
HAL Id: hal-00748657
https://hal.science/hal-00748657

Submitted on 5 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Autonomic Enterprise Service Bus
Denis Morand, Isaac Noé Garcia Garza, Philippe Lalanda

To cite this version:
Denis Morand, Isaac Noé Garcia Garza, Philippe Lalanda. Towards Autonomic Enterprise Service Bus.
MAASC’11 - Workshop on Middleware and Architectures for Autonomic and Sustainable Computing,
May 2011, Paris, France. pp.19-23, �10.1145/2034649.2034652�. �hal-00748657�

https://hal.science/hal-00748657
https://hal.archives-ouvertes.fr

Towards Autonomic Enterprise Service Bus

Denis Morand
Grenoble Univ. / Schneider Electric

220 rue de la chimie

38 000 Grenoble
France

Denis.Morand@imag.fr

Issac Garcia
Grenoble University

220 rue de la chimie

38 000 Grenoble
France

Issac-Noe.Garcia-

Garza@imag.fr

Philippe Lalanda
Grenoble University

220 rue de la chimie

38 000 Grenoble
France

Philippe.Lalanda@imag.fr

ABSTRACT

In this paper, we describe an ongoing work tending to make

autonomic a mediation framework called Cilia. Cilia is an open

source component-based mediation framework initiated by the

LIG/Adele team at Grenoble University and France Telecom.

Cilia has been designed for data and application mediation and is

used in several industrial use cases. This paper presents

approaches that are currently pursued to obtain a self-managed

mediation framework.

Keywords

Enterprise Service Bus, Autonomic.

1. INTRODUCTION
Service-oriented Computing (SOC) has recently emerged in the

software engineering community [1][2][3]. The very purpose of

this reuse-based approach is to build applications through the late

composition of independent software elements, called services.

Services are described and published by service providers; they

are chosen and invoked by service consumers at runtime. This is

achieved within a service-oriented architecture (SOA), providing

the supporting mechanisms.

Service orientation brings in major software qualities. First, it

favors the rapid development of quality software applications. It

also promotes weak coupling between consumers and providers,

reducing dependencies among composition units. Finally, late

binding and substitutability improve adaptability. Since a service

can be chosen or replaced at runtime, it is easier to improve the

way requirements are met.

A number of implementations have been proposed in the last

years. Web Services (www.w3c.org), for instance, represent a

solution of choice for software integration. UPnP (www.upnp.org)

and DPWS (Devices Profile for Web Services) are heavily used in

pervasive applications in order to implement volatile devices.

OSGI (www.osgi.org) and iPOJO (www.ipojo.org) provide

advanced dynamic features to many software systems.

That being said, service-oriented computing also suffers from

important limitations. In particular, it is complex to conceive and

implement an application made of dynamic, heterogeneous

services and required to meet non functional requirements. Doing

so requires deep expertise. Cross-technology applications require

almost unavailable skills. In addition, as of today’s state-of-the-

art, service composition cannot be based only upon service

specifications. Syntactic compatibility does not ensure semantic

compatibility. In practice, service composition is based on

unexpressed assumptions and rules allowing reaching the

expected results. A composition of services has also to reach a set

of pre-defined non functional qualities (like security for instance)

which requires the production of complex, often non flexible

code. In the general case, such code cannot be automatically

generated at composition time.

We believe that without effective solutions for easy and correct

service composition, SOC orientation will be limited to narrow,

very specific domains of applications. In this paper, we present a

mediation tool allowing the effective integration of services. This

tool, based on a domain-specific component model, allows the

creation of mediation chains implementing the necessary non

functional operations when calling a service. It has been

successfully used in several use cases, at France Telecom in

particular. It however appears that the management of such tools

is difficult in the sense that it has to deal with the high volatility of

services. The provisioning of high-level services based on

heterogeneous, distributed and mobile software applications and

hardware devices is a difficult task. Dynamism is a particularly

complex and remains an important issue in service-oriented

computing. This is required as applications evolve with their

execution contexts, when software and hardware components get

modified, or as users change their computing environments or

desires.

