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Abstract. We are here dealing with the problem of space 

layout planning. We present an approach based on an 

intermediate topological level with dynamic space 

ordering (dso) heuristics. Our software ARCHiPLAN 

proceeds through a number of steps. First, all the 

topologically different solutions, without presuming any 

precise dimension, are enumerated. Next, we may evolve 

in this topological solution space, and than refine some 

of them to form consistent geometrical solutions. For 

each topological solution chosen, the optimising 

geometrical solution is determined from a cost, useful 

surface or wall length. By using dynamic space ordering 

heuristics in the topological level the enumeration time 

has been reduced. 

Keywords: layout planning, topological solution, heuristics, 

constraints, preliminary design. 

1. Introduction 

Space layout planning is one of the most 

interesting and complex of the formal 

architectural design problems, i.e. finding a 

satisfactory space arrangement with regards to 

objective requirements. Objective requirements 

are expressed by constraints: 

 • Dimensional constraints: over one space, i.e. 

constraints on surface, length or width or space 

orientation. 

 • Topological constraints: over a couple of spaces, 

i.e. adjacency, adjacency to the perimeter of the 

building, non-adjacency or proximity. 

  

 In the past, many attempts of space layout 

planning in architecture have used expert systems 

(André, 1986; Flemming, 1988). These 

approaches present many disadvantages: we are 

never sure of the completeness and the 

consistency, we are never sure of obtaining the 

global optimum, and reply times are long. 

 Another recent approach, the evolutionary 

approach (Damski and Gero, 1997; Jo and Gero, 

1997) is an optimisation process which deals with 

practical problems (up to 20 spaces and several 

floors) but leads to sub-optimal solutions. 

 Also, application of shape grammars in 

architectural design has been investigated (Knight 

1998, Stiny and Mitchell 1975). This approach 

uses sets of composition rules for the generation 

of shapes and produces all possible alternatives 

exhaustively. 

 Finally, it has been shown that constraint 

programming techniques bring a great flexibility 

in the constraint utilisation since the constraint 

definition is separated from resolution algorithms, 

and that they were able to deal with                

highly combinatorial problems as it is the case for 

optimal placement (Aggoun and Beldiceanu, 

1992; Charman, 1994; Baykan and Fox, 1991). In 

this NP-complete problem, dynamic variable 

ordering (dvo) heuristics can have a profound 

effect on the performance of backtracking search 

algorithms (Haralick and Elliott 80). In Sadeh and 

Fox (Sadeh and Fox, 1996), particular variable 

and value ordering heuristics for the job shop 

scheduling constraint satisfaction problem have 

been developed. Tsang et al. ( Tsang et al., 1995) 

show that there does not appear to be a universally 

best algorithm, and that certain algorithms may be 

preferred under certain circumstances. 

 All these approaches enumerate the 

geometrical solutions exhaustively. Then, two 

quasi-equivalent solutions, with a same topology 

but where only space sizes are slightly different, 

are considered as two different solutions (see 

Figure 1). It is clear that, in preliminary design in 

architecture, it is useless to discriminate between 

two geometrical close solutions. It provokes an 

explosion of solutions (typically several thousands 

or millions). In addition, they are too precise at 

this design stage. Conceptual designs are more 

judicious in a first stage, they can be compared to 

rough architects’ sketches. 

 Several approaches (Mitchell et al., 1976, 

Schwarz et al 1994), based on a graph-theoretical 

model, have already introduced the topological 

level as a part of the computational process. 

Contrarily to our approach, the topological level 

does not allow any initial domain reduction of the 

variables. This fact makes impossible to evaluate 

or graphically represent the topological solutions. 

The evaluation and the graphical representation of 

the solutions are only possible at the geometrical 

level. More important is the fact that it is not 

possible to eliminate topologies which apparently 

are in accordance with topological constraints but 

which are not feasible when taking into account 

geometrical constraints. 
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Figure 1 Two different geometrical solutions with a same 

topology (1 and 2 have different sizes). 

 Our approach and its implementation within 

ARCHiPLAN prototype is based on a constraint 

programming approach which importantly avoids 

the inherent combinatorial complexity for 

practical space layout problems. In addition, we 

propose to get closer to natural architect’s design 

processes in considering a primary solution level 

of topological solutions. These topological 

solutions must respect the specification constraints 

of the design problem and they must lead to 

consistent geometrical solutions (see Figure 2). 

For that purpose, we have proposed a new 

definition of a topological solution as well as a 

specific dynamic space ordering heuristic. This 

dso heuristic is an extension of a dvo heuristic 

(Gent and all 1996, Smith and Grant 1998) from 

variable ordering to space ordering, according to 

our definition of a topological solution.  

