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Abstract

The mechanical behavior of materials is usually simulatethb continuous mechanics approach. However, simula-
tion of non-continuous phenomena like multi-fracturinga well adapted to a continuous description. In this case,
the discrete element method (DEM) is a good alternativeusexd naturally takes into account discontinuities.

Many researchers have shown interest in this approach far aved fracture simulation. The problem is that, while
DEM is well adapted to simulate discontinuities, it is noitable to simulate continuous behavior. In problems of
wear or fracture, material is composed of continuous pardsiéscontinuous interfaces. The aim of the present work
is to improve the ability of DEM to simulate the continuoustp# the material using cohesive bond model.

Continuous mechanics laws cannot be used directly withirEdDormulation. A second diiculty is that the
volume between the discrete elements creates an artifaithinside the material. This paper proposes a methodology
that tackles these theoreticalfitiulties and simulates, using a discrete element model, atgrial defined by a
Young’s modulus, Poisson’s ratio and density, to fit theis@hd dynamic mechanical behavior of the material. The
chosen cohesive beam model is shown to be robust concehaimftuence of the discrete element sizes. This method
is applied to a material which can be considered as perfetabtic: fused silica.

Keywords: Discrete element method, DEM, Calibration, Elastic, Dyi@afused silica

1. Introduction main dificulty for DEM is to simulate properly the con-
tinuous material.

The discrete element method (DEM) can describe  This paper focuses on a material which can be con-
quite naturally a granular medium. However, the num- sideblue as homogeneous, isotropic and perfectly elas-
ber of discrete elements to manage is high and it re- tic: fused silica. This work is a continuation of a previ-
quires computational resources. The development of ous study that investigated subsurface damage in silica
this method began in the early 1980s (1). More recently, glass due to surface polishing (5). In this previous study,
researchers have used this method to study the damageliscrete element models have shown qualitatively good
of heterogeneous solids such as concrete (2) or rock (3),agreement with experiments. The challenge, now, is to
and homogeneous materials such as ceramics (4). propose a 3D DEM spherical model allowing quanti-

Discrete element model is well adapted to simulate tative results for the silica considered as a continuous
a media that has a great number of interfaces. It hasmedia.
been widely used to study tribological problems like A preliminary task is the cohesive bond choice to
wear phenomena. In this kind of problem, the mate- model correctly the subsurface damage layer during the
rial has a continuous part (the volume above the sur- silica abrasive process. There are two main approaches
face that is not yetféected by the wear), a continuous to DEM : the dual spring model (a pair of normal and
part with cracks (called subsurface damage in abrasiontangential springs) (6, 7, 8, 9) and the cohesive beam
process terminology) and a discontinuous part (the in- model (10, 11, 12). The beam cohesive model is not
terfacial media, called third body, that is a mixture of as well established in the literature as the classical dual
abrasive particles and wear particles). Discrete elementspring model. Therefore, Schlangen and Garboczi in
model must be able to simulate with accuracy all these (10, §83) have shown that the beam cohesive bond pro-
parts of the material. Unlike continuous approaches, the duces more realistic crack pattern than the simple spring
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model or the dual spring model . A further work of these modulus and strength) can be derived directly from
authors (11, 83) have studied the influence of the ini- measurements performed on laboratory specimens. For
tial geometric arrangement. They conclude that a disor- the BPM (...) the input properties of the components
dered configuration gives more realistic crack geometry usually are not known. (...) For the general case of
than an ordered geometrical configuration. arbitrary packing of arbitrarily sized particles, the re-
According to these results, the discrete element ap- lation is found by means of a calibration process (...)"
proach used in this paper is quite similar to the model To summarize, for the random domains, the quantifica-
described by Carmona in (12). An initial spherical do- tion of the microscopic parameters requires some nu-
main is generated by a numerical compaction method. merical tests called a calibration procedure. This prob-
A dispersion applied to the discrete element radii allows lem has been intensively studied for the cohesive dual
random geometrical arrangement. Then, the discrete el-spring model. Hentz et al. (7) have proposed numer-
ements are connected by the "beam cohesive bonds". ical quasi-static uni-axial traction tests to calibrate th
The proposed model must simulate static and dy- bond parameters in regard to the macroscopic Young'’s
namic behavior characterized by Young’s modulus, modulus and Poisson’s ratio. Note that these authors
Poisson’s ratio, mechanical wave celerity and natural have introduced an energy criterion to reduce dispersion
frequencies. of the macroscopic emergent properties. Then, numer-
The dfficulty is that the mechanical behavior of a ical dynamic tests are used to check the dynamic prop-
structure composed of a large number of discrete el- erties. Fakhimi et al. (8) have used calibration curves
ements cannot be analytically predicted. Global be- and dimensional analysis instead of the trial and error
haviors are the result of a large number of interactions approach. Tamarez and Plesha (9) have used analytical
between discrete elements and can be considered agormulations of a 2D elementary volume (a unit cell).
an emergent physical property (13, preface). Implic- The cohesive beam model was first introduced by
itly, two scales are considered in a discrete element ap-Herrmann in 1988 (16). This model was used in a 2D
proach: ordered lattice network (17, 18), then in a disordered 2D
) lattice network (11, 19, 20, 21, 22). In reference (11),
e the structure scale, represented by a set of discretehe athors have considered that the microscopic and
elements. Tr]'s scale will be called the "macro-  4crascopic Young's moduli and Poisson’s ratios must
scopic scale"”. be similar. The Beam dimensions (cross section and in-
ertia. momentum) are chosen thanks to a numerical re-
cursive algorithm to satisfy an uniform elastic contin-
uum condition. The main subject of other papers is the
development of fracture models. The calibration meth-
Note that the interesting properties, e.g., the Young’s ods are not described in depth. Researchers simply rec-
modulus, the Poisson’s ratio, mechanical wave celer- ommend using experimental and numerical tests.
ity and natural frequencies should be considered, in the In this study, unlike that of Schlangen(11), the me-
DEM model, as emergent properties at the macroscopic chanical properties of the cohesive beams will not be
scale. Furthermore, unlike the finite element method considered as similar to the reference material. The mi-
(14), continuous mechanical behavior laws cannot be croscopic local properties could be driven to produce
directly introduced into the DEM formulation. As are- discrete matter internal reorganization under loading
sult, the difficulty is to quantify DEM microscopic in-  that induces the desired behaviors at the macroscopic
teraction laws according to continuous mechanical be- scale.
havior. In this paper the 3D cohesive beam model is briefly
This problema has been discussed in detail by Ostoja- described in the first section. Next, a new calibration
Starzewski (15). The author proposes micro-macro laws method adapted to the simulation of a perfectly homo-
for some typical ordered lattice configurations. In the geneous, isotropic, elastic material with 3D discrete el-
last paragraph (8 6.3) dedicated to the periodic random ements bonded by beams is introduced in three steps.
lattice network, Ostoja-Starzewski proposes numerical
tests to calibrate the model. The analytical approach is
limited to an ordered and homogeneous configuration.
This idea is well synthesized by Potyondy and Cundall

