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Absiract

We propose an oniginal method to synthesize the dimensions of a planar mechanism (linkage) whose
function 15 to generate a trajectory shape. Most graphical and analytical synthesis methods for path gen-
erators require specifymmg the desired trajectory in a non-functional manner, by a list of pomnts rather than a
pure shape. Concerning the dimensional optimization methods, they turn out to be slow and their con-
vergence depends on the initial solution. Alternatively, we propose a case-based approach (i.e., couples of
trajectones and dimensions of a given structure mechanism) using a neural network. The first stage consists
m the generation of a huge case number through kmematic simulations, for random values of dimensions,
and m a learning process of the neural network. In the second stage, of utilization, the neural network
mstan tanecusly makes 1t possible to obtain an approxmate solubion of the synthesis problem, which 15 an
mterpolation of close cases. We show on the four-bar inkage example the good quality of the synthesized
solutions, for a tiny size of the network. Next, these solutions may be used as judicious mitial solutions for a
conventional dimensional optimization. @ 2001 Elsevier Science Ltd. All nghts reserved.

1. Introduction

The path generator synthesis method presented in this paper is a part of a Ph.D. work
(cf. Vasiliu [11]), implemented in an integrated predesign platform called ReaLisME. Path gen-
erators (see examples in Fig. 1) are subjected to a main kinematic specification: the path described
by an effector point. This path 1s considered with or without time dependence, 1.e., considering or
not the speed along the path. We are concerned here only with time independent synthesis.

Generally, existing methods require the designer to specify the desired path in the form of a list
of precision point corrdinates. In the case of analytical synthesis methods (cf. [9]), the number of
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Fig. 1. Industrial examples of path generators (four-bar linkage). (a) Kneading machine. (b) Film indexing mechanism.
(¢) Mechanism for assembling machine (cf. [9]).

specified points is small (typically between 3 and 10) and depends on the structure. This number
may reach a few dozens in the case of dimensional optimization methods (cf. [5]). This way of
specifying the desired path — imposed by the nature of synthesis methods — is compatible with the
designer needs when no particular requirement on the path between these precision points is



needed. But, if the real desired function is the shape of the path, these methods are not well suited,
because they take into account an incorrect synthesis objective and deteriorate the functional
specfication into a list of points. For this reason, we represent the shape of the path by the
Fourier coefficients of his harmonic analysis, by a method proposed by McGarva [7,8]. In this
manner, the shape becomes the only objective of the preliminary design.

On the other hand, the dimensional optimization is slow and its convergence is not warranted
at all. Probably, these are the reasons why Erdman [3], in his state of the art on the computer-
aided mechanism design, considered that an ideal for the fuiure are the tools integrating alko a
sort of “memory” or “previous solutions library”. Some approaches of this kind already exist
(cf. [1,6,10,13]), but they use most of the time a simple path atlas (on paper or on computer).
There are three major drawbacks: these atlases are incomplete, they are cumbersome and the
synthesis result cannot be better than the best mechanism which was recorded in the atlas. In
order to eliminate these drawbacks, we propose a synthesis method using a mewral network.
Neural networks roughly represent an analogy of a graph of neurons. There are inpur neurons
which code, in our case of path generator, a desired path, and owtpiut neurons which code the
dimensional parameter values of a given planar mechanism. Neurons are connected together
with symnaptic connections, each of them supporting a synaptic coefficient. A neuron output value
15 computed as a function of a weighted sum of input values where the weights correspond to
synaptic coefficients. Handling neural networks is generally decomposed into three phases: a
generation of design cases (in this work, a design case corresponds to the couple: dimensional
parameter values, corresponding simulated path), a learning phase in order to find the best
synaptic coefficients, and a utilization phase. During the utilization phase, the neural network s
used in the inverse sense, for synthesizing the dimensional parameter values corresponding at
best to a desired path. This neural network approach combines three advantages to be related to
the three major drawbacks previously expressed: speed of the synthesis phase, small size of the
resulting neural network and interpolation of close cases. The limits of this approach are also
discussed.

2. Synthesis using neural networks
2.1, Case-based reasoning

Neural methods can be considered as a particular implementation of case-based reasoning. A
case of mechanism (in this context) has a comtent which can be reached using an index. The
content represents the struciure of the mechanism (dimensions and morphology) generating a
path which is the index. For a given morphology and a given dimension set, we are able to de-
termine the trajectory, by simulation, and in the form of a list of pomts. Consequently, there is a
mathematical function (see Fig. 2(a)) from the mechanism (morphology and dimensions) space to
the trajectory space.