Autonomic Computing promises a solution to the aforementioned

problem, by endowing software systems with self-management

capabilities that would minimize or eliminate the need for human

intervention [Joh]. If successfully implemented, autonomic

pervasive applications would inherently feature critical properties

such as safety (including fault-tolerance and security) and self-

adaptation to internal and external changes (including self-

configuration, self-optimization and self-repair). However,

building autonomic properties into pervasive systems remains a

difficult task. Reusable solutions for the development of

Autonomic Management (AM) systems remain rather limited and

generic. There is a stringent need for more specific, readily-usable

frameworks for facilitating the development of AM solutions for

different computing domains

In this paper, we also examine how Cilia can be made autonomic.

The paper is organized as follows. First, background about

Enterprise Service Buses is given. Then, the CILIA component

model and associated runtime framework is presented. The fourth

section is concerned with autonomic extensions brought to Cilia.

More precisely, the notion of state variable is presented through

the definition of a metamodel. The paper ends with concluding

remarks.

2. ENTERPRISE SERVICE BUS
The activity of integrating disparate information sources in a

timely fashion is known under the name of mediation. Mediation

has been historically used to integrate data stored in IT resources

like databases, knowledge bases, file systems, digital libraries or

electronic mail systems [4,5,6]. It is now also used to allow

interoperation between heterogeneous software applications. In

this context, mediation software stands between client

applications and provider applications. Its purpose is to enable a

consumer to easily and properly use a provided service. We use

the term mediation service to refer to software allowing the
integration of service-based applications.

Service mediation implements all the operations that are

necessary to enable the actual communication between a set of

service-based applications. The most common functions to be
provided are the following:

! Communication. The primary purpose of mediation is to

enable applications using different communication protocols

to interoperate. This is implemented by means of protocol

transformations as in a network bridge. This function can also

play the role of a broker, hiding for instance the applications

network addresses

! Syntactic alignment. The purpose of this function is to align

data formats. This can be done between each application or

through an intermediary format. In the latter case, the number

of data transformations to be made is obviously reduced.

! Semantic alignment. The purpose of this function is to align

data semantics. In the absence of recognized and used

standards, applications develop different ontologies to

represent (static and dynamic) knowledge. Automating

ontologies alignment is a major research challenge of the

service community.

! Non-functional properties. The purpose of this function is to

ensure certain quality properties in the application exchanges,

like for instance security or availability.

! Persistency. The purpose here is to keep track of all exchanges

between applications. The mediation layer can provide

logging support for all requests, responses and data.

! Monitoring. The purpose of this function is to collect data for

monitoring systems that verify that the expected quality of

service is being achieved.

! Business logic code. The mediation layer can be used to insert

business logic code, like an access to a database for instance.

Even though this approach can be particularly useful, its use is

rather not recommended. It actually introduces confusion as it

produces an architecture where the business logic code and

technical code are mixed.

Encapsulating such operations in dedicated software is clearly

a good practice. Mediation software provides a single point of

interface to the different applications implied in the

communication. This reduces the number of connections needed

and facilitates change management. Mediation also provides an

isolation layer from software details and, if appropriately

configurable, permits the quick and cost-effective development of

new services. The mediator layer improves reusability and

evolution of applications. It also permits the transparent addition

of new QoS properties such as security, reliability, etc. Finally, it
leads to the improvement of the scalability of the whole system.

The mediation layer is often achieved through the use of an

EAI (Enterprise Application Integration). EAIs usually appear as

monolithic software based on the hub and spoke pattern. EAIs

have been widely used in the last few years. They now must face

heavy criticism, due to their cost and size. We believe that this is

partly due to the fact that EAI have gone too large, exceeding

their initial functional scope. Also, a single EAI is often used to

integrate all applications of a company. Any new service using
existing applications has to go through such unique EAI.

Figure 1. An ESB provides a run-time environment
mediating Web service applications.

The emergence of service-oriented computing has fostered

architectural evolutions. In particular, Web services aim for

lighter integration solutions and have initiated the definition of

Enterprise Service Buses, or ESB [7]. An ESB is a

communication bus located between clients and Web Services and

hosting potentially distributed mediation operations. Mediation is

frequently organized as mediations chains that transport the

request from the client application to the service provider and the

answer the other way around. The mediation chains can be

decomposed into light weight components called mediators that

implement simple operations. ESsB provide a unique interface to

all applications and eliminate all direct contact between

applications, as all communication is made through the bus.

