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Abstract   DIBR is fundamental to 3DTV applications because the generation of 
new viewpoints is recurrent. As any tool, DIBR methods are subject to evaluations 
thanks to the assessment of the visual quality of the resulting generated views. 
This assessment task is peculiar because DIBR can be used for different 3DTV 
applications: either in a 2D context (free viewpoint video), or in a 3D context (3D 
displays reproducing stereoscopic vision). Depending on the context, the factors 
affecting the visual experience may differ. This chapter concerns the case of use of 
DIBR in the 2D context. It addresses two particular cases of use, in FTV: visuali-
zation of still images and visualization of video sequences, in the 2D context. 
Through these two cases, the main issues of DIBR are presented, in terms of visu-
al quality assessment. Two experiments are proposed as case studies addressing 
the problematic of this chapter: the first one concerns the assessment of still im-
ages and the second one concerns the video sequences assessment. The two expe-
riments question the reliability of subjective and objective usual tools when as-
sessing the visual quality of synthesized view in a 2D context. 

1.1. Introduction 
 

 3DTV technology has brought out new challenges such as the question of syn-
thesized views evaluation. Indeed, the success of the two main applications re-
ferred to as "3D Video"- namely 3D Television (3DTV) that provides depth to the 
scene, and Free Viewpoint Video (FVV) that enables interactive navigation inside 
the scene ([1]) - relies on their ability to provide an added value (depth, or immer-
sion) coupled with high-quality visual content. Depth-Image-Based-Rendering al-
gorithms are used for virtual view generation, which is required in both applica-
tions. This process induces new types of artifacts. Consequently it impacts on the 
quality, which has to be identified considering various contexts of use. While 
many efforts have been dedicated to visual quality assessment in the last twenty 
years, some issues still remain unsolved in the context of 3DTV. Actually, DIBR 
opens new challenges because it mainly deals with geometric distortions, which 
have been barely addressed so far.  

 
Virtual views synthesized either from decoded and distorted data or from origi-

nal data, need to be assessed. The best assessment tool remains the human judg-
ment as long as the right protocol is used. Subjective quality assessment is still de-
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licate while addressing new type of conditions because one has to define the op-
timal way to get reliable data. Tests are time-consuming and consequently one 
should draw big lines on how to conduct such experiment to save time and ob-
servers. Since DIBR introduces new conditions, the right protocol to assess the 
visual quality with observers is still an unanswered question. The adequate as-
sessment protocol might vary according to the expected answer that researchers 
investigate (impact of compression, DIBR techniques comparison …).  

Objective metrics are meant to predict human judgment and their reliability is 
based on their correlation to subjective assessment results. As, the way to conduct 
the subjective quality assessment protocols is already questionable, the correlation 
between objective quality metrics, that is to say their reliability, in a DIBR context 
is also questionable. 

 
Yet, trustworthy working groups base partially their future specifications, con-

cerning new strategies for 3D video, on the outcome of objective metrics. Consi-
dering the test conditions may rely on usual subjective and objective protocols 
(because of their availability), the outcome of wrong choices could result to a poor 
quality of experience for users. Then, new tests should be carried on to determine 
the reliability of subjective and objective quality assessment tools in order to ex-
ploit their results for the best. 

 
This chapter is organized as follows: first, Section 1.2 refers to the new chal-

lenges related to DIBR process. Section 1.3 gives an overview of two experiments 
we propose to evaluate the suitability of usual subjective assessment methods and 
the reliability of the usual objective metrics. Section 1.4 presents the results of the 
first experiment, concerning the evaluation of still images. Section 1.5 presents the 
results of the first experiment, concerning the evaluation of video sequences. Sec-
tion 1.6 addresses the new trends regarding the assessment of synthesized views. 
Finally, Section 1.7 concludes the chapter. 

 
 

1.2. New challenges in the DIBR context in terms of quality assessment 
 

1.2.1. Sources of distortions 
 

The major issue in DIBR consists in filling in the disoccluded regions of the 
novel viewpoint: when generating a novel viewpoint, regions that were not visible 
in the former viewpoint, become visible in the novel viewpoint [2]. However, the 
appropriate color information related to these discovered regions is often un-
known. Inpainting methods that are either extrapolation or interpolation tech-
niques, are meant to fill the disoccluded regions. However, distortions from in-
painting are specific and dependant on a given hole-filling technique, as observed 
in [3].  
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Another noticeable problem refers to the rounding of pixel positions when pro-
jecting the color information in the target viewpoint (3D warping process): the 
pixels mapped in the target viewpoint may not locate at an integer position. In this 
case the position is either rounded to the nearest integer or interpolated. 

Finally, another source of distortion relies on the depth map uncertainties. Er-
rors in depth maps estimation cause visual distortion in the synthesized views be-
cause the color pixels are not correctly mapped. As well, the problem is similar 
when depth maps suffer important quantization from compression methods [4]. 
 

1.2.2. Examples of distortions 
 

In this section, typical DIBR artifacts are described. As explained above, the 
sources of distortions are various and their visual effect on the synthesized views 
are perceptible as in the spatial domain as in the temporal domain. In most of the 
cases, these artifacts are located around large depth discontinuities, but they are 
more noticeable in case of high texture contrast between background and fore-
ground.  

 
Object shifting: a region may be slightly translated or resized, depending on the 

chosen extrapolation method (if the method chooses to assign the background val-
ues to the missing areas, object may be resized), or on the encoding method 
(blocking artifacts in depth data result in object shifting in synthesis). Figure 
1Erreur ! Source du renvoi introuvable. depicts this type of artifact.  

 
 
 
 
 
 
 

a b 

Figure 1: Shifting/Resizing artifacts. The shape of the 
leaves, in this figure, is slightly modified (thinner or bigger). 
The vase is also moved to the right. 
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Blurry regions: This may be due to the inpainting method used to fill the dis-

occcluded areas. It is obvious around the background/foreground transitions. 
These remarks are confirmed on Figure 2 around the disoccluded areas. 

 

 
 
 
 
Incorrect rendering of textured areas: inpainting methods can fail in filling 

complex textured areas. To overcome these limitations, a hole filling approach 
based on patch-based texture synthesis is proposed in [5].  

 
Flickering: when errors occur randomly in depth data along the sequence, pix-

els are wrongly projected: some pixels suffer slight changes of depth, which ap-
pears as flickers in the resulting synthesized pixels. To avoid this methods such as 
[6] propose to acquire background knowledge along the sequence and to conse-
quently improve the synthesis process. 

 
Tiny distortions: in synthesized sequences, a large number of tiny geometric 

distortions and illumination differences are temporally constant and perceptually 
invisible. Due to the rounding decimal point problem mentioned in Section 1.2.1 
and to depth inaccuracy, slight errors may occur when affecting a color value to a 
pixel in the target viewpoint. This leads to tiny illumination errors that may not be 
perceptible to human. However, pixel-based metrics may penalize these distorted 
zones. 

a b 

Figure 2: Blurring artifacts ( Book Arriv-
al). a: original frame. b: synthesized frame. 
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When encoding either depth data or color sequences before performing the syn-

thesis, compression-related artifacts are combined with synthesis artifacts. Arti-
facts from data compression are generally spread within the whole image, while 
artifacts inherent to the synthesis process are mainly located around the disoc-
cluded areas. The combination of both type of distortion, depending on the com-
pression method, relatively affects the synthesized view. Indeed, most of the used 
compression methods are 2D video codecs inspired, and are thus optimized for 
human perception of color. As a result, artifacts occurring especially in depth data 
induce severe distortions in the synthesized views. In the following, a few exam-
ples of such distortions are presented. 