Formulated in this way, the joint morphological and dimensional synthesis problem may be
seen as the inversion of this function (see Fig. 2(b)) giving the morphology and the dimensions for
a given desired path. Unfortunately, the mverse function does not exist, generally, because the
same path shape may be described by several mechanisms of different morphologies and
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Fig. 2. {a) The first stape: case generation using kKinematic simulation, and learmng of the newral network. (b) Second
stage: neural network ulilization,

dimensions. This is an important limitation of the function approximation for the path generator
synthesis, but this problem will be partially solved by a judicious choice of the dimensional pa-
rameters and of their value intervals.

2.2, Artificial neural networks

The mathematical method of function approximation used in REaL1sME is an artificial neural
network. ' The latter is a graph of newrons including input and output neurons. In our case, input
neurons represent the shape of the path, and the output neurons represent the dimensional pa-
rameter values of the mechanism (content).

We found no sense in interpolating morphologies because there is no continuity between dif-
ferent morphologies. Moreover, the representation of the morphology of a mechanism (usually as
a graph) requires a large amount of data and we did not know a way to represent a morphology
with a given number of real values as required by a neural networks. For all these reasons, the
method used in REaALisME consists in a loop over several neural networks’ requests, each neural
network corresponding to a particular mechanism morphology. So, only the dimensions are
represented in the network, not the morphology. Practically, these networks are created for the
simplest or the cheapest morphologies.

When interpolating dimensions, we hope that the synthesized mechanism will have a better
described path (comparatively to the desired path) than any case previously learned by the neural

! The stuttgart neural network simulator (SNNS) is used.



network. This is generally the case but, because of the non-inversion of the mathematical function
(mechanism — path) (see Fig. 2(b)), an interpolation can lead to a worth solution than any of
close cases.

2.3. Case represeniation

The index and the content of a case must be as flittle as possible in order to reduce the dimension
of the problem. This is the reason for the use of normalization procedures (Section 3.3), which
ensure that each case represents an entire class of mechamsms, whose path forms are equivalent.
Other constraints are imposed by the choice of a neural network to store and interpolate cases:
data of numerical type only (not symbolic), with continuous values (not discrete), scaling of data,
constant cardinality coding. This last constraint will be entirely respected by our choice of path
coding with a fived number of Founer coefficients.

3. Coding a path
3.1. Indexation procedure

By indexation of cases, we understand a transformation (or coding), before storage, of the data
which represent the path of a case, in order to reduce its size and to allow its utihization. The
procedure used in REALISME consists in a series of transformations, which will be described here
after.

3.2, Harmonic analysis of paths

We use (with some improvements) the model of McGarva [7.8], which makes it possible to
approximate the shape of a path by the complex coefficients of the first five harmonics, resulting
from the decomposition of a path in a Fourier senes. This is done from the representation of the
path by a set of points coordinates, obtained by kinematic simulation. The position of a point on
the path may be represented by a complex function: z(¢) = x(t) +iw{t). For closed paths, the
function is periodic. The Fourier development is then =(t) = > anexp(2rimt). The complex
coeffcients of Founer are a, = fﬂ exp( —2mimt)z(t) dt. The a, coefficient is called fundamental, a,
and a_; represent the first harmonic, a, and a_, the second harmonic, etc. Because the function
z(t) is known only at the particular points z; (k = 1,...,N), the integrals are discretized using the
trapeze formulas (# is the curvilinear abscissa of the point k): *

L s el — !‘x{
N = {z

O = i+t €XP(—2mimte ) + zp exp(—2mimt; ) ). (1)

[M7

_.

2 With this parameterzation of the path, the information hnked to the speed 15 ehmnated, which 15 imporiant for a
time independent synthesis method.



Fig. 3. Examples of the approximation of a path by the first five harmonics. The desired path and its correspomding
syithesized path (by the first five harmonics) are supermposed.

Fig. 3 presents two examples of path approximation. The differences between the original path
and its approximation by the first harmonics are significant only in the zones with a big curvature
or angular points. The choice of a number of five harmonic seems to us a good compromise.