 

 

 

Figure 2  Solution levels in ARCHiPLAN:  topological, geometrical. 

 Our topological solution turns out to be an 

equivalence class of geometrical solutions 

respecting the same conditions of relative 

orientation (north, south, east, west) between all 

the pairs of spaces (Medjdoub and Yannou, 2000). 

Thus, two topologically different solutions are 

differentiated by at least one different adjacency. 

We noticed that such a topological solution 

representation corresponds to a sketch drawing, 

i.e. a sketch made by the architect in the 

preliminary design. The advantage of the 

topological solution level is the low number of 

existing solutions, a number that can be easily 

apprehended by the architects. Architects are now 

able to have a global view of all the design 

alternatives; they will then only study in detail a 

small number of topologies corresponding to their 

appreciation. Next, thanks to the optimisation, a 

geometrical step determines the optimal 

geometrical solution for each topological solution 

from a set of user-defined criteria. On the one hand, 

optimisation leads to geometrical solutions minimising 

or maximising criteria such as wall length or some 

surface area, these criteria are useful for architects. On 

the other hand, optimisation limits the number of 

solutions. 
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 In the next section we present the architectural 

model. We then go on to describe our constraint 

model in section 3. The algorithm of topological 

solution enumeration is reported in section 4 and 

the geometrical solution enumeration is presented 

in section 5. Before concluding, in section 6, we 

present a case study. 

2  Model of architectural space representation 

Our model (see Figure 3) regroups the main 

architectural elements corresponding to empty 

spaces, i.e. which are not structural elements 

(walls, beams, windows, etc.). Each defined class 

is characterised by a set of attributes (Medjdoub 

and Yannou, 2000). Space class is the generic 

class of all the other classes. Three sub-classes: 

room, circulation and floor have been defined. 

The knowledge model is extensible to other 

classes. 

Space class

Circulation FloorRoom

Corridor Stair

A flight of stairs A double flight of stairs 

 

Figure 3  Hierarchy class in ARCHiPLAN. 

2.1  Space class 

The geometry of space class is a rectangle (see 

Figure 4), which is representative of a large 

number of architectural problems. This class 

regroups all common attributes to its sub-classes. 

It is characterised by two reference points (x1, y1) 

and (x2, y2), a length l, a width w, a surface area s 

and a degree of constraints dg-cont. The reference 

points, the length, the width and the surface area 

are integer constrained variables related by 

obvious equations. The degree of constraints is an 

integer variable used in the dynamic space 

ordering heuristic.  

 

 

Figure 4  Geometrical representation of space class. 

3  CONSTRAINT REPRESENTATION 

MODEL 

The constraints are defined in an extensible 

library. We have proposed two constraint groups: 

• specification constraints, 

• research space reduction constraints. 

3.1  specification constraints 

These constraints regroup dimensional and 

topological constraints. They are applied by the 

user and stored in a functional diagram. 

3.1.1 Dimensional constraints 

Dimensional constraints are applied on attributes 

of a single space, i.e. they consist in assigning a 

maximal or a minimal value to the geometrical 

attributes of this space. Table 1 presents an 

example of a house with two floors (this 

benchmark is our own proposal). 

 

Table 1 Dimensional constraints applied on the spaces of the “house with two floors”. Each length and width unit correspond 

to 0.5m (l-min: minimum length, w-min: minimum width). 

Unit Area domain 

values 

l-min w-min Unit Area domain 

values 

l-min w-min 

        Ft_Floor [320 ,320] 20 16 Sd_Floor [320,320] 20 16 

Living [72 ,128] 6 6 Room1 [48, 60] 6 6 

Kitchen [36 ,60] 5 5 Room2 [48, 60]  6 6 
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Toilet/Sh [16, 36] 4 4 Room3 [48, 60] 6 6 

Office [36, 60] 6 6 Room4 [48, 72] 6 6 

Corridor [9, 64] 3 3 Bath1 [16, 36] 4 4 

Staircase [24, 28] 4 4 Bath2 [16, 36] 4 4 

Corridor2 [9, 64] 3 3 Balcony  [12, 24] 3 3 

 

 As soon as the constraints are applied, 

constraint propagation and domain reductions can 

operate. We use the arc-consistency on integers 

which explains the necessity of adopting a 

dimensional distance increment, but this is not too 

limitative because architects use to reason with 

modules. 