(6,83.1) \_Nho write: _ . 1"Bonded Particle Model", discrete element model used by Po-
"For continuum models, the input properties (such as tyondy and Cundall

2

e the discrete element scale and its elementary inter-
action with its neighborsThis scale will be called
the "microscopic scale".

1. The first step is the geometrical analysis of the ini-
tial domain configuration, presented in three parts.




homogeneity: Voids inside the discrete material
are minimized thanks to a compaction algo-
rithm. A method is developed to ensure the
validity of the sphere packing with appropri-
ate control criteria.

isotropy: An original and simple method to define
and quantify the geometrical isotropy is pre-
sented.

fineness: A solution to define the micro-scale and
macro-scale ratio (the critical number of dis-
crete elements number that allows the emer-
gence of stable geometrical properties) is dis-
cussed.

Figure 1: The cohesive beam bond

2. Then the influence of the beam parameters on the

macroscopic behaviors is studied by quasi-static

simulations. A micro-macro tendency is used to

develop an original calibration method for the elas-

tic parameters (macroscopic Young’'s modulus and F (01, ?1 7; Z) and F, (02, X—; 72> Z) are oriented

Poisson’s ratio). N /,
3. The same methodology is used for the calibration such thaiX; andX, are normal to the beam cross section

of the mass properties, by dynamic simulations. ~ ends. At the initial time, the beams are relaxed (figure
4. The influence of the discrete element size on the 2a). Figure 2b shows the cohesive beam in a loading

calibration results is studied. The independence state induced by the discrete element movement rela-

of the calibrated parameters with regard to the dis- tively to the initial configuration.

crete element size is a property that appears to be

essential when quantitative results are wanted. The analytical model of Euler-Bernoulli beam is well
known (23). In reference (24, 86.2), the author describe
a stithess matrix expressed in the beam local frame for
a finite element application. Figure 2b illustrates the
beam local frame positioning. The center of discrete el-
ement 1 ©O,) is considered as the origin. The "aligned"
2. Cohesive beam bond model configuration, in Whicro-l—o_; = kX_)l = —kX_)z, is con-
sidered as the non-bending state and is taken as ref-
erence. Consequently, the cohesive beam local frame

The overall method is applied to the studied mate-
rial, the silica glass. The calibration method is validated
through a large number of static and dynamic tests.

Figure 1 shows two discrete elements bonded by a
cohesive beam. The cylindrical geometry is chosen be- NN
cause it's dimensional description requires only two in- F (O, X, Y, Z) is oriented such that (see figure 2b):
dependent parameters: a lengghand a radius, 2. The
mechanical properties are also linked to the cohesive
beams: a Young’s modulls, and a Poisson’s ratig,.

These four geometric and mechanical parameters suf- -~ oo o N
fice to describe the cohesive beam. Note that the cohe- X = ——2_andY = X A XpandZ = XA Y
sive beams are mass-less; mass properties are assigned H0102H

only to the discrete elements.

For the sake of clarity figure 2 shows a configuration
in which the discrete elements have been moved away.
The cohesive beam is symbolized by its median line. In the local frameF, the deflections a®; andO, are
Both cohesive bond ends are fixed to the discrete ele-null. Cross section bending rotations @ and O,
ment center©; andO,. The discrete element frames ;.0 (efined, respectively, b = (7%?1) and @, =

—_— >
=X, X2 n ntly, the for nd tor r ion
2To distinguish micro from macro properties, micro paramsesze ( _’ 2) C.O sequently, the force a dto que reactions
denoted by’ and macro parameters b’ acting on discrete elements 1 and 2 are:



(a) Relaxing state

Discrete Element 1

Discrete Element 2

(b) Loading state

Figure 2: Cohesive beam bond configuration
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where:

—_— _— . .
e Fpg1 andFpg; are the beam force reactions acting
on discrete elements 1 and 2.

- —_— > . .
e Tpgp andTpgp are the beam torque reactions acting
on discrete elements 1 and 2.

¢ |, andAl, are the initial beam length and the lon-
gitudinal extension.

