type="Register" Direction="Write" Data_constant="01"
 Offset="20" Size="4"/>
 </Start>
 </Behavior>
</Implementation_control_descriptor>

Fig. 4. Hardware implementation control descriptor (ICD).

<Implementation_control_descriptor ID="20" Name="Software AES encoder ICD">
 <Context>
 <Restore>
 <Action Type="String" Prefix="enc" Data_ignored="" Offset="1"/>
 <Action Type="String" Prefix="-e" Data_ignored=""/>
 <Action Type="String" Prefix="-aes-128-ecb" Data_ignored=""/>
 <Action Type="String" Prefix="-nosalt" Data_ignored=""/>
 <Action Type="String" Prefix="-nopad" Data_ignored=""/>
 <Action Type="String" Prefix="-K" Data_ignored="" Offset="2"/>
 <!--Cypher key-->
 <Action Type="String" Data_reference="4" Offset="3"/>
 </Restore>
 </Context>
</Implementation_control_descriptor>

Fig. 5. Software implementation control descriptor (ICD).

kernel. The execution and reconfiguration times are displayed
in table I. Each application configuration has been run ten
times, giving an average time and a variation around this value.

Unlike software, hardware total run times are not only the
execution times, but needs to add the IP reconfiguration time,
adding a constant overhead to the variable execution time,
which depends on data size. The conclusions we can extract
from these measures are presented in table II.

We can state that using a one-cell hardware implementation
allows a 85-89% gain on software execution time, and 92-94%
with a two-cell implementation. The hardware implementation
represents then a great time gain compared to the software one
on this embedded platform.

The reconfiguration overhead varies between 0.2% and
1.6% of the execution time for the one-cell configuration, and
between 0.6% and 6.3% with two cells. Except for the 512
KiB configuration with two cells, in which the reconfiguration
overhead is over 5%, we can state that the time is negligible.
But this case is also the one with the most benefit compared
to the software kernels implementation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an interface description to auto-
matically handle reconfigurable hardware IPs in an application.
Our aim was to define a bus-based interface which could
allow hosting reconfigurable hardware IPs in an application.
The interface handling principle, based on the IP interface

TABLE II
CONCLUSIONS ON THE EXECUTION TIME MEASURES.

Data size 512 KiB 1 MiB 5 MiB

One Speedup versus software 88.99% 87.37% 85.67%
cell Reconfiguration overhead 1.64% 0.82% 0.16%
Two Speedup versus software 93.98% 93.16% 92.42%
cells Reconfiguration overhead 6.3% 3.12% 0.63%

virtualisation allows all bus-based transactions to be described
using a specific syntax, for example in XML. Based on that,
we were able to define accessors, which are bus transaction
sequences used to perform specific actions on IPs such as
configuring or starting it.

Combined to our descriptor-based application description,
we were able to conceive a sample application involving
AES to demonstrate the easy integration process of legacy
IPs. Moreover, this application validated the virtual kernel
principle, allowing us to define implementation-independent
kernels. We were then able to provide both hardware and
software implementation of our AES kernels, by discarding
the actual kernel nature at application building. As SPoRE
natively includes monitoring tools, we were able to extract
execution times with detail on reconfiguration overhead.

We conducted measures to compare hardware and software
kernels execution times, and obviously found the hardware
kernels were faster than the software implementations on our
test platform, as expected. Furthermore, we shown that in most
case, the overhead introduced by the reconfiguration time was
negligible, all the more when there are more data.

About platform hardware support, we will integrate a master
controller in the kernel controller in order to allow slave-
only cores to directly use pointer data transfers. Indeed,
direct pointer support for data management allows IPs to be
quite totally independent from the central node management,
decreasing IPs interface interaction needs and thus IP man-
agement costs.

On the general platform description, we are interested in IP-
XACT signal description, as using a standard is always a best
solution than building a specific syntax. We are investigating
IP-XACT compliance with our accessors syntax in order to au-
tomatically generate IPs interface. This automatization would
reduce work on writing the hardware kernels implementations
descriptors, as the accessors description step could rely on
these automatically generated files. Moreover, using an IP-
XACT description of IPs interface that are not bus-based could
allow an automatic generation of the bus wrapper, widening
the number of IPs compatible with SPoRE.

We still need to integrate support for communication be-
tween IPs in port descriptor, in order to allow other kernel
relationship than data dependency. We are notably interested in
supporting MPI most common calls to enhance compatibility
with existing applications.