3.3 Normalization

The invanance of the link between path shape and mechanisms in relation to linear transfor-
mations allows — thanks to a specific normalization procedure — to obtain a sort of shape equiv-
alence class. The Fourier coefficients of the normalized path are representative to this class. The
objective of the normalization is to obtain a representation of the shape, independent of linear
transformations which may occur: translation, rotation, scale, direction of point listing. More-

over, we must make abstraction of the arbitrary first point of the circular list point.
Our normalization procedure is an improved version of those proposed by McGarva [7 8]
Globally, the procedure is based on the fundamental harmonic and the first harmonic. For

Before normalizgation

After normalization
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Fig. 4. Examples of paths and Fourier coefficients for the first five harmonics.



example, the coefficient ay represents the position of the center of gravity of the path. Translating
this center at the origin of the Cartesian coordinate system (0,0), by the transformation ag — 0,
we obtain a translation normalized position. Similar procedures are used for the other trans-
formations. The normalization eliminates five Fourier coefficients and reduces the total number
from 22 to 17 normahlized coefficients. An example s given m Fig. 4.

4. Coding the dimensions of the mechanism

The mechanisms dimensions may be described by different parameterizations. REaLisME uses
absolute Cartesian parametenzations using the link coordinates in the imtial position of the
mechanism, which ensures unicity of definition (only one possible assembling) and the homoge-
neity of variables (no mix of coordinates and angles when only rotational joint are used).
Moreover, the mechanism can thus always be assembled in the initial position and the described
path contains therefore at least one point.

For the examples of the four-bar mechanism, i1s described (without further explanations) (see
Fig. 5) a reasonable choice of the value intervals for the five-dimensional parameters. Indeed, in
order to obtain, using a neural network, an approximation of the function going from the di-
mensions to the paths, the choice of the dimensional parameters and of the intervals for each
parameter is subject to the consiraints already mentioned: limitation of the zones where the
function is not invertible and of the zones where the mechanism blocks during the simulation. *
The last constramnt would not exist if it was possible to approximmate both closed and open paths.
Unfortunately, we do not know such a representation which passes continuously from closed
paths to open paths. Moreover, the harmonic analysis works for periodic functions, 1.e. closed
paths, whereas splines or nurbs approximation s specific to open paths, because it is necessary to
randomly chose a cutting point on the path. In definitive, we have chosen to tackle the synthesis of
closed paths.

5. Learning of the neural network

The complexity of the function whose approximation we search for imposes the utilization of a
big amount of value samples. The random choice of dimensions imposes the use of a big number
of value samples. The random choice of dimensions is preferable — because of the non-linearity of
the function — to a regular scanning (with constant interval).

3. 1. Dimensions of the neural network

The sturcture of the neural network used s a classical, feedforward one, with 17 input neurons
corresponding to the normalized Fourier coefficients; 2 hidden layers of 22 neurons each; 5 output

¥ We do not have at our disposal a general procedure allowing to determine the feasible intervals for each mechanism
morphology, even if we have the non-blocking constrants for some morphologies, as the Grashov conditions for the
Sour-bor mechamsm.
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Fig. 5. The choice of the parameters for the four-bar mechanism. The motor i5 in A and the effector point is point E.

neurons, corresponding to the dimensional parameters of the four-bar mechanism. The activation
function of the neurons (with the exception of the mnput layer) 1s of a classical shape:
Jaalx) = 1/(1+e7).

In total, 60,000 cases were generated by kinematic simulations for the four-bar mechanism. Ina
conventional manner, the cases were divided into three categories: 30,000 as learning patterns
(used to calculate the error function during the learming process), 15,000 as validavion patterns
(used to estimate, during learning, the evolution of the generalization ability of the network) and
15,000 as rest patterns (used to test the generalization capacity on data never used durning
learning).

5.2, Scaling of inputs and outputs

The mathematical nature of the activation function used in the network requires that input and
output values are from 0 to 1. A speafic procedure of scaling 1s employed, which takes into
account the minimum and maximum values of the neurons. For the input neurons, the extreme
values are determined for all the cases, independently for each input neuron. Fm' the output
neurons, this determination is done globally, for all the output neurons. So, lf.E' " and vm are the
ith input, respectively, output for the kth case, the scaled corresponding values el o and vl " are
calculated thus (n, = number of inputs, n, = number of outputs and N = total number of
cases):

_ e — mln( ”‘])
eV = i=1,...,n,andk=1,... N,

k) 14]
max (&) — min(¢,)
B mm(mm( m))
X .-'
£ = j=1,....,nyandk=1,...,N.