 
Blocking artifacts: this occurs when the compression method induces blocking ar-
tifacts in depth data. In the synthesized views, whole blocks of color image seem 
to be translated. Figure 3 illustrates the distortion. 
 

 
 
 

 
 
 

a b 

Figure 3: Blocking artifacts from depth data compression result in distorted syn-
thesized views (Breakdancers). a: Original depth frame (up) and color original 

frame (bottom). b: Distorted depth frame (up), synthesized view (bottom). 
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Ringing artifacts: when ringing artifacts occur in depth data around strong discon-
tinuities, objects’ edges appear distorted in the synthesized view. Figure 4 depicts 
this artifact. 
 

 

 
 
 
 
 

1.2.3. The peculiar task of assessing the synthesized view 
 
The evaluation of DIBR systems is a difficult task because depending on the 

application (FTV or 3DTV), the type of evaluation differs. Not the same factors 
are involved in the two applications. The main difference between the two appli-
cations is the stereopsis phenomenon (fusion of left and right views in human vis-
ual system). This is used by 3DTV and this reproduces vision in relief. This in-
cludes psycho physiological mechanisms whose understanding is not complete so 
far. A FTV application does not have to be used in a 3D context. FTV can be ap-
plied in a 2D context. Consequently, the quality assessments protocols differ and 
address the quality of the synthesized view in two different contexts. It is obvious 
that stereoscopic impairments (such as cardboard effect, crosstalk, etc. as de-
scribed in [7] and [8]), which occur in stereoscopic conditions, are not assessed in 
2D conditions. As well, distortions detected in 2D conditions may not be percepti-
ble in a 3D context. 

a b 

Figure 4: Ringing artifacts in depth data lead to distortions in the synthesized views. a: Original 
depth frame (up) and original color frame (bottom). b: Distorted depth frame (up) and synthesized 
frame (bottom). 
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Finally, artifacts, in DIBR, are mainly geometric distortions. These distortions 
are different from those commonly encountered in video compression, and as-
sessed by usual evaluation methods: most video coding standards rely on DCT, 
and the resulting artifacts are specific (some of them are described in [9]). These 
artifacts are often scattered in the whole image, although DIBR related artifacts 
are mostly located around the disoccluded regions. Yet, most of the usual objec-
tive quality metrics were initially created to address usual specific distortions and 
may be unsuitable to the problem of DIBR evaluation. This will be discussed in 
Section 1.3. 

Another aspect concerns the need for non-reference quality metrics. In particu-
lar cases of use, like FTV, references are unavailable because the generated view-
point is virtual. In other words, there is no ground truth allowing a full comparison 
with the distorted view.  

The next section addresses two case studies that question the validity of subjec-
tive and objective quality assessment methods for the evaluation of synthesized 
view in 2D conditions. 

 
 

1.3. Two case studies to question the evaluation of synthesized view 
 
In this section, we first present the aim of the studies, and the experimental 

material. Then we present the two subjective assessment methods whose suitabili-
ty has been questioned in our experiments. We also justify the choice of these two 
methods. Finally we present a selection of the most commonly used metrics that 
also were included in our experiments. 

 
1.3.1. Goal of the studies 

 
We conducted two different studies. The first one addresses the evaluation of 

still images. An obviously important scenario to consider is the case in which the 
user switches the video to the “pause” mode. This case should be treated because 
it is likely to occur and may be subject to meticulous observation. The second 
study addresses the evaluation of video sequences.   

The two studies question the reliability of subjective and objective assessment 
methods when evaluating the quality of the synthesized view. Most of the pro-
posed metrics for assessing 3D media are inspired from 2D quality metrics. Previ-
ous studies ([10], [11]) already considered the reliability of usual objective met-
rics. However, often, experimental protocols involve depth and/or color 
compression, different 3D displays, and different 3D representations (2D+Z, 
stereoscopic video, MVD, etc...). In these cases, the quality scores obtained from 
subjective assessments are compared to the quality scores obtained through objec-
tive measurements, in order to find a correlation and validate the objective metric. 
The experimental protocols often assess at the same time both compression distor-
tion and synthesis distortion, without distinction. This is problematic because there 
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may be a combination of artifacts from various sources (compression and synthe-
sis) whose effects are not clearly specified and assessed. The studies presented in 
this chapter concerns only synthesized views, observed in 2D conditions. 

The rest of this section present the experimental material, the subjective me-
thodologies and the objective quality metrics used in the studies. 

 
1.3.2. Experimental material 

 
Three different multiview plus depth (MVD) sequences are used in the two 

studies. The sequences are Book Arrival (1024x768, 16 cameras with 6.5cm spac-
ing), Lovebird1 (1024x768, 12 cameras with 3.5 cm spacing) and Newspaper 
(1024x768, 9 cameras with 5 cm spacing).  

Seven DIBR algorithms processed the three sequences to generate, for each se-
quence, four different viewpoints.  

 
These seven DIBR algorithms are labeled from A1 to A7: 
- A1: based on Fehn [12], where the depth map is pre-processed by a low-

pass filter. Borders are cropped, and then an interpolation is processed to 
reach the original size. 

- A2: based on Fehn [12]. Borders are inpainted by the method proposed by 
Telea [13]. 

- A3: Tanimoto et al. [14], it is the recently adopted reference software for 
the experiments in the 3D Video group of MPEG. 

- A4: Müller et al. [15], proposed a hole filling method aided by depth in-
formation. 

- A5: Ndjiki-Nya et al. [5], the hole filling method is a patch-based texture 
synthesis. 

- A6: Köppel et al. [6], uses depth temporal information to improve the syn-
thesis in the disoccluded areas. 

- A7: corresponds to the unfilled sequences (i.e. with holes). 
The test was conducted in an ITU conforming test environment.For the subjec-

tive assessments, the stimuli were displayed on a TVLogic LVM401W, and ac-
cording to ITU-T BT.500 [16]. In the following, the subjective methodologies are 
first presented, and then the objective metrics are addressed. 
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Objective measurements were obtained by using MetriX MuX Visual Quality 
Assessment Package [17].  

 
 

 

A1 

Original depth Original image Warped depth map 

A7 A5 

A3 A4 

A6 

Figure 5: Synthesized frames ("Lovebird1" sequence) 
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1.3.3. Subjective assessment methodologies 
 
 Subjective tests are used to measure image or video quality. The International 

Telecommunications Union (ITU) [18] is in charge for the recommendations of 
the most commonly used subjective assessment methods. Several methods exist 
but there is no 3D-dedicated protocol. The available protocols both have their 
drawbacks and advantages and they are usually chosen according to the desired 
task. This depends on the distortion and on the type of evaluation [19].  They dif-
fer according to the type of pattern presentation (single-stimulus, double-stimulus, 
multi-stimulus), the type of voting (quality, impairment, or preference), the voting 
scale (discrete or continuous), the number of rating points or categories. Erreur ! 
Source du renvoi introuvable. depicts the proposed classification of subjective 
methods in [19]. The abbreviations of the methods classified in Erreur ! Source 
du renvoi introuvable. are referenced in Table 1. 