° Ei(alx, 1y, 617) and?z)(OZX, B2y, 62,) are the rotations
4

of beam cross section at the poi@g andO, ex-
pressed in the beam local frame.

e S,, 10, andl, are the beam cross section area, po-
lar moment of inertia and moment of inertia along

Y and?Z.
e E, andG, are the Young and shear modulus.

Note that reaction force and torque are expressed in the
beam local framé- 07()7—Z> . The four parameters

that define the micro bearh,, r,,, E, andv, have only
an influence on the elastic behavior of the assembly.

3. Explicit dynamic algorithm

The numerical resolution is based on an explicit in-
tegration scheme well adapted to massive DEM simu-
lation (25) and high velocity phenomena such as frac-
turing or impact simulation. Many explicit schemes can
be used : the Verlet velocity, Runge-Kutta, leapfrog or
gear's method. .. (26, 813). In reference (25), the au-
thors have compared these algorithtimsterms of ac-
curacy, stability and CPUfgciency'". It appears that all
of them give approximately the samgieiency.

Velocity Verlet scheme is chosen for its simplicity .
Discrete element position and velocity are estimated by:

2
o+ d) = pO + At + SO (6)
e+ dy = 5 + 5 (B + B+ dy)  (6)

where :

e tis the current time andt is the integration time
step.



e p(t), p(t) andp(t) is the discrete element linear po-
sition, velocity and acceleration.

The discrete element orientations are described by
guaternions, noted(t), that allow an #iciency way to
compute the rotation of the local frames associated with
discrete elements (27, 82.5). Quaternion is linked to the
angular velocity with the following equality (26, §10.5):

(7)

Whered(t) is the angular velocity of a discrete element.
The velocity Verlet scheme is also applied to quaternion
q(t), with:

) = 56() a()

(8)

q(t+db) = q(t) + %t (G(1) + g(t + d)) (9)

To prevenig(t) numerical drift, the quaternion must be
normalized at each time step. Algorithm 1 details the
encapsulation of Verlet velocity in an explicit dynamic
resolution. Note that this numerical scheme is not well-
adapted to quasi-static simulation. Special care, de-
scribed later in this paper, will be taken with this kind
of test.

2
Qe+ ) = ) + e + o)

Algorithm 1 Explicit dynamic resolution

Require: B(0) B(0) £(0) q(0) 4(0) 4(0)
t<0
for all iterationn do
for all discrete elementdo

pi(t + dt) « velocity Verlet scheme (eq. 5)
ff(t + dt) « Sum of force acting on
pi(t + dt) < Newton second law
pi(t + dt) « velocity Verlet scheme (eq. 6)

qgi(t + dt) « Velocity Verlet scheme (eg. 8)
qi(t + dt) « Normalization
7 (t + dt) « Sum of torque acting on
gi(t + dt) «— Angular momentum law
Gi(t + dt) « Velocity Verlet scheme (eq. 9)
end for
te—t+dt
end for

4. Geometrical properties of the initial discrete do-
main

The initial discrete domain geometry must be in ac-
cordance with the structural properties of the simulated
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material. In the case of the perfectly elastic solid, the
main properties are homogeneity and isotropy. The
geometrical discrete domain configuration impacts the
mechanical behavior at the macroscopic scale. In ref.
(11, 12) the authors have observed that ordered arrange-
ments promote anisotropic phenoma such as preferred
crack paths or the non-uniform propagation of elastic
waves.

In the case of the spherical discrete elements, artifi-
cial voids are generated between discrete elements in-
side the material. At this scale, the discrete material is
not homogeneous. To reduce undesirable voids, the dis-
crete domain must be initially compacted.

This subsection first discusses a method that ensures
and verifies the geometrical homogeneity and isotropy.
Then, the influence of the discrete domain refining is
studied.

4.1. Homogeneity

To decrease the artificial voids between the discrete
elements, various packing processes can be used, for
example, dynamic methods such as iterative growth al-
gorithm (28) or isotropic compression (29) or geometric
algorithm (30). In this study, the discrete domain is gen-
erated following a dynamic custom recipe. The figure 3
shows the initial configuration. The discrete elements
are placed along a plane-parallel grid. an uniform dis-
persion law, detailed later in this section, is applied to
discrete element radii. The compaction simulation con-
sist of :

e applying an horizontal sinusoidal movement to the
"Shear Wall set.

e applying a vertical pressure t®fessure Wallset.

e confining the discrete domain in a given volume
thanks to the Repulsive Wallswhich apply an
elastic repulsion law.

For an identical or small dispersion radius, the sphere
packing should be similar to a "Random Close Packing"
(RCP) as described in (31). A first step to validate the
initial discrete domain is to check its conformity with
RCP definition. The domain is considered as correctly
compacted, if the sphere packing gives a volume frac-
tion value around 0.636 (32) and a cardinal number
value around 6 (33). However, these two values do not
ensure that the packing is geometrically isotropic.

3Average number of contact per discrete element.