© () - min(min(4°))




3.3. Learning algorithm

Many learning algorithms for the neutral network were tested, including global methods such
as MonteCarlo and simulated annealing; The Resilient backpropagation (Rprop) algonthm is the
one which gives the best results. Using the learning patierns, learning was done in 14,000 itera-
tions. Total learning time was about 30 h, * with a quadratic approximation error E of less than
0.02. The approximation error is given by the formula (¢;, is the output value of the network and
o 1s the output value contained in the patterns): E =

2
E_.I'E]'mllﬂ'u E.«-Eumpm_u.-ar{!.i _'”_-"-T.] .

6. Neural network utilization
6.1, Procedure

In the utihization phase, the designer has at his disposal some networks, corresponding to
different morphologies of mechanisms. The steps, going from the specification of the desired path
shape to the synthesis of the mechanism, will be detailed here afier. The specification of the de-
sired path shape is done in REALISME with a special path editor. ° With the mouse, control points
of the spline curve are defined. Equal distributed points on this curve are determined for the use in
the harmonic analysis. The curve approximated by its first five harmonics i1s presented to the
designer, who decides if the approximation is acceptable or not.

Neuxt, the indexation procedure is the same as for the construction of the case base (see Section 3),
and the result 5 a series of scaled normalized Fourier coefficients. Minmmal and maximum vahies
used for scaling are those stored, for the same coefficient, during the creation of the base (see
Section 5.2). This procedure 1s done successively for each of the available networks, because the
extreme values are a priori different.

Finally, the network gives an interpolated solution, i.e., the output values (transformed again in
order to elimmate the effect of scaling) which represent the dimensions of the synthesized
mechanism. Using these values to determine the intial position of the mechanism, the kinematic
simulation 15 automatically done. The path described by the synthesized mechanism and the
desired path are drawn in the same window (see Fig. 6) in order to let the designer decide on the
quality of the resulting mechanism. In most of the cases, we were visnally satisfied by the similarity
of the shape of those paths. In spite of that, the problem of judging the relevance of the method is
not simple. Indeed, we have to dissociate between the quality of the method (neural approxi-
mation) and two types of error. The first error is due to the impossibility to calculate the inverse
function, already mentioned, for which the interpolation is not correct. The second error is simply

“On a PC 90 MHz computer.

¥ Another possiblity would be the utilization of the approach of declarative modelling of curves (of, Daniel and Lucas
[2]) in order to put in the hands of the designer an interface to specify forms in a natural (qualitative) language. This
declarative specification would then be translated into some “probable splines™ which could feed our own procedure to
calculate the Fourier coefficients.
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Fig. 6. Examples of synthesized paths for four desired paths randomly chosen. The desired path and the synthesizad
path are drawn in the same window.
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due to the fact that a mechanism, with a given morphology, cannot generate all paths (for ex-
ample, algebraic curves of 6th degree for the four-bar mechanism). Nonetheless, we are now
working to create more rigorous test procedures.

6.2, Adapiation of the synthesized solution

The last step consists of an improvement of the synthesized case, classically called adapration
(to the specification). Two methods are proposed. The first method is based on the only link
characterization between dimensions and paths. In other words, a linear transformation (trans-
lation, rotation, scale) applied to the mechanism has the same effect on the path. So, we define a
method of geometrical calibration, whose principle consists in the determination of the optimal
transformation allowing to superimpose at best the desired and synthesized paths. An origmnal
procedure, based on the normalization of the paths, was developed. A second method of adap-



tation consists in employing the synthesized solution (when it is not entirely satisfactory) as an
initial solution of a dimensional optimization.

7. Conclusion

The main idea of our path generator synthesis method is the memornzation of the link between
geometry and the path shape using a “compilation™ of the mechanisms by neural networks. This
method has two main advantages. First, this method take inio account shape specifications,
which is very difficult with traditional methods. So, in the case of a path catalogue (atlas), this s
possible only by a visual choice (as in Zhang et al. [13]) or using very expensive algonthms in
order to compare the form of the paths (as in Kota and Chiou [4]). Second, the preliminary
“compilation™ of the base of cases using the interpolation with a neural network enormously
reduces the size of the base. In this manner, it becomes possible to provide on a single floppy disk
a set of neural networks corresponding to different morphologies. For example, the size of the
neural network for the four-bar mechanism is less than 1 kB, while the size of the record of all the
paths used in the learning process 15 12 MB (which corresponds to the size of a classical catalogue/
atlas).

The mplementation of this method requires a big number of kinematic simulations. So, it 1s
particularly useful to have at one’s disposal a very rapid simulation method. This condition 5
achieved in REaLisME by the use of the systemic multipolar approach (which have a parametric
nature and minimize the iterative calculations using close-form solutions most of the time; for
details, see [11,12]).

Various evolutions are possible: the use of advanced neural network techniques, the extension

to time dependent paths, the adaptation to open paths using spline function in place of Fourier
series, finally the creation of a neural networks database for a representative set of mechanisms.
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