 

 
Figure 6: Commonly used subjective test methods, as depicted in [19] 
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Table 1: Overview of subjective test methods 
Abbrev. Full meaning Ref. 
DSIS Double Stimulus Impairment Scale [16] 
DSQS Double Stimulus Quality Scale [16] 
SSNCS Single Stimulus Numerical Categorical Scale [16] 
SSCQE Single Stimulus Continuous Quality Evaluation [16] 
SDSCE Simultaneous Double Stimulus for Continuous Evaluation [16] 
ACR Absolute Category Rating [18] 
ACR-HR Absolute Category Rating with Hidden Reference removal [18] 
DCR Degradation Category Rating [18] 
PC Pair Comparison [18] 
SAMVIQ Subjective assessment Methodology for Video Quality [18] 
 

In the absence of any better 3D-adapted subjective quality assessment metho-
dologies, the evaluation of synthesized views is mostly obtained through 2D vali-
dated assessment protocols. The aim of our two experiments is to question the sui-
tability of a selection of subjective quality assessment methods. This selection is 
based on the comparisons of methods in the literature. Considering the aim of the 
two experiments that we proposed, the choice of a subjective quality assessment 
method should relies on consideration of reliability, accuracy, efficiency and easi-
ness of implementation of the available methods. 

Brotherton et al. [20] investigated the suitability of ACR and SAMVIQ me-
thods when assessing 2D media. The study shown that ACR method allowed more 
test sequences (at least twice) to be presented for assessment compared to the 
SAMVIQ method. ACR method also proved to be reliable in the test conditions. 
Rouse et al. also studied the tradeoff of these two methods in [21], in the context 
of high definition still images and video sequences. They concluded that the suita-
bility of the two methods may depend on specific applications.   

A study was conducted by Huynh-Thu et al. in [22], and proposed to compare 
different methods according to their different voting scales (5-point discrete, 9-
point discrete, 5-point continuous, 11-point continuous scales). The tests were car-
ried in the context of high-definition video. The results shown that ACR method 
produced reliable subjective results, even across different scales.  

Considering the classification of the methods, we selected the single-stimulus 
pattern presentation, ACR-HR (with 5 quality categories) and the double-stimulus 
pattern presentation PC for its accuracy. They are described and commented in the 
following. 

 
Absolute categorical rating with Hidden Reference Removal (ACR-HR) 

methodology consists in presenting test objects (i.e. images or sequences) to ob-
servers one at a time. The objects are rated independently on category scale. The 
reference version of each object must be included in the test procedure and rated 
as any other stimulus. This explains the used term of ‘hidden reference”. From the 
scores obtained, a differential score (DMOS for Differential Mean Opinion Score) 
is computed between the mean opinion scores (MOS) of each test object and its 
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associated hidden reference. ITU recommends the 5-level quality scale depicted in 
Table 2.  
 

Table 2 ACR-HR quality scale 
5 Excellent 
4 Good 
3 Fair 
2 Poor 
1 Bad 

 
ACR-HR requires many observers to minimize the contextual effects (previ-

ously presented stimuli influence the observer opinion, i.e. presentation order in-
fluences opinion ratings). Accuracy increases with the number of participants.  

 
Paired comparisons (PC) methodology is an assessment protocol in which 

stimuli are presented by pairs to the observers: it is a double-stimulus method. The 
latter select the one out of the pair that best satisfies the specified judgment crite-
rion, i.e. image quality.  

The results of a paired comparisons test are recorded in a matrix: each element 
corresponds to the frequencies a stimulus is preferred over another stimulus. These 
data are then converted to scale values using Thurstone-Mosteller's or Bradley-
Terry's model [23]. It leads to a hypothetical perceptual continuum.  

The presented experiments follow Thurstone-Mosteller's model where naive 
observers were asked to choose the preferred item from one pair. Although the 
method is known to be highly accurate, it is time consuming. 

 
The differences between ACR-HR and PC are of different types. First, with 

ACR-HR, even though they may be included in the stimuli, the reference se-
quences are not identified as such by the observers. Observers provide an absolute 
vote without any reference. In PC, observers only need to indicate their preference 
out of a pair of stimuli. Then the requested task is different: while observers assess 
the quality of the stimuli in ACR-HR, they just provide their preferences in PC. 

 
The quality scale is another issue. ACR-HR scores provide knowledge on the 

perceived quality level of the stimuli. However the voting scale is coarse, and be-
cause of the single stimulus presentation, observers cannot remember previous 
stimuli and precisely evaluate small impairments. PC scores (i.e. “preference ma-
trices”) are scaled to a hypothetical perceptual continuum. However, it does not 
provide knowledge on the quality level of the stimuli, but on the stimuli order of 
preferences. Moreover, PC is very well suited for small impairments, thanks to the 
fact that only two conditions are compared to each other. For these reasons, PC 
tests are often coupled with ACR-HR tests.  
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Another aspect concerns the complexity and the feasibility of the test: PC is 
simple because observers only need to provide preference in each double stimulus. 
However, when the number of stimuli increase, the test becomes hardly feasible as 

the number of comparisons grows as �
������

�
� with N, the number of stimuli. In the 

case of video sequences assessment, a double-stimulus method such as PC in-
volves the use of either one split-screen environment (or two full screens), with 
the risk of distracting the observer (as explained in [24]), or one screen but se-
quences are displayed one after the other, which increases the length of the test. 
On the other hand, the simplicity of ACR-HR allows the assessment of a larger 
number of stimuli. However, the results of this assessment are reliable as long as 
the group of participants is large enough.  

 
1.3.4. Objective quality metrics 

 
The experiments that are proposed in this chapter require the use of objective 

quality metrics. The choice of the objective metrics used in these experiments is 
motivated by their availability. This section presents an overview of the objective 
metrics used in these experiments. Still-images and video sequences metrics are 
presented. 

Objective metrics are meant to predict human perception of quality of images 
and thus avoid spending time in subjective quality assessment tests. They are then 
supposed to be highly correlated with human opinion. In the absence of approved 
metrics for assessing synthesized views, most of the studies rely on the use of 2D 
validated metrics, or on adaptations of such. There are different types of objective 
metrics, depending on their requirement for reference images. The objective me-
trics can be classified in three different categories according to the availability of 
the reference image: full reference methods (FR), reduced reference methods 
(RR), no-reference methods (NR). FR methods require references images. Most of 
the existing metrics rely on FR methods. RR methods require only elements of the 
reference images. NR methods do not require reference images. NR methods 
mostly rely on Human Visual System models to predict human opinion of the 
quality. Also, a prior knowledge on the expected artifacts highly improves the de-
sign of such methods. 

As proposed in [25], we use a classification relying on tools used in the me-
thods. Table 1Table 3 lists a selection of commonly used objective metrics and 
Figure 7 depicts the proposed classification. 

Table 3 Overview of commonly used objective metrics 
 Objective metric Abbrev. 
Signal-based  Peak Signal to Noise Ratio PSNR 

Perceptual-like Universal Quality Index UQI 
Information Fidelity Criterion IFC 
Video Quality Metric VQM 
Perceptual Video Quality Measure  PVQM 
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Structural-based Single-scale Structural SIMilarity SSIM 
Multi-scale SSIM MSSIM 
Video Structural Similarity Measure  V-SSIM 
Motion-based Video Integrity Evaluation MOVIE 

HVS-based PSNR- Human Visual System PSNR-HVS 
PSNR-Human Visual System Masking model PSNR-HVSM 
Visual Signal to Noise Ratio VSNR 
Weighted Signal to Noise Ratio WSNR 
Visual Information Fidelity VIF 
Moving Pictures Quality Metric MPQM 

 
 
 

 
Figure 7: Overview of quality metrics 

 
Signal-Based methods: 

 
PSNR is a widely used method because of its simplicity. PSNR belongs 

to the signal-based methods category. It measures the signal fidelity of a distorted 
image compared to a reference. It is based on the measure of the Mean Squared 
Error (MSE). Because of the pixel-based approach of such a method, the amount 
of distorted pixels is depicted, but the perceptual quality is not: PSNR does not 
take into account the visual masking phenomenon. Thus, even if an error is not 
perceptible, it contributes to the decrease of the quality score. Indeed, studies 
(such as [26]) showed that in the case of synthesized views, PSNR is not reliable, 
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especially when comparing two images with low PSNR scores. PSNR cannot be 
used in very different scenario as explained in [27]. 
 