3.1.2. Topological constraints 

As we said, topological constraints allow to 

specify adjacency, non-adjacency or proximity of 

a space with another space or with the contour of 

the current floor. As we will see, the non-

overlapping between spaces is an implicit 

constraint systematically considered (even if it can 

be released) which, consequently, is not 

considered as a specification constraint. The 

topological constraints can be combined with  

logical operators such as "OR" and "AND". In the 

house with two floors, the topological constraints 

are: 

The constraints between floors 

• the first floor is over the second floor, 

• the staircase Communicates between the first 

floor and the second floor, 

The constraints between spaces of the first floor 

• all the spaces of the first floor are adjacent to 

the corridor with 1 meter minimum for contact 

length, 

• the kitchen and the living room are adjacent 

with 1 meter minimum for contact length, 

• the kitchen is on the south wall or on the north 

wall of the building contour, 

• the kitchen and the Toilet/Shower-unit are 

adjacent, 

• the living room is on the south wall of the 

building contour, 

• all the rooms are naturally lit, 

• no space is wasted (the total of the space areas 

of the first floor correspond to the first floor 

area), 

 

The constraints between spaces of second floor 

• all the spaces of the second floor are adjacent to 

the corridor with 1 meter minimum for contact 

length, 

• room4 and bath2 are adjacent with 1 meter 

minimum for contact length, 

• room4 and balcony are adjacent with 1 meter 

minimum for contact length, 

• the balcony is on the south wall of the building 

contour, 

• all the rooms are naturally lit, 

• no space is wasted (the total of the space areas 

of the first floor correspond to the second floor 

area), 

All these constraints have been introduced into 

ARCHiPLAN interactively by graph handling and 

incremental construction (see the resulting 

functional diagram in Figure 5). 
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Figure 5  Functional diagram of the house with two floors. 

Adjacency constraints 

Designing buildings is largely the fact to fix the 

adjacencies between the rooms and the circulation 

or to fix a distance between two rooms. In fact, we 

have developed a generalised adjacency 

constraint, i.e. not reduced to a direct contact, but 

allowing the control of the distance between two 

spaces. Two parameters are important in this 

constraint: The contact length d1 and the distance 

d2 between two spaces. 

 Variable d1 is an integer constrained variable 

which allows a communication between two 

spaces (see Figure 6). By default, Min(D(d1))=0 

and Max(D(d1))=+ (D(x) standing for domain of 

variable x). In practice, it is used to impose a 

minimal width communication for the people 

circulation: Min(D(d1))=d1min>0. 

e
1

e
2

d
1

 

Figure 6 Contact length d1 between e1 and e2. 

 Variable d2 extends the notion of the direct 

adjacency (see Figure 7). It is also an integer 

constrained variable. By default, its value domain 

is reduced to the single value 0, which 

corresponds to the direct adjacency. Often, it is 

necessary to isolate some storage area (e.g. for 

stocking hazardous products) or to impose a safety 

perimeter; this is expressed as Min(D(d2))= 

d2min>0 and Max(D(d2))=+. We can also 

impose a maximal and a minimal distance 

between two spaces: Max(D(d2))= d2max>0 and 

Min(D(d2))= d2min>=0. 

e
1

e
2

d
2

d
2  

Figure 7  Distance d2 between e1 and e2. 

 Adjacency constraint generates a new discrete 

constrained variable named adjacency variable  

defined over the domain {E, W, N, S}. The 

adjacency constraint is a "dæmon" constraint  for 

which an instantiation of the adjacency variable 

triggers a propagation and consequently a domain 

reduction thanks to the arc-consistency technique. 

In fact, each adjacency constraint through its 

adjacency variable corresponds, in the search tree, 

to a choice point (see Figure 8) leading, at a 

moment, to a one-side adjacency. 
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2
,d

1
,d

2
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Adjacent to the east (e
1
,e

2
,d

1
,d

2
)
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1
,e

2
,d

1
,d

2
)

Adjacent to the west (e
1
,e

2
,d

1
,d

2
)

EN WS

 

Figure 8 The adjacency variable: each choice corresponds 

to a basic one-side adjacency. 

Non-overlapping constraints  

A non-overlapping constraint expresses the fact 

that a space cannot overlap another space; it is 

automatically applied between all pairs of spaces. 

Of course, pairs of rooms which are already 

constrained to be adjacent verify the non-

overlapping constraint. Figure 9 shows 

permissible positions for e2.x2 and e2.y2 (e2.y2 

represents the constrained variable y2 of space e2) 

by the non-overlapping constraint between spaces 

e1 and e2. This constraint is dependent on the 

minimal space dimension notion (dmin). The 

minimal space dimension is, at any moment, equal 

to the smallest dimension value (width or length) 

of all spaces. This value is used to constrain two 

spaces to be adjacent, or to be sufficiently, for 

another space to be inserted in between. As the 

Adjacency constraint, the non-overlapping 

constraint, introduces a new non-overlapping 

variable with four values {E,W,N,S}. This 

variable divides the space surroundings in four 

(see Figure 9) but not symmetrically. Indeed, we 

observe that N and S choices give more solutions 

that E and W choices. It is the instantiation of the 

non-overlapping variables and the adjacency 

variables which, if it proved consistent, gives a 

topological solution. We can consider the 

following equivalence: 

 non-overlapping (e1, e2)=Adjacent (e1, e2, d1, 

d2) (1) with d1 [0+] and d2 [0 +]. 