ESBs raise major design and implementation-related issues.

They have to meet stringent requirements, including:

! Lightweight. The primary demand to be satisfied by an ESB

is to be lean. The purpose of companies we are working with

is to install ESBs on demand to make targeted applications

interoperate. They want to avoid the EAI syndrome where all

possible applications are linked to a single, fat EAI.

! Efficient. This is a major feature for all integration software.

Time needed to align data and to perform non functional

operations should not impact the quality of the overall service

provided by the integration.

! Easy to install and manage. Since ESBs are to be used

frequently, on the creation of a new service, their installation,

configuration, management have to be simple.

! Flexible. Non functional requirements evolve over time.

Then, it should be easy to modify or add mediation operations

in order to adapt at run time the way applications are

integrated.

! Easy to use. Programming and run-time models have to be

simple. Once again, the point is to avoid getting back to nasty

solutions where programming and maintaining mediation

code is so hard that consultancy or dedicated teams, expensive

in both case, is unavoidable.

! Error handling. One of the salient requirements brought by

our industrial partners is the ability to easily deal with errors.

Application integration is subject to many errors

(communication failures, inadequate or non running services,

incorrect answers, etc.). An important part of integration code

is actually dedicated to error handling.

Several solutions have been recently proposed. We can

actually distinguish between two architectural approaches. The

first approach is to extend a J2EE server. This solution consists in

developing an ESB on top of an existing J2EE application server

(WebSphere ESB or SpringIntegration for instance). The first

appeal of this approach is obviously to reuse the J2EE

programming model and the servers facilities. The result is

however often very big in size. In addition, the programming

model is not perfectly adapted to mediation. As a remedy,

domain-specific tools like Camel
1
 have been proposed.

A second approach is to develop dedicated tools. Many tools

have been proposed in recent year like Codehaus Mule
2
. A

standard, called JBI for Java Business Integration, has actually

been proposed to structured ESB. JBI is based on the JSR 208 that

standardizes a component-based architecture. Components are

simple objects orchestrated by a controller named Normalized

Message Router. A distinction is made between pure mediation

component (Service Engines) and components used to interact

with other resources (Binding Components). Some open source

tools based on JBI are emerging like Apache ServiceMix
3
 or

ObjectWeb Petals
4
.

But, in all cases, the mediation solutions are very technical and

technology-driven. Mediation chains are hard to build, deploy and

maintain. They are also uneasy to change and to reuse. Most ESBs

mentioned here have been tested by our partner in real-size

industrial use cases and failed to meet the requirements presented

here before. We believe that there is a clear need to focus on

mediation operations, to consider them as first order objects and

to treat them accordingly. Complex, low-level technical details

should be hidden by a mediation tool in order to allow developers

to focus on their business, that is the integration of heterogeneous

applications.

3. CILIA
In this section we present a mediation component model,

called Cilia [8], which addresses the interoperability issues

between heterogeneous data sources (e.g. applications, devices,

etc.) and targeting systems. Cilia is based in a component model

approach which emphasize the reuse and the separation of

concerns. A mediation application in Cilia is a set of component

instances interacting in a loosely coupled way through, but not

limited to, event-based protocols. As with any component based

model, Cilia relies on two main models, the specification model

and the composition model. The specification model is used to

define component type specifications. The composition model

defines the way components instances are combined in application
architecture.

Components are specified at development time. They are made

of some java classes and a Cilia specific XML-based

specification. More precisely, a component includes the following
Java classes:

1
 http://camel.apache.org/

2
 http://mule.mulesource.org/

3
 http://servicemix.org/site/

4
 http://wiki.petals.objectweb.org/

! A scheduler class. The purpose of this constituent is to

synchronize data reception. It intercepts incoming data

(requests), store them and launch their processing. The

processing decision can be time-based, content-based or, any

other condition on relation with the mediation context (e.g.,

waiting all needed data). For instance, a periodic scheduler

triggers the processing with the collected data periodically, a

correlation scheduler waits for all the correlated messages to

trigger the processing, and an immediate scheduler triggers

processing upon data arrival.

! A processor class. The processor performs the mediation

algorithm per se. When notified by the scheduler, it processes

the collected data and passes them to the dispatcher.