Perceptual-like methods: 
 

Considering that signal-based methods are unable to correctly predict the 
perceptual quality, perceptual-like metrics have been introduced. They make use 
of perceptual criterion such as luminance or contrast distortion.  
UQI [28] is a perceptual-like metric. The quality score is the product of the corre-
lation between the original and the degraded image, a term defining the luminance 
distortion, a term defining the contrast distortion. The quality score is computed 
within a sliding window and the final score is defined as the average of all local 
scores. 
IFC [29] uses a distortion model to evaluate the information shared between the 
reference image and the degraded image. IFC indicates the image fidelity rather 
than the distortion. IFC is based on the hypothesis that, given a source channel and 
a distortion channel, an image is made of multiple independently distorted sub-
bands. The quality score is the sum of the mutual information between the source 
and the distorted for all the subbands. 
VQM was proposed by Pinson and Wolf in [30]. It is a FR video metric that 
measures perceptual effects of numerous video distortions. It includes a calibra-
tion step (to correct spatial/temporal shift, contrast, and brightness according to 
the reference video sequence), an analysis of perceptual features. VQM score 
combines all the perceptual calculated parameters. VQM method is complex but 
the correlation to subjective scores is good according to [31]. The method is vali-
dated in typical video processing conditions. 
Perceptual Video Quality Measure (PVQM) [32] is meant to detect perceptible 
distortions in video sequences. Different indicators are used. First, an edge-based 
indicator allows the detection of distorted edges in the images. Second, a motion-
based indicator analyses two successive frames. Third, a color-based indicator de-
tects non-saturated colors. Each indicator is pooled separately across the video and 
incorporated in a weighting function to obtain the final score. This method was not 
available so it was not tested in our experiments. 

 
Structural-based methods: 
 

Structural-based methods are also included in the perceptual-like metrics. 
They are based on the assumption that human perception is based on the extrac-
tion of structural information. Thus, they measure the structural information deg-
radation. SSIM [33] was the first method of this category. It is considered as an 
extension of UQI. It combines image structural information: mean, variance, co-
variance of pixels, for a single local patch. The blocksize depends on the viewer 
distance to the screen. However, a low variation of the SSIM measure, can lead to 
an important error of MOS prediction. 
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Then, many improvements to SSIM were proposed, and adaptations to video as-
sessment were introduced. MSSIM is the average SSIM scores of all patches of 
the image. V-SSIM [34] is a FR video quality metric which uses structural distor-
tion as an estimate of perceived visual distortion. At the patch level, SSIM score is 
a weighted function of SSIM of the different component of the image (i.e. lumin-
ance, and chromas). At the frame level, SSIM score is a weighted function of 
patches’ SSIM scores (based on the darkness of the patch). Finally at the sequence 
level, VSSIM score is a weighted function of frames’ SSIM scores (based on the 
motion). The choice of the weights relies on the assumption that dark regions are 
less salient. However, this is questionable because the darkness may depend on the 
used screen.  
MOVIE [35] is a FR video metric that uses several steps before computing the 
quality score. It includes the decomposition of both reference and distorted video 
by using a multi-scale spatio-temporal Gabor filter-bank. A SSIM-like method is 
used for the spatial quality analysis. An optical flow calculation is used for the 
motion analysis. Spatial and temporal quality indicators determine the final score. 

 
Human-Visual-System (HVS)-based methods: 
 

HVS-based methods rely on human visual system modelling from psy-
chophysics experiments. Due to the complexity of the human vision, studies are 
still in progress. HVS-based models are the result of tradeoffs between computa-
tional feasibility and accuracy of the model.  HVS-based models can be classified 
into two categories: neurobiological models and models based on psychophysical 
properties of human vision.  
The models based on neurobiology estimate the actual low-level process in human 
visual system including the eye and optical nerve. However, these models are not 
widely used, because of their complexity [36]. 
Psychophysical HVS-based models are implemented in a sequential process that 
includes luminance masking, color perception analysis, frequency selection, con-
trast sensitivity implementation (based on the contrast sensitivity function CSF 
[37]) and modeling of masking and facilitation effects [38].  
PSNR-HVS [39], based on PSNR and UQI, takes into account the Human Visual 
System (HVS) properties such as its sensitivity to contrast change and to low fre-
quency distortions. In [39], the method proved to be correlated to subjective 
scores, but the performances of PSNR-HVS method are tested on a variety of dis-
tortions specific to 2D image compression which are different from distortions re-
lated to DIBR.  
PSNR-HVSM [40] is based on PSNR but takes into account Contrast Sensitivity 
Function (CSF) and between-coefficient contrast masking of DCT basis functions. 
The performances of the method are validated considering a set of images contain-
ing Gaussian noise or spatially correlated additive Gaussian noise, at different lo-
cations (uniformly through entire image, mostly in regions possessing a high mask-
ing effect or, mostly in regions possessing a low masking effect). 
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VSNR[41] is also a perceptual-like metric: it is based on a visual detection of dis-
tortion criterion, helped by CSF. VSNR metric is sensitive to geometric distortions 
such as spatial shifting and rotations, transformations which are typical in DIBR 
applications. 
WSNR that uses a weighting function adapted to HVS denotes a weighted Signal 
to Noise Ratio, as applied in [42] . It is an improvement of PSNR that that uses a 
CSF-based weighting function. However, although SNR is more accurate by tak-
ing into account perceptual properties, as with PSNR method, the problem re-
mains the accumulation of degradations errors even in non-perceptible areas. 
IFC has been improved by the introduction of a HVS model. The method is called 
VIF[43]. VIFP is a pixel-based version of VIF. It uses wavelet decomposition and 
computes the parameters of the distortion models, which enhance the computa-
tional complexity. In [43], five distortion types are used to validate the perform-
ances of the method (JPEG and JPEG 200 related distortions, white and Gaussian 
noise over the entire image), which are quite different from the DIBR related arte-
facts. 
MPQM [44] uses a HVS model. In particular it takes into account the masking 
phenomenon and the contrast sensitivity. It has high complexity and its correlation 
to subjective scores is varying according to [31]. Since, the method is not availa-
ble it is not tested in our experiments. 
 

Only a few commonly used algorithms (in the 2D context) have been described 
above. Since they are all dedicated to 2D applications, they are optimized to detect 
and penalize specific distortions of 2D image and video compression. As ex-
plained in 1.2, distortions related to DIBR are very different from 2D known arte-
facts. There exist many other algorithms for visual quality assessment that are not 
covered here.  
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1.3.5. Experimental protocols 
 

 
Figure 8: Experimental protocols 

Two experiments were conducted. The first one addresses the evaluation of still 
images. The second study addresses the evaluation of video sequences. Figure 8 
depicts the overview of the two experiments. 