 

Figure 9  Permissible positions for (e2.x2, e2. y2) after non-

overlapping constraint with the e1. The partitioning of the 

surroundings of a space in {E,W,N,S} is given. 

3.2. Research space reduction constraints 

These constraints allow the combinatorial 

reduction. They regroup: 

• the incoherent space elimination constraint 

• the symmetry constraint, 

• the topological reduction constraint, 

• the propagation orientation constraint. 

. 

3.2.1 The incoherent space elimination 

constraint 

This constraint is also dependent on the minimal 

space dimension (dmin). The aim is to constrain 

each space to be either directly adjacent to the 

building unit contour or to be distant from a 

certain value, for another space to be inserted in 

between: dmin=Min(l-min,w-min). This constraint 

is applied if and only if the total recovery 

constraint is activated, i.e. the total recovery 

constraint expresses the fact that there is no lost 

space in the building unit and therefore, that the 

sum of the space surface areas equals the whole 

building unit surface area. Figure 10 shows (e1.x2, 

e1.y2) permissible positions relatively to the 

building unit contour. The algorithm is described 

in Figure 11. 
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1
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1
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2
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Ee1

dmin

dmin

 

Figure 10 Permissible positions for (e1.x2, e1.y2) after 

the incoherent space elimination constraint 

application. 

Constraint   Eliminate-inconsistency (IN: e1, E) 

For i varying from 1 to (dmin - 1) 

  e1.x1  E.x1+i 

  e1.x1  E.x2 - e1.l + i 

For j varying from 1 to (dmin - 1) 

  e1.y1  E.y1+j 

  e1.y1  E.y2 - e1.w + j 

End Constraint 

Figure 11 The incoherent space elimination constraint 

algorithm. E is the building unit. 

3.2.2 The symmetry constraint 

The symmetry constraints are meant to avoid 

functionally identical solutions by solution 

combinations over spaces of the same type and 

with the same constraints: same initial domains 

and same topological constraints with other 

spaces. For example, let us take a house with three 

similar rooms having the same initial dimensional 

domains and the same direct adjacency constraint 

with the corridor. 

 In order to rule out symmetrical combinations 

between two spaces e1 and e2, it is sufficient to 

constrain e1.x1 to always be lower than or equal to 

e2.x1 and when e1.x1=e2.x1, one must impose 

e1.y1<e2.y1 (see Figure 12). This procedure is 

applied for n symmetrical spaces, the algorithm is 

described in Figure 13. 

 

Figure 12  (e2.x2,, e2.y2) permissible positions after the 

symmetry and non-overlapping constraints application. 

 

Symmetry Constraint (I: List-of-symmetrical-spaces) 

n = length (l) 

For i varying from 1 to n 

 ei = element-of (i, l) 

 For j varying from (i + 1) to n 

  ej = element-of (j, l) 

  ei.x1  ej.x1 

  When  V(ei.x1)V(ej.x1) 

    ei.y1 < ej.y1 

End Constraint 

Figure 13  The symmetry constraint algorithm. E is 

the building unit space. 

This elementary symmetry constraint algorithm 

has been generalised to the different orientations 

of a space, the orientation attribute having 

{0°,90°} initial domain. In the case where two 

symmetrical spaces have two possible 

orientations, the previous elementary symmetry 

constraint is triggered each time both orientation 

attribute values are equal. When 

(V(orientation.e1)=0° and V(orientation.e2)=90°), 

there is no symmetrical solutions. But all solutions 

corresponding to V(orientation.e1)=90° and 

V(orientation.e2)=0° have been enumerated in the 

previous case V(orientation.e1)=0° and 

V(orientation.e2)=90°. In order to rule out these 

redundant solutions, we will consider only the 

case when the orientation attribute values are 

different only once. Figure 14 illustrates the 

symmetry constraint generalised to different 

orientations. 

 

GenSymmetry Constraint (I: List-of-symmetrical-spaces) 

n = length (l) 

For i varying from 1 to n 

 ei = element of (i, l) 

 For j varying from (i + 1) to n 

    When V(ei.orientation) V(ej.orientation) 

  (Symmetry (list(ei, ej))) 

    When V(ei.orientation) V(ej.orientation) 

  When V(ei.orientation) 90° 

    V(ej.orientation)  0° 

End Constraint 

Figure 14 The symmetry constraint generalised to 

different orientations. 