StringSplitter is an example of processor that splits the

received data using a regular expression. StringAggregator in

another example that builds a new data concatenating the

received ones.

! A dispatcher class. The dispatcher receives the processed

data from the processor. This constituent decides on the data

destination and triggers their delivery. The dispatcher choice

is a logical destination because of loosely coupled relations

between mediators. The Multicast Dispatcher is an example

where processed data are delivered to all the connected

components. The content-based dispatcher delivers the

processed data to the chosen destination based in the data

content.

Bindings are also defined at development time. They are based
on the two following elements associated with mediators:

! Collector: The collector is the binding constituent which

implements the communication protocol to receive data. The

data could be received from other mediator or from external

communication protocol or application.

! Sender: The sender is the binding constituent which

implements the communication protocol to send the resulting

data. This data could be sent to another mediator, could also

be sent using some standard communication protocols, or sent

to another application. This component is associated to the

dispatcher mediator instance in execution.

A binding specification describes how communication is

established. That is, a binding specifies which collector and

sender are used for the communication between two mediators

and how they need to be configured in order to assure correct

communication. For a binding specification which uses a topic-

based system, the binding should known which collector/sender it

needs to use and how to set-up them with the correct topics when
adding them to the corresponding mediators.

Bindings specifications are independent of mediators logic,

thus mediators could use any binding specification. There are

three binding types. The first binding type describes how to

communicate between two mediators, thus a sender and collector

must respectively be declared for the receiving mediator and the

transmitting mediator. The second binding type is the one that

allows mediators to receive data from an external system, e.g. a

database or through a communication protocol. Therefore, only a

collector is defined. The third binding type, is the one that is used

to deliver data to an external service or application, thus, only a
sender is defined.

Let us now look at a simple example to illustrate these notions.

The purpose of this use case is to implement a “split / aggregate”

pattern which regularly occurs in applications integration. This
pattern is structured as it follows:

! A split phase: a request, sent by an application, is divided into

three requests (potentially more). Each request corresponds to

a call to a web service (exposing an application, a database

…).

! An aggregate phase: the results of the three requests have to

be aggregated to form a single answer. The way results are put

together is domain specific. The answer has then to be

delivered to the initial application.

Figure 2. Split/aggregate use case

The way we deal with this use case is presented in Figure 2.
We actually defined the following mediators:

! A first mediator, called M1 on the figure, gets the initial

request from the client. It has to split the request into three

requests and send them to the next mediators. To do so, we

use available scheduler and dispatcher. The scheduler is very

simple since it simply waits for a single request. The

dispatcher is a bit more complex. It is configured with the

output topics. The processor can be developed or reused. It is

reused if the way the initial request is divided is somehow

standard. For instance, the request can be divided based on

XML).

! M2, M3, M4 are responsible for calling the Web Services and

send the result to the next mediator. Here, schedulers and

dispatchers are very simple (and obviously reused). A

processor can be added to perform mediation operations if

necessary.

! A last mediator, called M5 on the figure, has to aggregate the

information collected by M2, M3 and M4 and form a single

message which will be the client response. Here, the scheduler

is complex. It is reused and configured.

4. AUTONOMIC CILIA
In order to make cilia autonomic [9,10], we identified the

following tasks to be done:

! Identify the internal aspect of Cilia that were to be monitored

by an autonomic manager,

! Capture these aspects at runtime,

! Define a model to store these aspects.

An important point to be understood here is that Cilia is a

framework and that autonomic computing is very much concerned

with application management. So, the purpose of an autonomic

layer for Cilia is to provide the information necessary to conduct

application-specific reasoning (through the implementation of a

MAPE-K loop).

In an enterprise service bus, we actually can distinguish two kinds

of data:

! State variables that can be used to quantify the process

stability over time

! Action variables that can be used to modify the process under

controlled.

The notion of state variable is inspired from work in control

theory. A state variable is a data that quantifies an important

aspect of a supervised process. For instance, it can be the size of a

buffer or the number of running threads in Java. A state variable is

a numeric data that comes with a validity interval that is used to

specify a viability zone for a process. A state variable set is a set

of such variable. It is used to define a viability zone for a process.

This means that when all the variables in the set are all in a well
defined interval, then the process is executing correctly.