Pressure

Pressure Wall

AN
Shear Wall displacement

Figure 3: Shear compaction method

Figure 4: Platonic solid (Geode) used as a reference ge-

ometry to classify the contact orientation
4.2. Isotropy

The definition of geometrical isotropy must be clar-
ified before proposing a criterion. Cambou (34, Intro-  To illustrate this method, the influence of the parti-
duction, 8§3.6) defines the geometric anisotropy as the cle size distribution on isotropy is studied. It is known
distribution of contact directions. If this distributios i ~ from literature (31) that to prevent an ordered packing
perfectly homogeneous, the domain is considered as ge-configuration, a dispersion (notefimust be applied on
ometrically isotropic. To summarize, an assertion could discrete elements radius. In this study, the dispergion
be formulated asthe geometrical isotropy is a neces- is uniform and is defined as the dispersion range :
sary condition to ensure the mechanical isotropy of the
simulated materialTo "measure" the geometrical orga- K= Rmax: Rmin
nization of granular material, the authors in (35, §1.2.2) R
have exploited a mathematical tool called the "fabric
tensor". However, this tool cannot be used to deter-
mine the isotropy in a simple way (36). A more intu-
itive method based on a simple geometric computation
and statistical analysis is proposed. It is an extension
to 3D space of classical 2D graphs that classify contact
into a direction subset (for example references (36) and
(20)).

Contacts are grouped into a subset depending on their
orientation in 3D space. All the members in a set have
a quite similar spatial orientation. To group contacts

in orientation sets, a platonic solid (a "geode") of 320 Figures 6a and 6b show the 3D histograms used to

equal faces is built. Each contact is placed at the geodeClualify the observed level of isotropy. From these fig-

center, and added to the corresponding intersected face - ) . : .
group (see figure 4). The result is a kind of 3D his- ures, it is clear that the radius dispersion vatugghly

. ; . . influences the isotropy level. To quantify this level, it
togram in which each class maps an orientation subset. Ry 9 y

. . i : . is proposed to compute the mean squafietince be-
(a sort of discretized solid angle); any class weight gives o
: . : " tween observed frequencies in geode cefifsgnd the
the density of contact orientations that matches the solid = . )
. : . - uniform frequency (IN) :
angle. For a low dispersion of class weights, the dis-
crete domain is considered as geometrically isotropic N (f 1)2
iTN
=1

(10)

whereRmax Rmin andRare the maximum, minimum and
average discrete element radius values.

Figures 5 shows the geometrical arrangement for two
values of the dispersion parameterThe figure illus-
trates the influence of radius dispersion on the geomet-
rical arrangement (figures 5a and 5b) and on the contact
orientation (figures 5¢ and 5d). For a distribution range
k = 0% the packing seems to be perfectly ordered. The
perfect arrangement is strongly anisotropic. In contrast,
a higher dispersion value = 25%) seems to promote
the isotropy.

e=
i

(an homogeneous distribution of contact orientation in (11)
3D space). N



(a) Domain fork = 0% (b) Domain fork = 25%
(discrete element view) (discrete element view)

(c) Domain fork = 0% (d) Domain fork = 25%
(contact view) (contact view)

(@)x = 0%

Figure 5: Geometrical arrangement of a 3D sphere
packing with diferent values ot

Where :

e N is the total number of cells,e, the 320 "geode"
faces.

e fi is the observed frequency of the cgli.e, the
ratio between the number of contact that matches
the solid angle and the total contact number.

The important aspect of this criterion is the asymptotic (b) k = 25%
behavior (see figure 7). Increasing radius dispersion
value x gives an asymptotic constant limit, beginning Figure 6: 3D histograms of the orientation set

from a« value of 15 %. This result is in accordance
with the observation of Luding (37, chapter 5krys-

tallization (...) does not occur for polydisperse packing 020
with wp £ 0.15". In other words, for a dispersion value =)
higher than 15%, an ordered geometrical arrangement x 0157
does not occur within the sphere packing. Thus, a value °
. . . o 0.10¢
of k = 25% is chosen to ensure minimal anisotropy. g
~
4.3. Discrete domain refining % 0.057
The three criteria that drive the domain homogene- 0.00 N S S S
ity and isotropy are the volume fraction, the cardinal 5Rad%3s dligpefgion%g (%3)0 e
number and the mean squardfelience of the contact
orientation packet. Figure 7: Evolution of the mean squardfdiences pa-
This section deals with two questions: rameter of the sampling distribution of the contact ori-

o Do the three criteria converge if the number of dis-  €ntation packet versus radius dispersion
crete element per unit of volume increases ?



e Inthis case, is it possible to define the right number the discrete element mechanical interaction laws. The
of discrete elements that allows the simulation of presented method can be applied to various discrete el-
an homogeneous and isotropic medium ? ement models and applications.

An original method has been presented to quantify
the isotropy of a discrete element set. This method is
based on the classification of bond directions by using a
| platonic solid (geode).

Finally, a ratio of "macroscale over microscale" about
20 has been chosen, from the convergence curves, that
control the geometrical properties of the discrete ele-
ment set.

First, the meaning of refining must be clarified. Refining
consists of increasing the number of discrete elements
per unit of volume. To study the influence of refining
on the three criteria, 22 packing domains of identica
bounding volumé were built. To permit a statistical
processing, 5 packing domains are built for each dis-
crete element number value. Therefore, a total of 110
packing domains were analyzed.
Figures 8a, 8b and 8c show the influence of refining
on the volume fraction, cardinal numbe_r and isotropy. 5. Elastic calibration
These values are extracted from the discrete domains
F’“”t with a dispersjon radius of - 25% (co_rrespond- The previous section introduced a methodology to
ng to the conclusion of the previous segtlop ). Small build an initial compact discrete domain that ensures an
dlffer_e.nces could be_accepted. The criteria could be adequate, homogeneous, isotropic and geometric orga-
classified by order of importance : nization. Then, cohesive beams (see section 2) are intro-
1. Isotropy is considered as the most important. This duced by creating a beam at each contact between two
criterion highly influences the discrete sample me- discrete elements. In further simulations, the contacts
chanical behavior. are not taken in account; only cohesive beam interac-
2. The cardinal number and the volumic fraction are tions between discrete elements are considered.
less important. They allow to check the validity To study the influence of cohesive beam bond pa-
of the compact domain. Smallfierences between rameters on macroscopic elastic behavior, a parametric
the sample values and the RCP values establishedstudy using numerical quasi-static uni-axial tensile test
in the literature are accepted. is used.