3.2.3 The topological reduction constraint 
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The topological reduction constraint operate 

when adjacency constraints with the building unit 

contour exist. The principle is: when space e1 is 

On-north-contour, no space can be to the north of 

e1. The topological reduction constraint rules out 

the {N} value of the domains of the (n-1) non-

overlapping variables relatively to e1 (see Figure 

15). When reducing these variable domains, we 

directly eliminate some inconsistent topologies.

Var1

Var2

(Non-overlapping space1 space2)  Var1

(Non-overlapping space1 space3)  Var2

N

WN E S

E S

WN E S WN E S WE SN

W

Space1 On-North-Contour

 

Figure 15  Elimination of the {N} value from the non-overlapping variable domains when On-north-

contour(space1) exist. 

This topological reduction constraint is similar 

for the three other orientations. 

3.2.4 The orientation propagation constraint 

The orientation propagation constraint uses the 

orientation transitivity property to automatically 

instantiate non-overlapping variables. For 

instance, if e1 is to the north of e2 and e2 is to the 

north of e3, thus e1 is to the north of e3. We 

developed such a transitivity constraint for 

relative orientations: North and South. We did not 

develop equivalent constraints for East and West 

because the non symmetrical partitioning into {N, 

E, O, S} does not guarantee the transitivity (see 

Figure 9). This partitioning considers north-west 

and north-east as a part of North, and south-west 

and south-east as a part of South (e.g., if space e1 

is to the east of e2 and e2 is to the east of e3, then 

e1 can be to the north or south of e3). 

4. TOPOLOGICAL ENUMERATION 

ALGORITHM 

We wanted our topological solution definition to 

correspond to the architect's notion of sketch 

where the adjacency between spaces is defined but 

where space sizes are imprecise. The geometrical 

refinement is presented in the next section. 

 Finally, we converge to the following definition 

of a topological solution:  

Each CSP where the n.(n-1)/21 non-overlapping 

variables and adjacency variables are instantiated 

and which remains numerically consistent (i.e., 

for which at least one geometrical solution exists) 

is a topological solution. 

 At this stage, value domains have undergone 

reduction but they are not necessarily reduced to a 

unique value (i.e. instantiated). We conceive 

therefore that there can exist several geometrical 

solutions consistent with this topological solution. 

An important property is that the constraint model 

(especially adjacency constraint and non-

overlapping constraint) (Medjdoub and Yannou, 

2000) has been developed in such a way that a 

geometrical solution can derive from only one 

topological solution. Therefore, topological 

solutions are distinct equivalence classes of 

geometrical solutions. 

 The verification of a topological solution 

consistency amounts to the search of a first 

geometrical solution. This search uses the same 

algorithm as the geometrical solution algorithm 

presented in the section 5.  

4.1 Dynamic space ordering (dso) heuristic for 

layout planning 

In the previous approaches, based on the 

straightforward geometrical solutions 

                                                 
1

 n being the number of spaces 
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enumeration, the search strategy is mainly based 

on the choice of the space geometrical parameters 

(André, 1986; Eastman, 1973; Pfefferkorn, 1975) 

or on the choice of the location where the space 

could be placed (Charman, 1994). In both 

approaches dynamic variable ordering (dvo) 

heuristics are used and more particularly the 

smallest-remaining-domain heuristic. 

 

In our approach, we firstly generate the 

topological solutions. This corresponds to non-

overlapping and adjacency variables instantiation. 

We have developed a particular dvo heuristic, 

named dso heuristic, based on the most 

constrained space position (x,y). Comparatively to 

the dvo heuristics, the dso heuristic is based on the 

space ordering and particularly on the space 

reference points (x1, y1, x2, y2).  

 

To implement this heuristic, we have introduced a 

new attribute in space class called degree of 

constraint dg-cont. The more the space is 

constrained, the higher the dg-cont value is and 

the more the non-overlapping and adjacency 

variables corresponding to this space have a 

chance to be instantiated first. 

 

The initial value of dg-cont is calculated from the 

adjacency constraints with the building unit. For 

example, one space constrained to be adjacent to 

the south wall of the building unit, will have its 

dg-cont value assigned to 4 (see Table 2). If two 

spaces have an equal dg-cont value, the space with 

the highest average surface area (average of the 

surface area variable domain values) is chosen and 

if it is not sufficient to distinguish this space, the 

first in the list is chosen. Thanks to the rules of dg-

cont value calculation indicated in Table 2, the 

more a space is constrained, the higher its dg-cont 

value will be.  

 

 

Table 2 Assigned values to dg-cont in regards to the adjacency constraints. 