The notion of action variables also comes from work in control

theory. An action variable corresponds to a data related to the

supervised process and that can be changed. It can be, for

instance, the size of a buffer. An action variable can be directly

related to a state variable, but it is not mandatory. For instance,

the number of threads can be a state variable and not an action
variable (it cannot be externally modified).

Figure 3 presents the metamodel that has been defined in Cilia
in order to specify the notions of state and action variables.

Figure 3. State and action variables

The following state variables are now captured and stored in
Cilia:

! The propagation Delay. This variable measures the time

needed to traverse a mediation chain in Cilia.

! The transmission delay. This variable measures the time of

communication between two Cilia mediators.

! The processing delay. This variable measures the latency

time in a Cilia mediator.

We also collect global information about mediators and

mediation chains. More precisely, the following pieces of
information are constantly traced in Cilia:

! The number of incoming messages per port and for each

mediator,

! The number of outgoing messages per port and for each

mediator,

! The number of calls to the processor,

! The mean processing time of the processors.

This is illustrated here after by figure 4.

Figure 4. Captured information

These collected data are then used in a “classical” autonomic

loop in order to adapt the mediation chain as indicated. Actions

that can be undergone currently are much related to the way the

Cilia framework is implemented. For instance, the size of

different buffers (storing input and output messages) can be

modified at runtime. Similarly, the number of threads used to
manage messages can be adapted.

5. Conclusion
Cilia is a domain-specific component model dedicated to

mediation. It is built on top of service-oriented technology [3] and

is then adaptable at runtime. It however shows important

management complexity, as any other current Enterprise Service

Bus, and autonomic solutions are much required today to be used
in industry.

In order to make it autonomic, we have defined the notion of

state variables and action variables, inspired from works in control

theory. These variables allow us to follow low level programming

aspects belonging to the Cilia core framework and to adjust then
whenever necessary.

We are now investigating the design and implementation of

higher level autonomic decisions. The point here is to be able to

change the topology of a mediation chain. This means first that a

mediator can be added, removed or replaced. Similarly, new

integration patterns can be inserted in order to form more adapted

mediation chains. Our approach here is to rely on models

expressing reference chains that can be adapted to run time

situations. These models include explicit variability making room
for run time decisions [11].

6. REFERENCES
[1] M. P. Papazoglou and D. Georgakopoulos. Service-Oriented

computing: Introduction. Commununications of the ACM, 46
(10):24–28, October 2003

[2] SECSE team, “Toward service-centric system engineering”,
ICSOC, Trento, Italy, 2003.

[3] C. Escoffier, R. S. Hall, and P. Lalanda. iPOJO: an

Extensible Service-Oriented Component Framework. !"""#

!$%&'$(%)*$(+#Conference on Services Computing (SCC),#

-(.&/#474–481, 2007.

[4] G. Wiederhold, “Mediators in the Architecture of Future

Information Systems,” Computer, vol. 25, no. 3, 1992, pp.
38–49

[5] G. Wiederhold and M. Genesereth, “The Conceptual Basis

for Mediation Services,” IEEE Expert, vol. 12, no. 5, 1997,
pp. 38–47

[6] P. Lalanda, L. Bellissard and R. Balter, “ Asynchronous

Mediation for Integrating Business and operational

Processes,” IEEE Internet Computing, vol. 10, no. 1, 2006,
pp. 56–64

[7] C. Herault, G. Thomas, P. Lalanda, “A service oriented

mediation tool” in Proceedings of the 4th IEEE International

Conference on Services Computing (SCC’07), 2007, Salt

Lake City, USA

[8] Garcia, Pedraza, Debabbi, Lalanda, Hamon, “Towards a

service mediation framework for dynamic applications”,

IEEE APSCC, 6-10 december, 2010, Hangzhou, China

[9] D. M. Kephart, Jeffrey O. et Chess. The vision of autonomic
computing. Computer, 36, 2003.

[10] M. C. Huebscher and J. A. McCann. A survey of autonomic

computing—degrees, models, and applications. ACM

Comput. Surv., 40(3):1–28, 2008.

[11] Yu and Lalanda, “An approach for dynamically building and

managing service-based applications architectures”, IEEE

APSCC, 6-10 december, 2010, Hangzhou, China