The cardinal number converges to a limit value close to _ _ _ o
6.2. For Volume fraction and isotropy slight variations 5.1. Quasi-static tensile test description

are still observed for high number of discrete elements. 5 perfectly homogeneous, isotropic, elastic material

The discrete element number increases with refining. ;o .haracterized by the Young's modulus and the Pois-

A hf'gh refining Iﬁvel fbrlngs down thg computational - gqs vati. For real materials, these parameters are gen-
performances. Therefore, a compromise must be rnadeerally determined by quasi-static tensile tests. These ex-

lc_)etween performance an(_j precision. For f[he ne>_(t Sec'perimental procedures can be also applied to a numeri-
tion, a number of 10 000 discrete elements is considered cal sample

as sufficient for an acceptable level of precision. For this

value, the geometrical anisotropy criterion is lower than _ _

0.0032, the coordination number is higher than 6.2 and >-1-1. From discrete to continuous geometry

the volume fraction around 0.635. 10 000 discrete el-  To compute the macroscopic Young's modulus and
ements in a 3D square domain gives the ratio between Poisson’s ratio, a perfect 3D continuous geometry is as-
the micro-scale and the macro-scale to obtain isotropy Sociated to the compact discrete domain. This perfect
and homogeneity at the macroscale; this ratio is around 9eometry is the bounding shape of the compacted dis-

100003 ~ 215. crete domain. The discrete elements belonging to the
domain boundaries are marked to compute the perfect
4.4. Conclusion geometry dimensions. With the cylinder shape, three

The method presented in this section shows how to diScrete element set are marked (see figure 9):

verify the initial compacted domain against the geomet-

rical criteria. The geometrical criteria do not depend on o the "xMax" and "xMin" set are associated to faces

with normaIT() andj(.

4Bounding volume is defined as the volume of the box of minimal e the "radius” set is associated with the cylinder cir-
size containing the discrete domain. cumference.



0.640 0.10

=0.635

£0.630 %0-08

§0.625 £10.06

50620 . E

58213 6 3 0.04

20.61

5 ) 0.02

> 0.605 4

0-600—5000 o000 15000 20000 25000 5205000 10000 15000 20000 25000 0% 5000 10000 15000 20000 25000

Discrete element number Discrete element number Discrete element number
(a) Volume fraction (b) Cardinal number (c) Isotropy

Figure 8: Evolution of 3 geometrical criteria versus refg(for radius dispersiorn = 25%)

The Perfect cylinder dimensions are computed as :

1 NxMax_> 1 NxMiﬂ_> —
Lm = 2R OG; oG [.X
M i [NxMax ; ' Nxwi Z I]

xMin i—0
(12)
Nradius
Rw = R+ > J(@.V)M((ﬁ?.‘i)z (13)
radius =7
where:

e Ly andRy are the perfect cylinder length and ra-
dius.

e Nyvax Newin and Nragius are the number of dis-  Figure 9: Perfect cylinder associated with a discrete do-

crete elements belonging to "xMax", "xMin" and Main withx = 25%
“radius” sets.

° @). is the position of the discrete element gravity
center.

e Ris the average discrete element radius over the
entire domain.

801 140000

=

130000

5.1.2. Loading

To ensure a quasi-static tensile test, the loading force
acting on the discrete element set "xMin" and "xMax",
are progressively applied (linear ramp) and stabilized. oL Kinetic energy
The sum of forces acting on "xMax" and "xMin" are 0-000 ey 0-030

— 5 . ime (s)
denoted byFxmax and Fxvin. These two forces, acting

along7() for E;J;;andj(for m have equal norms Figure 10: Kinetic and deformation energy during a
and are opposed. To check the quasi-static properties,quasi-static tensile tegtomputed with a time steft =
the kinetic and deformation energies are computed and3.10"’s and a number of iteration i 100 000

stored during the numerical test. Figure 10 confirms that

a progressive loading gives a negligible kinetic energy

and ensures a quasi-static aspect of the simulation.

+ [Deformation energy

JA
Force (N)

— Deformation energy 120000

— Kinetic energy
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Energy (J)
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5.1.3. Young's modulus and Poisson’s ratio computa-
tion
The Young’s modulus and the Poisson’s ratio can be
easily determined for the cylinder sample by using the
material strength analytical formulations:

F/Swm
Ey = —t oMo 14
M= Al (14)
_ ARw/Ry,
"™ = T ALu/ L, (15)
(16)

where:
e Ly,, Ry, andSy, are the initial bounding cylinder
dimensions (respectively: length, radius, and sec-
tion).

e Ey andvy are the macroscopic Young modulus
and Poisson ratio.

e F is the normal force.

The explicit numeric schemes are not well-adapted to

The value of the cohesive beam bond length depends on
the distance between discrete element centers and is not
a free parameter. The three others parameters are free
and must be quantified.

The adimensional cohesive beam radius parameter
notedr, will be preferred to the beam radius. It al-
lows a definition that does not depend on the discrete
element sizes. It is defined as the ratio between the co-
hesive beam radius and the average discrete element ra-
diusR. Note that this value is the same for all the co-
hesive beams; consequently, all the cohesive beam radii
are equal.