The material for both experiments comes from the same set of synthesized 
views as described in Section 1.3.2. However, in the case of the first experiments, 
on still-images, the test images are “key” frames (“keys” were randomly chosen) 
from the same set of synthesized views, due to the complexity of PC tests when 
number of items increases. That is to say that for each of the three reference se-
quences, only one frame was selected out of each synthesized view viewpoint. 

In both experiments, the suitability of subjective quality assessment methods 
and the reliability of objective metrics are addressed. 

Concerning the subjective tests, two sessions were conducted. The first one ad-
dressed the assessment of the still images. Forty-three naive observers participated 
in this test. The second session addressed the assessment of the video sequences. 
Thirty-two naïve observers participated in this test.  
In the case of video sequences, only ACR-HR test was conducted, but both ACR-
HR and PC were carried for the still-images context. PC test with video sequences 
would have required either two screens, or switching between items. In the case of 
the use of two screens, it involves the risk of missing frames of the tested se-
quences, because one cannot watch simultaneously two different video sequences. 
In the case of the switch, it would have increased considerably the length of the 
test.  

The objective measurements were realized over the 84 synthesized views by 
the means of MetriX MuX Visual Quality Assessment Package [17] software ex-
cept for two metrics: VQM and VSSIM. VQM were available at [45]; VSSIM was 
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implemented by the authors, according to [34]. The reference was the original ac-
quired image. It should be noted that still image quality metrics used in the study 
with still images, are also used to assess the visual video sequences quality by ap-
plying these metrics on each frame separately and averaging the frames scores.  

Table 4 summarizes the experimental framework. The next sections present the 
results of the first experiment assessing the quality of still-images, and then the re-
sults of the second experiment assessing the quality of video sequences.  

 
Table 4 Overview of the experiments 

 Experiment 1(still-images) Experiment 2 (video 
sequences) 

Data Key frames of each synthe-
sized view 

Synthesized video 
sequences 

Subjective 
tests 

Nb. of par-
ticipants 

43 32 

Methods ACR-HR, PC ACR-HR 
Objective measures All available metrics of 

MetriX MuX 
VQM, VSSIM, Still-
image metrics 

 
 

1.4. Results on still images (experiment 1) 
 

1.4.1.  Subjective tests 
 
The seven DIBR algorithms are ranked according to the obtained ACR-HR and 

PC scores, as depicted in Table 5. This table indicates that the rankings obtained 
by both testing method are consistent. For ACR-HR test, the first line gives the 
DMOS scores obtained through the MOS scores. For PC test, the first line gives 
the hypothetical MOS scores obtained through the comparisons. For both tests, the 
second line gives the rankings of the algorithms, obtained through the first line. 

 
Table 5 Rankings of algorithms according to subjective scores 

 A1 A2 A3 A4 A5 A6 A7 
ACR-HR  3.539 3.386 3.145 3.40 3.496 3.32 2.278 
Rank order 1 4 6 3 2 5 7 

PC 1.038 0.508 0.207 0.531 0.936 0.454 -2.055 
Rank order 1 4 6 3 2 5 7 

 
In Table 5, although the algorithms can be ranked from the scaled scores, there 

is no information concerning the statistical significance of the quality difference of 
two stimuli (one more preferred than another one). Then statistical analyses have 
been conducted over the subjective measurements: a student’s t-test has been per-
formed over ACR-HR scores, and over PC scores for each algorithm. This pro-
vides knowledge on the statistical equivalence of the algorithms. Table 6 and Ta-
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ble 7 show the results of the statistical tests over ACR-HR and PC values respec-
tively. In both tables, the number in parentheses indicates the minimum required 
number of observers that allows statistical distinction (VQEG recommends 24 par-
ticipants as a minimum [46], values in bold are higher than 24 in the table). 

 
A first analysis of these two tables indicates that PC method leads to clear-cut 

decisions, compared to ACR-HR method: indeed, the distributions of the algo-
rithms are statistically distinguished with less than 24 participants in 17 cases with 
PC (only 11 cases with ACR-HR). In one case (between A2 and A5), less than 24 
participants are required with PC, and more than 43 participants are required to es-
tablish the statistical difference with ACR-HR. The latter case can be explained by 
the fact that the visual quality of the synthesized images (and thus, some distor-
tions) may seem very similar for non-expert observers. This makes the task more 
delicate for observers. These results indicate that it seems more difficult to assess 
the quality of synthesized views than in other contexts (for instance, quality as-
sessment of images distorted through compression). Indeed, the results with ACR-
HR method, in Table 6, confirm this idea: in most of the cases, more than 24 par-
ticipants (or even more than 43) are required to distinguish the classes (Remember 
that A7 is the synthesis with holes around the disoccluded areas). 

However, as seen with rankings results above, methodologies give consistent 
results: when the distinctions between algorithms are stable, they are the same 
with both methodologies. 

 
Finally, these experiments show that fewer participants are required for a PC 

test than for an ACR-HR test. However, as stated before, PC tests, while efficient, 
are feasible only with a limited number of items to be compared. Another prob-
lem, pointed out by these experiments, concerns the assessment of similar items: 
with both methods, 43 participants were not always sufficient to obtain a stable 
and reliable decision. Results suggest that observers had difficulties assessing the 
different types of artefacts.  

 
Table 6 Results of Student's t-test with ACR-HR results Legend: �: superior, �: 

inferior, O: statistically equivalent. Reading: Line"1" is statistically superior to column "2". Dis-

tinction is stable when "32" observers participate. 

 A1 A2 A3 A4 A5 A6 A7 

A1  �(32) �(<24) �(32) O (>43) �(30) �(<24) 
A2 �(32)  �(<24) O (>43) O (>43) O (>43) �(<24) 
A3 �(<24) �(<24)  �(<24) �(<24) �(<24) �(<24) 
A4 �(32) O(>43) �(<24)  O (>43) O (>43) �(<24) 
A5 O (>43) O (>43) �(<24) O (>43)  �(28) �(<24) 
A6 �(30) O (>43) �(<24) O (>43) �(28)  �(<24) 

A7 �(<24) �(<24) �(<24) �(<24) �(<24) �(<24)  
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Table 7 Results of Student's t-test with PC results. Legend: �: superior, �: infe-

rior, O: statistically equivalent. Reading: Line"1" is statistically superior to column "2". Distinc-

tion is stable when "less than 24" observers participate. 
 A1 A2 A3 A4 A5 A6 A7 

A1  � (<24) �(<24) �(<24) �(<24) �(<24) �(<24) 
A2 �(<24)  �(28) O (<43) �(<24) O (>43) �(<24) 
A3 �(<24) �(28)  �(<24) �(<24) �(<24) �(<24) 
A4 �(<24) O (>43) �(<24)  �(<24) � (>43) �(<24) 
A5 �(<24) �(<24) �(<24) �(<24)  �(<24) �(<24) 
A6 �(<24) O (>43) �(<24) �(>43) �(<24)  �(<24) 

A7 �(<24) �(<24) �(<24) �(<24) �(<24) �(<24)  
 
As a conclusion, this first analysis, involving still images quality assessment, 

reveals that more than 24 participants may be necessary for these types of test.  
PC gives clear-cut decisions, due to the mode of assessment (preference) while 

algorithm’s statistical distinctions with ACR-HR are slightly less accurate. With 
ACR-HR, the task is not easy for the observers because, although each DIBR in-
duces specific artifacts, the impairments among the tested images are small. Thus, 
when evaluating the performances of different DIBR algorithms with this metho-
dology, this aspect should be taken into account. 