Constraints dg-cont 

Basic adjacency (on the south, north, west or east) 

Disjunction of n basic adjacency (1<n<5) 

Conjunction of n basic adjacency 

4 

5-n 

n 

 

 After the detection of the most constrained 

space with the building unit, its corresponding 

adjacency variables with the building unit are 

instantiated. After each space choice, one updates 

dynamically the dg-cont values of the remaining 

spaces. To do this, one considers adjacency 

constraints with spaces already chosen and with 

the building unit. The process runs until all 

topological variables are instantiated but a 

backtracking is performed as soon as an 

inconsistency is detected. 

 An example of the algorithmic steps followed 

with such a heuristic is given in Figre 16. Initially, 

the building unit bu is empty (see case (a) - Figure 

10). Space e1 is chosen and its adjacency variables 

with bu are instantiated ; then, e1 is the most 

constrained space according to its adjacency with 

bu (i.e. dg-cont  8). In the next step, dg-cont 

values of the remaining spaces are updated. 

Considering the adjacency with e1 the new space 

ordering takes place and elects e2 as the new most 

constrained space, its dg-cont value being 

incremented by 1. This value of 1 is explained by 

the fact that a general adjacency is a disjunction of 

the four basic adjacencies (north or south or west 

or east, see Table 2). Next, the Topological 

variable of e2 with bu and e1 are instantiated and 

again the dg-cont values of the remaining spaces 

are updated (see case c and d) and so on. We do 

this, until all the topological variables are 

instantiated. 

 Thanks to this heuristic the enumeration phase 

duration has been approximately reduced by 30%. 
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Figure 16  Dynamic space ordering heuristic. Numbers in bold correspond to the added values to dg-cont attributes at each 

algorithmic step. 

 

 In fact, the dvo heuristic is used for ordering the 

constrained topological variables of spaces 

remaining to be placed. This heuristic depends on 

two criteria: 

e1, e2, e3  et e4 are four spaces in building unit bu

    • e1 is adjacent to the south wall and to the west wall  of bu

    • e2 is adjacent to the west wall of bu

    • e2 and e1 are adjacent

    • e3 is  Adjacent to the north of e1

    • e3 is adjacent to the east of e2

    • e4 is adjacent to the north wall "OR" to the south wall  of bu

• e1.dg-cont = 4 + 4

• e2.dg-cont = 4

• e3.dg-cont = 0

• e4.dg-cont = 3

• e2.dg-cont = 4 + (1)

• e3.dg-cont = 0 + (4)

• e4.dg-cont = 3

• e3.dg-cont = 4  + (4)

• e4.dg-cont = 3

• e4.dg-cont = 3
Adj to the north

to
e1

e2

e3

Adj to the west

wall

Adj to the north

to
Adj to the east

Adj to the south
            and
Adj to the west

wall

state (b)

state (a)

state (c)

state (d)

Space ordering

bu

Space ordering

Space ordering

Adj to the south
            and
Adj to the west
wall

e1

bu

e1

e2

Adj to the north

Adj to the west

wall

Adj to the south
            and
Adj to the west

wall

Space ordering

bu

bu
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• the variable type: non-overlapping variables or 

adjacency variables. Priority is given to the 

adjacency which constrains more than the non-

overlapping. 

• the variable domain: each variable is a choice point, 

priority is given to the variable with the smallest 

domain. 

These two heuristics correspond to the classical 

heuristics in constraint programming approaches 

where the choice of the first variable corresponds 

to the most constrained variable. 

4.2. Topological graphical representation 

Naturally, we tried to represent graphically the 

topological solutions by adopting average values 

of the value domain of the space attributes 

(x1, y1, x2, y2). We then noticed the striking 

resemblance between such graphic representations 

and sketches that are made by architects in 

preliminary design. In the same manner, as a 

sketch, the graphic representation of a topological 

solution reveals slight overlapping of rectangles. 

In the example of the house with two floors, 49 

topological solutions are found in 1h36mn with an 

IBM Risc6000 320H workstation (see Figure 17). 

 

Figure  17  Some topological solutions of the "house with two floors". 

5 GEOMETRICAL SOLUTIONS 

Our optimisation approach consists in minimising 

an objective function, called cost function. Our 

“ branch and bound ” optimisation method leads 

to the determination of the global optimum 

(eventually global optima) of a geometrical 

solution. This is not the case of expert systems 

approaches or evolutionary approaches (Damski 

and Gero, 1997; Jo and Gero, 1997) which lead to 

“satisfactory solutions”. 

 The “ Branch and Bound ” algorithm is based 

on the enumeration algorithm which builds a 

depth-first research tree. 