5.2.1. Microscopic Poisson’s ratio influence

Figure 11 shows the evolution of the macroscopic
Young’s modulus€y and Poisson’s ratiey for the dif-
ferent microscopic Poisson’s ratip values in the range
[0,1/2]. It is observed that the microscopic Poisson’s
ration v, does not influence the macroscopic Young’s
modulusEy and the macroscopic Poisson’s ratig
significantly.

Equations 3 and 4 show that the microscopic shear
modulusG,, and consequently the microscopic Pois-
son’s ratiov, plays a role in local torsion loading (in

the quasi-static simulation. The system vibrates around a cohesive beam). During a quasi-static tensile test, the

the static solution. To allow a convergence, a pure nu-
merical damping factor is introduced in the numerical

scheme as described by Tchamwa and Wielgosz (38).

This is a decentered explicit integration scheme that al-
low high frequency dissipation. This scheme is very
similar to the Velocity Verlet algorithm. The dissipation
is controlled with a single parameter Only the second
time derivative equality is modified. The equation 6 and
9 become :

dt

Bt +dt) = B) + ¢+ (B + Bt +d)  (17)
q(t+dt)=q(t)+so%t(q(t)+q(t+dt» (18)

The valuep = 1.3 is used to allow a high convergence
rate to the static solution.

5.2. Parametric study

The cohesive beam bond is defined by four parame-
ters:

e two geometrical parameters: lendth and radius
M.
u

e two mechanical parameters: Young’'s moduli)s
and Poisson’s ratie,.
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contribution of the local torsion energy is minor (see fig-
ure 12). Each energy represented on this figure are the
sum of the local elastic energy stored by the cohesive
beams. The total elastic energy is split up into :

Tension energy characterized by the sum of the cohe-
sive beam works of the normal forces.

Bending energy characterized by the sum of the cohe-
sive beam works of the bending torques.

Torsion energy characterized by the sum of the cohe-
sive beam works of the torsion torques.

To summarize, the influence of the microscopic Pois-
son’s ratio is negligible. Consequently, the microscopic
Poisson'’s ratio values can be chosen arbitrarily. For the
rest of the study a value of®is chosen.

5.2.2. Microscopic Young’s modulus influence

Figure 13 shows the evolution of the macroscopic pa-
rameters as a function of microscopic Young modulus
for different values of the microscopic radius ratio. The
next table gives an outline of these evolutions.

Macroscopic| Macroscopic Young’s Macroscopic Poisson’s
parameters modulusEy ratiovy
Functions Em = f1(E,) v = f2(Ey)
Evolution increasing linear constant function
function
Figures 13a 13b
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Figure 13: Microscopic Young’'s modulis, influence on the macroscopic parametegsandyy

5.2.3. Microscopic radius ratio influence

Figure 14 shows the evolution of the macroscopic pa-
rameters as a function of the microscopic radius natio ~
for different values of the microscopic Young’s modu-
lus. The next table gives an outline of these evolutions.

10
= 7270210 0.1715
& —— Macro Young modulus £, <
= 7.265 . . -7joario &
S +--+ Macro Poisson ratia vj, 9
E 7.260 = 0_1705§
3 7.255 g
g 0.1700 &
7250 8
o P
g, ., 016953
>c-’< 7.245 g
]
g 7.940 ()416902
5]
BT 0T 02 03 03 0416

Micro Poisson ratio v,

Macroscopic| Macroscopic Young’s Macroscopic Poisson’s
parameters modulusEy ratiovy
Functions Ey = f3 (rL) v = (rL)
Evolution increasing quadratic decreasing quadratic
function. function
Figures 14a 14b

Figure 11: Influence of, on Ey andvy
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Figure 12: Energy breakdown of total elastic energy

5.3. Calibration method

Section 5.2 has described the influences of the mi-
croscopic parameters, E, andr;, on the macroscopic
parameter&y andvy. These influences will be used
to develop a calibration methodology in two steps: the
calibration of microscopic radius ratio, then the calibra-
tion of microscopic Young’s modulus. Section 5.2.1 has
shown that the influence of the microscopic Poisson’s
ratiov, is negligible. Its value is arbitrarily fixed at®

5.3.1. Microscopic radius ratig, calibration

Section 5.2.2 have shown that the influence of the mi-
croscopic Young's modulus,, is very small on macro-
scopic Poisson ratioy (figure 13b).

The first calibration step considers that the macro-

stored by cohesive beams for the quasi-static tensile testSCopic Poisson’s ratioy does not depend on the mi-

(computed with a time steft = 3.10’s and a number
of iteration it= 100 00Q
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croscopic Young’'s modulug,. A single macroscopic
Poisson’s ratioy value is associated with each micro-
scopic radius ratio,” The figure 15 shows the evolution
of the macroscopic Poisson’s ratig as a function of
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Figure 15: Radius ratig, Talibration for fused silica

the microscopic radius ratig,."This description allows
the deduction of a microscopic radius ratjovélue cor-
responding to a desired-value of the macroscopic Pois
son’s ratiovy. Figure 15 shows an application for the

silica glass material. In this case, a microscopic radius

ratio valueofr;5"°@ ~ 0.71 is found to correspond to
the silica Poisson’s ratio valug€!'®® ~ 0.17.

5.3.2. Microscopic Young modulug Ealibration

Figure 16 shows the evolution of the macroscopic
Young’s modulusEy, as a function of the microscopic
Young’s modulusE, for a radius ratio (evaluated in the
previous section) of,, 5@ = 0.71. This evolution al-
lows the deduction of a microscopic Young’s modulus
value for a desired-value of the macroscopic Young's

~ 10
B 802100 :
S AR T C SRR e
e |
§ 7.0f !
E 6.5| |
S Ejilicr = 269.5 GPa
69 -y = . " L .
=22 23 24 25 26 27 28 29

Micro Y. Mod. E, (Pa) x10"

Figure 16: Microscopic Young modulus, calibration
of fused silica

spond to the silica glass Young’s modulus vaifiic® ~
- 72.5 GPa(see figure 16).