However, ACR-HR and PC are complementary: when assessing similar items, 
like in this case study, PC can provide a ranking, while ACR-HR gives the overall 
perceptual quality of the items. 

 
1.4.2. Objective measurements 

 
The results of this subsection concerns the measurements conducted over the 

same selected “key” frames. 
The whole set of objective metrics give the same trends. Table 8 provides correla-
tion coefficients between obtained objective scores. It reveals that they are highly 
correlated. This table shows that the behavior of the tested metrics was the same 
when assessing images containing DIBR related artifacts. Thus, they have the 
same response when assessing DIBR related artifacts. Note the high correlation 
scores between pixel-based and more perceptual-like metrics such as PSNR and 
SSIM (83.9%). 
The first step consists in comparing the objective scores with the subjective scores 
(in section 1.4.1). The consistency between objective and subjective measures is 
evaluated by calculating the correlation coefficients for the whole fitted measured 
points. The coefficients are presented in Table 9.  In the results of our test, none of 
the tested metric reaches 50% of human judgment. This reveals that contrary to 
the received opinion, the objective tested metrics, whose efficiency has been 
proved for the quality assessment of 2D conventional media, do not reliably pre-
dict human appreciation in the case of synthesized views. 
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Since it is argued in [47] that correlation is different from agreement (as illustrated 
in Figure 9), we check the agreement of the tested metrics by comparing the ranks 
affected to the algorithms. Table 10 presents the rankings of the algorithms, ob-
tained from the objective scores. Rankings from subjective scores are mentioned 
for comparison. They present a noticeable difference concerning the ranking order 
of A1: judged as the best algorithm out of the seven by the subjective scores, it is 
ranked as the worst by the whole set of objective metrics. Another comment refers 
to the assessment of A6: often judged as the best algorithm, it is judged as one of 
the worst algorithms through the subjective tests. The ensuing assumption is that 
objective metrics detect and penalize non-annoying artifacts.  

 
Table 8 Correlation coefficients between objective scores in percentage 

 PSNR SSIM MSSIM VSNR VIF  VIFP UQI IFC NQM WSNR PSNR HSVM PSNR  HSV 
PSNR  83.9 79.6 87.3 77.0 70.6 53.6 71.6 95.2 98.2 99.2 99.0 
SSIM 83.9 96.7 93.9 93.4 92.4 81.5 92.9 84.9 83.7 83.2 83.5 
MSSIM 79.6 96.7 89.7 88.8 90.2 86.3 89.4 85.6 81.1 77.9 78.3 
VSNR 87.3 93.9 89.7 87.9 83.3 71.9 84.0 85.3 85.5 86.1 85.8 
VIF 77.0 93.4 88.8 87.9 97.5 75.2 98.7 74.4 78.1 79.4 80.2 
VIFP 70.6 92.4 90.2 83.3 97.5 85.9 99.2 73.6 75.0 72.2 72.9 
UQI 53.6 81.5 86.3 71.9 75.2 85.9 81.9 70.2 61.8 50.9 50.8 
IFC 71.6 92.9 89.4 84.0 98.7 99.2 81.9 72.8 74.4 73.5 74.4 
NQM 95.2 84.9 85.6 85.3 74.4 73.6 70.2 72.8 97.1 92.3 91.8 
WSNR 98.2 83.7 81.1 85.5 78.1 75.0 61.8 74.4 97.1 97.4 97.1 
PSNR HSVM 99.2 83.2 77.9 86.1 79.4 72.2 50.9 73.5 92.3 97.4 99.9 
PSNR HSV 99.0 83.5 78.3 85.8 80.2 72.9 50.8 74.4 91.8 97.1 99.9 

 
 
Table 9 Correlation coefficients between objective and subjective scores in 
percentage 
PSNR SSIM MSSIM VSNR VIF VIFP UQI IFC  NQM WSNR PSNR 

HVSM 
PSNR 
HVS 

ACR-
HR 

31.1 19.9 11.4 22.9 19.6 21.5 18.4 21.0 29.5 37.6 31.7 31.0 

PC 40.0 23.8 34.9 19.7 16.2 22.0 32.9 20.1 37.8 36.9 42.2 41.9 

 
 



23 

Table 10 Rankings according to measurements 

�
A1 A2 A3 A4 A5 A6 A7 

ACR-HR 2.388 2.234 1.994 2.250 2.345 2.169 1.126 
Rank order 1 4 6 3 2 5 7 
PC 1.038 0.508 0.207 0.531 0.936 0.454 -2.055 
Rank order 1 4 6 3 2 5 7 
PSNR 18.75 24.998 23.18 26.117 26.171 26.177 20.307 
Rank order 7 4 5 3 2 1 6 
SSIM  0.638 0.843 0.786 0.859 0.859 0.858 0.821 
Rank order  7 4 6 1 1 3 5 
MSSIM  0.648 0.932 0.826 0.950 0.949 0.949 0.883 
Rank order  7 4 6 1 2 2 5 
VSNR  13.135 20.530 18.901 22.004 22.247 22.195 21.055 
Rank order  7 5 6 3 1 2 4 
VIF  0.124 0.394 0.314 0.425 0.425 0.426 0.397 
Rank order  7 5 6 2 2 1 4 
VIFP  0.147 0.416 0.344 0.448 0.448 0.448 0.420 
Rank order  7 5 6 1 1 1 4 
UQI  0.237 0.556 0.474 0.577 0.576 0.577 0.558 
Rank order  7 5 6 1 3 1 4 
IFC  0.757 2.420 1.959 2.587 2.586 2.591 2.423 
Rank order  7 5 6 2 3 1 4 
 NQM  8.713 16.334 13.645 17.074 17.198 17.201 10.291 
Rank order  7 4 5 3 2 1 6 
WSNR  13.817 20.593 18.517 21.597 21.697 21.716 15.588 
Rank order  7 4 5 3 2 1 6 
PSNR HSVM  13.772 19.959 18.362 21.428 21.458 21.491 15.714 
Rank order  7 4 5 3 2 1 6 
PSNR HSV  13.530 19.512 17.953 20.938 20.958 20.987 15.407 
Rank order  7 4 5 3 2 1 6 

 

 
Figure 9: Difference between correlation and agreement [47] 

 
1.5. Results on video sequences (experiment 2) 

 
1.5.1.  Subjective tests 

 
In the case of video sequences, only ACR-HR test was conducted, as men-

tioned before.  
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Table 11 shows the algorithms’ ranking from the obtained subjective scores. The 
ranking order differs from the one obtained with ACR-HR test in the still image 
context slightly vary.  

 
Table 11 Ranking of algorithms according to subjective scores 

 A1 A2 A3 A4 A5 A6 A7 

ACR-HR  3.523 3.237  2.966 2.865 2.789 2.956 2.104 
Rank order 1 2 3 5 6 4 7 

 
And, still, although the values allow the ranking of the algorithms, they do not di-
rectly provide knowledge on the statistical equivalence of the results. Table 12 de-
picts the results of the Student’s t-test processed with the values. Compared to 
ACR-HR test with still images detailed in section 1.4.1, distinctions between algo-
rithms seem to be more obvious. Statistical significance of the difference between 
the algorithms, based on the ACR-HR scores, exists and seems clearer in the case 
of the video sequences than in the case of still images. This can be explained by 
the exhibition time of the video sequences: watching the whole video, observers 
can refine their judgment, compared to still images. Note that the same algorithms 
were not statistically differentiated: A4, A3, A5 and A6.  
 