 For the enumeration algorithm, each choice 

point in the research tree corresponds to a variable 

choice (for example x) among those which have 

not been instantiated yet. Each branch corresponds 

to a particular instantiated value (for example v) in 

the variable domain. Coming down the tree 

consists in adding the constraint x =v, coming up 
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or backtracking consists in releasing this 

constraint, i.e. in restoring the ancient constraint 

set. Each addition of a constraint triggers a 

constraint propagation which reduces the domains 

of the remaining variables to instantiate. When a 

domain becomes empty, no solution exists in this 

branch and a backtrack is carried out. When using 

the variable ordering heuristic, the order of the 

choice of variables considerably influences the 

size of the tree and consequently the overall 

duration of the enumeration process. Typically it 

consists in choosing first the most constrained 

variable. The heuristic term is somewhat 

confusing because this enumeration algorithm 

provides the complete solution set; there is no 

approximation. 

  With the previous enumeration algorithm, the 

“ branch and bound ” algorithm consists in 

finding a first solution S1. Let us recall that the 

objective is to find the solution with the lowest 

cost function value. This is why, when solution S1 

is found, the new constraint Cost-function<Cost-

function(S1) is applied, and this constraint is not 

released when backtracking occurs. This new 

constraint provokes domain reductions. The better 

the solution S1 is (i.e. Cost-function(S1) is low), 

the more efficiently the domains reduction are. A 

second solution S2, better than S1, can be found 

and a stronger constraint is posed: Cost-

function<Cost-function(S2), and so on until all the 

values have been tested. One can conceive here 

that the optimisation process duration is related to 

the ability to quickly find a good solution.  

For the issue of the consistency checking, the fact 

that the optimisation process duration and that the 

first solution search process duration are very 

close is due to two reasons: 

• we have a satisfactory dynamic variable 

ordering heuristic, 

• the actual optimisation criteria of the cost 

function are linear criteria of space attributes. 

The first solution finding (S1) provokes already 

large domain reductions even if S1 is not so 

satisfactory. 

The fact that both durations are small is also due 

to two reasons: 

• a topological solution is already a very 

constrained problem for which variable domains 

have strongly been reduced, 

• the inconsistent space elimination constraint, 

which is a dynamic constraint, efficiently prune 

the research tree. Indeed, as soon as a space is 

instantiated, if the minimal distance to the 

building unit contour is lower than the lowest side 

of the remaining spaces to be placed, it provokes a 

backtrack. 

 

 Our objective functions consist in the 

minimisation of the wall lengths or of the corridor 

surface area. From a viewpoint of CAD user-

friendliness, it is very simple to propose to the 

designer an interactive tool to compose his 

objective function by tuning the relative 

importance of the evoked elementary criteria. One 

of our major objectives remains to carry out multi-

criteria optimisation. 

 The optimal geometrical solution of each 

topological solution is globally displayed in a 

collector of geometrical solutions. The most 

important function of this collector is to realise a 

classification of the topological solutions from the 

minimal objective function value of the 

geometrical solutions related to each topology. It 

can be noted that several geometrical solutions 

can correspond to the same optimum. In that case, 

they are all enumerated (see Figure 18). 

 

 

 

 

 

Figure 18  Three different geometrical solutions with 

a same topology and with the same optimal objective 

value (minimising the corridor surface area). 

 Figure 19 presents the geometrical solutions 

corresponding to the 49 topological solutions 

previously evoked in Figure 17. The objective 

function consists here to minimise the corridor 

surface area. 
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Figure 19  Some optimal geometrical solutions of the "house with two floors". 

6. CASE STUDIES 

Several examples in constraint-based space layout 

planning were tested (Medjdoub, 1996). The 

results of the classical benchmarks were 

improved, as the Maculet (1991) problem. 

6.1. Implementation 

ARCHiPLAN has been developed on IBM 

Risc6000 320H (workstation) in Lelisp v.15 

interpreted (object oriented language: Lelisp is a 

trademark of INRIA), and the constraint library 

called PECOS (Puget, 1991). The graphic 

interface has been developed with AÏDA graphic 

library and Grapher (PECOS, AÏDA and 

GRAPHER are trademarks of ILOG S.A.). A new 

version of ARCHiPLAN is under development in 

a C++ environment. 

6.2. The Maculet problem 

The Maculet (1991) problem consists in designing 

a house with 11 spaces in a placement space of 

120 m2.  

6.2.1 Dimensional constraints 

Table 3 presents the dimensional constraints, the 

module being of 1 meter. 