5.4. Study of assembly dependency

To apply the micro beam model to any material ge-
ometry, it must be verified that the calibration results
do not depend on the number of discrete elements in a
given material volume. To check this property, many
discrete samples (with similar bounding dimensions)
were built with an increasing number of discrete ele-
ment (see figures 18). The samples satisfy the criteria
established in section 4. To take into account the vari-
ability of the sample geometry, fourftirent samples

modulus. In the case of silica glass, the microscopic were built with the same discrete element number. The

Young's modulusEs"@ ~ 265 GPais found to corre-
12

figure 17 shows the evolution of the macroscopic pa-



o | Young's Modulus| Poisson’s ratio]
5

1.0 T 0.18
I S 2.5%. | | Euw =725GPa | vm = 0.17 |
= Loog . S ,,T,,d,:,—,—}L:::I:::::f::::}::ffff,,, 0.17
€095 JPT’/{ o S Table 1: Macroscopic silica glass elastic values
= ool 2 | Young’s Modulus| Poisson’s ratio] Radius ratio]
"g o «— Macro Y. Mod. E)/ 0.15 = =
E o « -+ Macro P. ratio v, " | EH = ZGSGPa | Vﬂ = 03 | rﬂ = 071 |
b 0.85 o
Q

e < . . _ye .
é = Table 2: Microscopic silica glass elastic values

0.70,
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Discrete element number

the torsion test and is less than seven percent. These er-
rors are considered acceptable. The causes are multiple
and are inherent to the random discrete element posi-
tioning: imperfect loading and imprecise measurement
of boundary geometry.

Figure 17: Evolution of the macroscopic paramefgys
andvy as a function of the discrete element number.

rametersEy andyy as a function of the discrete ele-
ment number.

It appears that for a number of discrete elementover  The previous section deals with the elastic calibra-
7 500, the macroscopic Young modullig fluctuates  tion. This method allows to the calibration of the three
around 7% and the macroscopic Poisson ratio aroundmicroscopic elastic parameters (Young's modulus, ra-
vm 5%. dius and Poisson'’s ratio) to obtain the elastic behavior

Hentz (7) shown that the Liao calibration methodol- 4t the macroscopic scale. To quantitatively simulate dy-
ogy for the dual spring model (39) gives a dispersion namic phenomena likes cracks or impacts, it is also nec-
around 28% for the Young modulus and 16% for the essary to calibrate the microscopic mass parameters.
Poisson’s ratio. To improve the accuracy, Hentz has  The discrete elements mass parameters (inertia ma-
introduced an energy criterion to reduce the dispersion trix and masses) depend on the discrete element volume
around 12% and 10%. But this criterion is assembly and density. The discrete element geometries are ini-
dependent and must be computed for each sample.  tja|ly determined. Therefore, only the discrete element

The beam cohesive model associated to the com- density can be adjusted_ In the same way as the elas-
paction criteria presented in section 4 allow a better pre- tjc parameters, the microscopic density can hiéedi

6. Dynamic calibration

cision without any re-computation. ent from the macroscopic density to correct the voids
between the discrete elements in a compacted domain.
5.5. Validation tests Therefore, the density will be considered as the only

The previous subsections show a methodology to cal- free parameter.
P 9y A very simple calibration criterion is chosen. This

ibrate the microscopic parameters from the macroscopic ..~ . . :
: : criterion ensures mass equality between the discrete and
elastic parameters values. Tables 1 and 2 summarize the

) - . continuous domains:
results obtained for the silica glass material.

These microscopic elastic parameters are used to omVm
build a cylindrical numeric sample of silica glass. This HEN (19)
sample is submitted to quasi-static tensile, bending and Z V,,
torsion testing, in which the "xMin" discrete element set i=1
is fixed and "xMax" set is loaded. To reproduce a quasi- ]
static aspect, the loads are applied gradually (cf sectionWhere'
5.1.2). e p, andV, are the discrete element density and vol-

Free face displacement and rotation given by the nu- ume.
merical simulations are compared to the results given
by the strength of material theory. Table 3 summarizes e py andVy are the continuous density and volume.
the diferences as a percent between numerical and the- The continuous domain dimensions are computed
oretical results. The higher ftiérence is obtained for as presented in section 5.1.1.

13



(a) 200 (b) 2 000 (c) 20 000
discrete element discrete element discrete element

Figure 18: Snapshot of discrete samples with increasingdise

| I Tensile | Bending | Torsion
Criteria Free face normal displacementFree face tangential deflectignFree face rotatior
Difference 1.20 % 4.16 % 6.13 %

Table 3: Comparison of the numerical and theoretical resattthe quasi-static tensile, bending and torsion tests

80 ‘ ‘ ‘ domain (cf figure 9). The numerical results are com-
701 pared to the analytical results given for the associated
_ 6o continuous domain.
=50 \’ “ ‘HH m ‘ ‘ “H MH The macroscopic characteristics correspond to silica
?40’ glass, with a Young's modulus, Poisson’s ratio, and
& 307 l“ ”WHH'HH” “H“]l“ density equal toEyy = 725 GPa vy = 0.17 and
20 bénding ‘ ‘ | pm = 2201kg/me. The microscopic elastic parameters
107 / ) \,,, : 0.., correspond to those deduced in section 5. The micro-
o'bao 0.005 _0.010 0.015 0.020 scopic density is deduced from the calibration method