Table 12 Results of Student's t-test with ACR-HR results. Legend: �: supe-

rior, �: inferior, O: statistically equivalent.  
 A1 A2 A3 A4 A5 A6 A7 

A1  �(7) �(3) �(3) �(2) �(3) �(1) 
A2 �(7)  �(2) �(2) �(1) �(2) �(1) 
A3 �(3) �(2)  O(>32) �(9) O(>32) �(1) 
A4 �(3) �(2) O(>32)  O(>32) O(>32) �(1) 
A5 �(2) �(1) �(9) O(>32)  �(15) �(1) 
A6 �(3) �(2) O(>32) O(>32) �(15)  �(1) 

A7 �(1) �(1) �(1) �(1) �(1) �(1)  
 

As a conclusion, ACR-HR test with video sequences gives clearer statistical dif-
ferences between the algorithms than ACR-HR test with still images. This sug-
gests that new elements allow the observers to make a decision: existence of flick-
ering, exhibition time, etc. 

 
1.5.2. Objective measurements 

 
The results of this subsection concern the measurements conducted over the 

entire synthesized sequences. 
As in the case of still images studied in the previous section, the rankings of 

the objective metrics (Table 13) are consistent with each other: the correlation 
coefficients between objective metrics are very close from the figures depicted in 
Table 8, and so they are not presented here. As with still images, the difference be-
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tween the subjective-test-based ranking and the ranking from the objective scores 
is noticeable. Again, the algorithm judged as the worst (A1) by the objective mea-
surements, is the one preferred by the observers. This can be explained by the fact 
that A1 performs the synthesis on a cropped image, and then enlarges it to reach 
the original size. Consequently, signal-based metrics penalize it while it gives 
good perceptual results. 

 
2. Table 13 Rankings according to measurements 

�
A1 A2 A3 A4 A5 A6 A7 

ACR-HR 2.70 2.41 2.14 2.03 1.96 2.13 1.28 
Rank order 1 2 3 5 6 4 7 

PSNR 19.02 24.99 23.227 25.994 26.035 26.04 20.89 
Rank order 7 4 5 3 2 1 6 

SSIM 0.648 0.844 0.786 0.859 0.859 0.859 0.824 

Rank order 7 4 6 1 1 1 5 

MSSIMM 0.664 0.932 0.825 0.948 0.948 0.948 0.888 

Rank order 7 4 6 1 1 1 5 

VSNR 13.14 20.41 18.75 21.786 21.965 21.968 20.73 

Rank order 7 5 6 3 2 1 4 

VIF 0.129 0.393 0.313 0.423 0.423 0.424 0.396 

Rank order 7 5 6 2 2 1 4 

VIFP 0.153 0.415 0.342 0.446 0.446 0.446 0.419 

Rank order 7 5 6 1 1 1 4 

UQI 0.359 0.664 0.58 0.598 0.598 0.598 0.667 

Rank order 7 5 6 3 3 3 1 

IFC 0.779 2.399 1.926 2.562 2.562 2.564 2.404 

Rank order 7 5 6 2 2 1 4 

NQM 8.66 15.933 13.415 16.635 16.739 16.739 10.63 

Rank order 7 4 5 3 1 1 6 

WSNR 14.41 20.85 18.853 21.76 21.839 21.844 16.46 

Rank order 7 4 5 3 2 1 6 

PSNR HSVM 13.99 19.37 18.361 21.278 21.318 21.326 16.23 

Rank order 7 4 5 3 2 1 6 

PSNR HSV 13.74 19.52 17.958 20.795 20.823 20.833 15.91 

Rank order 7 4 5 3 2 1 6 

VSSIM 0.662 0.879 0.809 0.899 0.898 0.893 0.854 
Rank 7 4 6 1 2 3 5 

VQM  0.888 0.623 0.581 0.572 0.556 0.557 0.652 
Rank order 7 5 4 3 1 2 6 

 
Table 14 presents the correlation coefficients between objective scores and subjec-
tive scores, based on the whole set of measured points. None of the tested objec-
tive metric reaches 50% of subjective scores. The metric obtaining the higher cor-
relation coefficient is VSNR, with 47.3%. Figure 10 shows the same obtained 
correlation scores, with resulting ranking of tested metrics. It is easily observed 
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that the top metrics are perceptual-like metrics (they include psychophysical ap-
proaches).  

 
Table 14 Correlation coefficients between objective and subjective scores 

in percentage 
PSNR SSIM MSSIM VSNR VIF VIFP UQI IFC NQM WSNR PSNR 

HVSM 
PSNR 
HVS 

VSSIM VQM 

ACR
-HR 34.5 45.2 27 47.3 43.9 46.9 20.2 45.6 36.6 32.9 34.5 33.9 33 33.6 

 
Figure 10: Ranking of used metrics according to their correlation to hu-
man judgment. 

 
To conclude, performances of objective metrics, with respect to subjective 

scores, are different in the case of video sequences than in the case of still images. 
Correlation coefficients between objective and subjective scores were higher in 
the case of video sequences, by comparing Table 14 with Table 9. However, hu-
man opinion also differed in the case of video sequences. In the case of video se-
quences, perceptual-like metrics were the most correlated to subjective scores (al-
so in video conditions). However, in both conditions, none of the tested metrics 
reached 50% of human judgment. 
 
1.6. Discussion and future trends 

 
This section discusses the future directions regarding the quality assessment 
of views synthesized with DIBR systems. The results presented in the pre-
vious sections proved the need for new subjective quality assessment proto-
cols and improved objective metrics. This section addresses the issues related 
to the conception of a new subjective quality assessment method and the new 
trends for the objective metrics. 
 

1.6.1. Subjective protocols 
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ACR-HR and PC are known for their efficiency in 2D conditions, though they 

showed their limitations in the two case studies presented in 1.3. Moreover, one 
may need to assess the quality of 3D media in 3D conditions.  Defining a new sub-
jective video quality assessment framework is a tough task, knowing the new 
complexity involved in 3D media. The difficulty of 3D-image quality evaluation, 
compared to 2D conventional images, is now more considered. Seuntiens [48] in-
troduced new parameters to assess in addition to image quality, which are natural-
ness, presence and visual experience. Thus, a multi-dimensional quality indicator 
may allow a reliable assessment of 3DTV media. However, it may be difficult to 
define such terms in the context of a subjective quality assessment protocol, and 
there is no standardized protocol considering these aspects yet. ITU-R BT. 1438 
recommendation [49] describes subjective assessment of stereoscopic television 
pictures and the methods are described in [16].  

Chen et al. [50] revisited the question of subjective video quality assessment 
protocols for 3DTV. This work points out the complexity of 3D media quality as-
sessment. Chen et al. proposed to reconsider several conditions in this context, 
such as the viewing conditions (viewing distance, monitor resolution), the test ma-
terial (depth rendering according to the chosen 3D display), viewing duration, etc. 
In the following, some of the requirements proposed by Chen et al. in [50] are 
mentioned: 

- General viewing conditions: First the luminance and contrast ratio is con-
sidered, because of the crosstalk involves by 3DTV screens, and because 
of the used glasses (as active as polarized glasses cause reduction of lu-
minance). Second, the resolution of depth as to be defined. Third, the 
viewing distance recommended by ITU standards may differ according to 
the used 3D display. Moreover, as the authors of the study claim it, depth 
perception should be considered as a new parameter to evaluate the Pre-
ferred Viewing Distance, such as human visual acuity or picture resolution. 