Table 3  Dimensional  constraints between spaces (Maculet problem). 

unit area domain 

value 

L-min W-min Unit area domain 

value 

L-min W-min 

        Floor [120, 120] 12 10 Corridor2(c2) [1, 12] 3 3 

Living (sej) [33, 42] 4 4 Room1 (ch1) [11, 15] 3 3 

Kitchen (cuis) [9, 15] 3 3 Room2 (ch2) [11, 15]  3 3 

Shower (SDB) [6, 9] 2 2 Room3 (ch3) [11, 15] 3 3 
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Toilet (wc) [1, 2] 1 1 Room4 (ch-p) [15, 20] 1 1 

Corridor1(c1) [1, 12] 1 1     

 

6.2.2 Topological constraints 

Constraints between spaces are: 

• the living room is on the south or on the west wall of 

the placement space, 

• the kitchen is on the south wall or on the north wall 

of the placement space, 

• room1 is on the south wall or on the north wall of 

the placement space, 

• room2 is on the south wall or on the north wall of 

the placement space, 

• room3 is on the south wall or on the north wall of 

the placement space, 

• room4 is on the south wall of the placement space, 

• All the spaces, except the kitchen, are adjacent with 

one of the two corridors with 1 meter minimum 

for contact length, 

• The living room and the kitchen are adjacent, 

• the kitchen and the shower are adjacent, 

• the toilet is adjacent to the kitchen or to the shower, 

• the two corridors are adjacent, 

• the principal entry is by the living room, 

• no room is wasted (the total spaces area correspond 

to the placement space area), 

• the spaces don't overlap each other. 
 

 In this example, 72 solutions are enumerated in 

30 minutes and displayed by ARCHiPLAN (see 

Figure 13).  The 72 best geometrical solutions 

minimising the corridor surface area, are 

displayed in Figure 14. 
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Figure 13  Some topological solutions among the 72 possible solutions for the Maculet problem. 
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Figure 14  Some geometrical solutions among the 72 possible solutions for the corridor surface area minimisation criterion.

More examples 

We have tested numerous examples with 

ARCHIPLAN, improving the results of classical 

benchmarks (for more details, see Medjdoub, 

1996). Let us briefly cite: 

• The Pfefferkorn problem (Pfefferkorn,1975): Six 

rectangles of fixed dimensions : 6x2, 4x2, 2x3, 

2x3, 2x3 et 2x1 must be assembled into another 

rectangle of fixed dimensions 8x5. The rectangles 

have a unique 0° orientation. 

• The Laurière problem (Laurière, 1976): It is a 

variant of the Pfefferkorn problem. Here, 

rectangles can have two orientations. 

• The Tong problem (Tong, 1987): Four rectangles 

where all the sides vary from 4 to 9 and must be 

placed into a 9x9 rectangle. 

• The 9 perfect squares of Charman (Charman, 

1995). 

• The Maculet problem (Maculet, 1991) previously 

detailed. 

But we have also introduced new benchmarks 

(Medjdoub, 1996) because a lot of conventional 

benchmarks in literature seemed to be restricted to 

simple problems defined by: 

• fixed dimensions for building unit contours, 

• small number of spaces, 

• strongly constrained problems, which is not the 

case of real problems, 

• sometimes spaces of fixed dimensions, 

• problems restricted to a unique building unit 

contour. 

Due to the constraint approach and the generic 

topological level, ARCHIPLAN is a flexible 

approach which is able to cope with all these 

aspects. 
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7.  CONCLUSION 

In this paper, we have revisited the space layout 

planning problem by considering two solution 

levels: topological and geometrical, and on an 

original dynamic space ordering (dso) heuristic. 

Contrary to the evolutionary approaches (Damski 

and Gero, 1997; Jo and Gero, 1997) which deal 

with out-size problems (i.e. Ligett problem, 1985) 

but obtain under-optimal solutions, our approach 

deals with middle-size problems (twenty spaces 

with two floors) with exhaustive enumeration (all 

the topological solutions) and optimal solutions 

(one criterion).  

We have a complementary approach to the one of 

(Schwarz et All, 1994) that is based on a graph-

theoretical model. In this approach the topological 

level is apart of the computation process, but the 

evaluation of the solutions is done at the 

geometrical level. It is restricted to the small-size 

problems (doesn’t exceed nine rooms) and the 

shape contour of the building is  a result of the 

design process. In our approach, thanks to the 

constraint programming technique and the 

topological constraints of our model, the variables 

of the problem are already reduced during the 

topological enumeration stage. It allows architects 

to be the actors of the design at the topological 

level when choosing between feasible sketches 

and composing interactively an objective function 

for finding the best corresponding geometrical 

solutions. 

 Another advantage of this approach is its 

modular aspect thanks to the oriented object 

programming and to the constraint programming 

(discoupling between constraints and algorithms), 

which means that the core of ARCHiPLAN will 

remain unchanged in case of architectural objects 

extension, constraint model extension or criteria 

list extension.  
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