Finally, we are looking into using the SPoRE monitoring
tools informations to enhance the scheduling capability. Com-
bined to our multi-implementation support for kernels, the

execution timing results of a kernel run can help the scheduler
to make better implementation choices. This would allow
really self-adaptive applications, taking the actual platform
resources into consideration at run time.

REFERENCES

[1] C. Foucher, F. Muller, and A. Giulieri, “Online code-
sign on reconfigurable platform for parallel computing,”
Microprocess. Microsyst., in press, 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.micpro.2011.12.007

[2] L. Benini and G. D. Micheli, “Networks on Chips: A new SoC
paradigm,” Computer, vol. 35, pp. 70–78, 2002. [Online]. Available:
http://dx.doi.org/10.1109/2.976921

[3] Power.org, “Embedded bus architecture report,” http://www.power.org/
resources/downloads/Embedded Bus Arch Report 1.0.pdf, Tech. Rep.,
April 2008.

[4] R. Hempel and D. W. Walker, “The emergence of the MPI
message passing standard for parallel computing,” Comput. Stand.
Interfaces, vol. 21, pp. 51–62, May 1999. [Online]. Available:
http://dx.doi.org/10.1016/S0920-5489(99)00004-5

[5] OCP-IP, Open Core Protocole Specification, http://ocpip.org, 2001.
[6] M. Wirthlin, D. Poznanovic, P. Sundararajan, A. Coppola, D. Pellerin,

W. Najjar, R. Bruce, M. Babst, O. Pritchard, P. Palazzari, and
G. Kuzmanov, “OpenFPGA CoreLib core library interoperability
effort,” Parallel Comput., vol. 34, no. 4-5, pp. 231 – 244, 2008,
reconfigurable Systems Summer Institute 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.parco.2008.03.004

[7] S. S. W. G. Membership, IP-XACT User Guide v1.2, http://www.
spiritconsortium.org, July 2006.

[8] H. K.-H. So and R. Brodersen, “A unified hardware/software runtime
environment for fpga-based reconfigurable computers using borph,”
ACM Trans. Embed. Comput. Syst., vol. 7, pp. 14:1–14:28, January
2008. [Online]. Available: http://dx.doi.org/10.1145/1331331.1331338

[9] D. Gohringer, S. Werner, M. Hubner, and J. Becker, “Rampsocvm:
Runtime support and hardware virtualization for a runtime adaptive
mpsoc,” in Proceedings of the 2011 21st International Conference
on Field Programmable Logic and Applications, ser. FPL ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 181–184.
[Online]. Available: http://dx.doi.org/10.1109/FPL.2011.41

[10] Xilinx open source resources, http://xilinx.wikidot.com, 2011.
[11] Libxml2 XLM parsing library, http://www.xmlsoft.org.
[12] F. Duhem, F. Muller, and P. Lorenzini, “FaRM: Fast reconfiguration

manager for reducing reconfiguration time overhead on FPGA,” in
Reconfigurable Computing: Architectures, Tools and Applications, ser.
Lecture Notes in Computer Science, A. Koch, R. Krishnamurthy,
J. McAllister, R. Woods, and T. El-Ghazawi, Eds. Springer Berlin
/ Heidelberg, 2011, vol. 6578, pp. 253–260. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-19475-7 26

[13] Xilinx, Inc., Partial Reconfiguration User Guide, http://www.xilinx.
com/support/documentation/sw manuals/xilinx12 3/ug702.pdf, October
2010.

[14] OpenSSL cryptographic library, http://www.openssl.org.
[15] Opencores open source hardware IP-cores library, http://opencores.org.

http://dx.doi.org/10.1016/j.micpro.2011.12.007
http://dx.doi.org/10.1109/2.976921
http://www.power.org/resources/downloads/Embedded_Bus_Arch_Report_1.0.pdf
http://www.power.org/resources/downloads/Embedded_Bus_Arch_Report_1.0.pdf
http://dx.doi.org/10.1016/S0920-5489(99)00004-5
http://ocpip.org
http://dx.doi.org/10.1016/j.parco.2008.03.004
http://www.spiritconsortium.org
http://www.spiritconsortium.org
http://dx.doi.org/10.1145/1331331.1331338
http://dx.doi.org/10.1109/FPL.2011.41
http://xilinx.wikidot.com
http://www.xmlsoft.org
http://dx.doi.org/10.1007/978-3-642-19475-7_26
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_3/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_3/ug702.pdf
http://www.openssl.org
http://opencores.org