- Source signals: the video format issue is mentioned. It refers to the numer-
ous 3D representations (namely “Layer Depth Video” (LDV), “Multi-view 
Video-plus-Depth” (MVD), or “video plus depth” (2D+Z)) whose recon-
struction or conversion lead to different types of artifacts. 

- Test methods: as mentioned previously, new aspects have to be considered 
(naturalness, presence, visual experience), and visual comfort as well. The 
latter refers to the visual fatigue that should be measured to help in a stan-
dardization process. 

- Observers: an adapted protocol should involve the measurement of view-
ers’ stereopsis ability, first. Second, the authors of [50] mention that the 
required number of participants may differ from 2D. Then further experi-
ments should define this number. 

- Test duration and results analysis: the duration of the test is still to be de-
termined, taking into account the visual comfort. The analysis of the re-
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sults refers to the definition of a criterion for incoherent viewer rejection 
and to the analysis of the assessed parameter (depth, image quality, etc.) 

 
1.6.2. Objective quality assessment metrics 

 
The experiments presented in this chapter shown the need for more adapted 

tools to correctly assess the quality of synthesized views. The most recent pro-
posed 3D quality metrics propose to take into account the new modes brought by 
3D. Among the proposed metrics, numerous target stereoscopic video, for in-
stance, but not views synthesized from DIBR. Then they will not be referred to in 
this section.  

Most of the proposed metrics for assessing 3D media are inspired from 2D 
quality metrics. It should be noted that, often, experimental protocols validating 
the proposed metrics, involve depth and/or color compression, different 3D dis-
plays, and different 3D representations (2D+Z, stereoscopic video, MVD, etc...). 
The experimental protocols often assess at the same time both compression distor-
tion and synthesis distortion, without distinction. This is problematic because there 
may be a combination of artefacts from various sources (compression and synthe-
sis) whose effects are not clearly specified and assessed.  

In the following, we present the new trends, regarding new objective metrics 
for 3D media assessment, by distinguishing whether they make use of depth data 
in the quality score computation or not. 

 
2D-like metrics  
 

Perceptual Quality Metric (PQM) [51] is proposed by Joveluro et al. Although the 
authors assess the quality of decoded 3D data (2D+Z), the metric is applied on left 
and right views synthesized with a DIBR algorithm (namely [12]). Thus, the me-
thod can be cited in this section. The quality score is a weighted function of the 
contrast distortion and the luminance differences between both reference and dis-
torted color view. So, the method can be classified as HVS-based. The method is 
sensitive to slight changes in image degradation and error quantification. In 
[51]PQM method performances are validated by evaluating views synthesized 
from compressed data (both color and depth data are encoded at different bit-
rates). Subjective scores are obtained by a SAMVIQ test, on a 3D 42-inch Philips 
multi-view auto-stereoscopic display. Note that compression, synthesis and factors 
inherent to the display are assessed at the same time without distinction in the ex-
periments. 
 

Zhao and Yu [52] proposed a FR metric, Peak Signal to Perceptible Temporal 
Noise Ratio. The metric evaluates quality of synthesized sequences by measuring 
the perceptible temporal noise within these impaired sequences. 
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Depth-aided methods 
 

Ekmekcioglu et al. [53] proposed a depth-based perceptual quality metric. It is a 
tool that can be applied to PSNR or SSIM. The method uses a weighting function 
based on depth data at the target viewpoint, and a temporal consistency function to 
take the motion activity into account. The final score includes a factor that considers 
non-moving background objects during view synthesis. The inputs of the method are 
the original depth map (uncompressed), the original color view (originally acquired, 
uncompressed), the synthesized view. The validation of the performances is achieved 
by synthesizing different viewpoints from distorted data: color views suffer two levels 
of quantization distortion; depth data suffer four different types of distortion (quantiza-
tion, low pass filtering, borders shifting, and artificial local spot errors in certain re-
gions). The study [53] shows that the proposed method enhances the correlation of 
PSNR and SSIM to subjective scores.  

 
Yasakethu et al. [54] proposed an adapted VQM for measuring 3D Video 

quality. It combines 2D color information quality and depth information quality. 
Depth quality measurement includes an analysis of the depth planes. The final 
depth quality measures combines 1) the measure of distortion of the relative dis-
tance within each depth plane, 2) the measure of the consistency of each depth 
plane and 3) the structural error of the depth. The color quality is based on the 
VQM score. In [54], the metric is evaluated through left and right view (rendered 
from 2D+Z encoded data), and compared to subjective scores obtained by using 
an autostereoscopic display. Results show higher correlation than simple VQM. 

 
Solh et al. [55] introduced the 3D Video Quality Measure (3VQM) predict the 

quality of views synthesized from DIBR algorithms. The method analyses the 
quality of the depth map against an ideal depth map. Three different analyses lead 
to three distortions measures: spatial outliers, temporal outliers, and temporal in-
consistencies. These measures are combined to provide the final quality score. To 
validate the method, subjective tests were run in stereoscopic conditions. The ste-
reoscopic pairs included views synthesized from depth map and colored video 
compression, depth from stereo matching, depth from 2D to 3D conversion. Re-
sults shown accurate and consistent scores compared to subjective assessments. 
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1.7. Conclusion 
 
This chapter proposed a reflection considering both subjective quality assess-

ment protocols and objective quality assessment methods reliability in the context 
of DIBR-based media.   

Typical distortions related to DIBR were introduced. They are geometric dis-
tortions and mainly located around the disoccluded areas. When compression-
related distortions and synthesis-related distortions are combined, the errors are 
generally spread in the whole image, increasing visual annoyance. 

Two case studies were presented answering the two questions relating, first to 
the suitability of two efficient subjective protocols (in 2D), and second, to the re-
liability of commonly used objective metrics. Experiments considered commonly 
used methods for assessing conventional images, as subjectively or objectively, to 
assess DIBR-based synthesized images, from seven different algorithms.  

 
Concerning the suitability of the tested subjective protocols, the number of par-

ticipants required for establishing a statistical difference between the algorithms 
was almost the double of the number required by VQEG (24), which reinforce 
Chen et al. requirements [50]. Both methodologies agreed on the performances 
ranking of the view synthesis algorithms. Experiments also showed that the ob-
servers’ opinion was not as stable when assessing still images as when assessing 
video sequences, with ACR-HR. PC gave stable results with fewer participants 
than ACR-HR, in the case of still images. Both methodologies have their advan-
tages and drawbacks and they are complementary: assigning an absolute rating to 
distortions such as synthesized views’ ones seemed a tough task to observers, al-
though it provides knowledge on the perceived quality of the set. Small impaire-
ments are better evaluated with PC.  

 
Concerning the reliability of the tested objective metrics, the results showed 

that objective metrics did not correlate the observers’ opinion. Objective measures 
did not reach 50% of human judgment and they were all correlated with each oth-
er. The results suggest that tiny distortions are penalized by the objective metrics 
when not perceptible by humans. Then, objective metrics inform on the existence 
of distortions but not on their visible annoyance. Using the tested metrics is not 
sufficient for assessing virtual synthesized views. 

 
The simple experiments that have been presented in this chapter reveal that the 

reliability of the tested objective metrics is uncertain when assessing intermediate 
synthesized views, in the tested conditions. Yet, reckoned organizations plan to 
base partially their future decisions, concerning new strategies for 3D video, on 
the outcome of such objective metrics. New standards have to been developed 
considering the new aspects brought by DIBR: location and type of artifacts, de-
gree of annoyance of artifacts. 
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