Time () based on mass equality between the discrete and the

Figure 19: Energy breakdown of total elastic energy cpntmuous domains. The continuous domalr} dlme_n-
stored by cohesive beams for a complex dynamic test sions are computed by the method presented in section
(computed with a time steft = 3.10’s and a number ) ) ) )
of iteration it = 50 000 For the dynamlg _tensne, beno!mg and torspn t.ests,
the boundary conditions and loadings are : "xMin" fixed
and "xMax" loaded. The force acting on "xMax" is ap-
plied gradually and then suddenly set to 0. This loading
However, this method does not ensure inertia equality. allows an excitation of the transient response of the dis-
This difference is supposed as negligible. This assump- crete domain.
tion is based on: The oscillation periods are computed from a frequen-
cial analysis (FFT) of the average free face position and
angular orientation. The numerical results are compared
to the theoretical results given by the vibration of the
continuous system analytical models (40, §4).

2. the sum of the local torsion energies is negligible For the impact tests an initial velocity ohis applied

. , . . . on the "xMax" face to generate a mechanical shock
in the quasi-static (see figure 12) and dynamic (see o : :

) wave. The "xMin" average velocity o is measured at
figure 19) DEM tests.

each time step. So, it is possible to observe the moment

This section deals with the validation of this hypothe- when the mechanical wave reaches the "xMin" face (see
sis by verifying the calibration method by dynamic ten- figure 20). The mechanical wave celerity is deduced
sile, bending, torsion and impact tests on the discrete from the elapsed time corresponding to the mechanical
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1. a classical strength material hypothesis, i.e., for
beam transverse vibrations, the cross section rota-
tion energies are negligible compared to the trans-
lation energies.



05 ‘ : ‘ 7. Conclusion

pacts mechanical properties is the geometrical isotropy.
An original method, based on geometrical and statistical
analysis, is presented to ensure a good level of isotropy.
A simple fineness criterion is also presented to ensure a
Figure 20: "xMin" and "xMax" face average velocities ~Stable geometrical criterion.
as a function of time A methodology has been presented to obtain the de-
sired value of the Young’'s modulus and the Poisson’s
ratio at the macroscopic scale for a 3D spherical discrete
element bonded by microscopic beams. This calibration
is based on a parametric study of the microscopic and
macroscopic elastic parameters. The deduced curves
can be used as an "abacus" to calibrate the elastic pa-
Max radius rameters easily.

A calibration method for the dynamic parameters has
been presented. The discrete element density is com-
puted to ensure equality between the continuous and the
total discrete domain mass.

The calibration results do not depend on the discrete
element size. This important property validates the in-
terest of the micro beam model and the proposed cali-
bration method.

Numerical samples of silica glass has been calibrated.

Figure 22: Cross section computational improvement  Thjs sample has been tested under tensile, bending, and
torsion quasi-static and dynamic tests. The results show
good agreement with the strength of material theory.

In conclusion, with the proposed methodology, a dis-
wave flight between the "xMin" and "xMax" faces (fig- crete element model for homogeneous and isotropic ma-
ures 21). terials is obtained with good quantitative results. DEM

Table 4 shows the comparisons between the simula-has often been used as a qualitative tool Fo und_erstand
tions and theoretical results. Tensile, torsion and impact complex phenomena such as wear, fracturing or impact.

tests show a very good agreement with the analytical re- | IS Workis afirst step to propose a quantitative numer-
sults. The bending test shows less precision. In fact, the ICal ool that will be able to propose predictive models
error depends on the cross-sectional moment of inertia 107 these classes of problems that have no predictive nu-
computation. In addition, an error in the measurement Merical model presently.

of the radius has a high influence on results. Figure 22

shows the "xMax" discrete sample face. Following the
definition established in section 5.1.1, the sample sec-
tion is the "Max section". However, the right section,
in which internal forces exist, is closer to thefféctive This work is supported by the Conseil Régional
Section". With this new definition of the sample radius, d’Aquitaine and is performed in the framework of the
the error between the numerical and the theoretical re- Etude et Formation en Surfacage Optique (EFESO)
sults for dynamic bending tests is around 1.8 %. At the project.

—2.5¢

0.0— U N S
Tj —0.5 \/ A methodology to verify the initial compact domain
E 1oy . Minaveragovelocityon X | |1 using geometrical criteria : the isotropy, the cardinal
15l - xMax average velocityon X| 1| number, the volume fraction and the fineness has been
§ ook b presented. The most important criterion that further im-

ol ‘ t=1.75le-5 s
OAO%OOOU 0.000005  0.000010  0.000015  0.000020

Time (s)

Effective section Max section

Util radius

8. Acknowledgements

moment, this new definition is too experimental. Its im- The developments carried out during this project
pact on the elastic calibration and the dynamic method have been implemented in the Granoo Project, see
needs to be further explored. httpy/www.granoo.org for details.
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()t~ 38us (b)t~ 7.6 us ()t~ 114 us (d)t~ 152 pus (e)t~19us
Figure 21: Snapshots of mechanical wave propagation
| I Tensile Bending | Torsion | Impact
Criteria Free face normal | Free face tangential Free face rotational| Mechanical wave
oscillation oscillation oscillation celerity
Difference 0.38 % 6.63 % 0.50 % 0.40 %

Table 4: Comparison of the numerical and theoretical redolt the dynamic tensile, bending, torsion and impact
tests
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