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SELF-ADJOINT EXTENSIONS OF DISCRETE MAGNETIC SCHRÖDINGER

OPERATORS

OGNJEN MILATOVIC, FRANÇOISE TRUC

Abstract. Using the concept of intrinsic metric on a locally finite weighted graph, we give

sufficient conditions for the magnetic Schrödinger operator to be essentially self-adjoint. The

present paper is an extension of some recent results proven in the context of graphs of bounded

degree.

1. Introduction and the main results

1.1. The setting. Let V be a countably infinite set. We assume that V is equipped with a

measure µ : V → (0,∞). Let b : V × V → [0,∞) be a function such that

(i) b(x, y) = b(y, x), for all x, y ∈ V ;

(ii) b(x, x) = 0, for all x ∈ V ;

(iii) deg(x) := ♯ {y ∈ V : b(x, y) > 0} < ∞, for all x ∈ V . Here, ♯ S denotes the number of

elements in the set S.

Vertices x, y ∈ V with b(x, y) > 0 are called neighbors, and we denote this relationship by

x ∼ y. We call the triple (V, b, µ) a locally finite weighted graph. We assume that (V, b, µ) is

connected, that is, for any x, y ∈ V there exists a path γ joining x and y. Here, γ is a sequence

x0, x2, . . . , xn ∈ V such that x = x0, y = xn, and xj ∼ xj+1 for all 0 ≤ j ≤ n− 1.

1.2. Intrinsic metric. Following [15] we define a pseudo metric to be a map d : V ×V → [0,∞)

such that d(x, y) = d(y, x), for all x, y ∈ V ; d(x, x) = 0, for all x ∈ V ; and d(x, y) satisfies the

triangle inequality. A pseudo-metric d = dσ is called a path pseudo-metric if there exists a map

σ : V × V → [0,∞) such that σ(x, y) = σ(y, x), for all x, y ∈ V ; σ(x, y) > 0 if and only if x ∼ y;

and

dσ = inf{lσ(γ) : γ = (x0, x1, . . . , xn), n ≥ 1, is a path connecting x and y},
where the length lσ of the path γ = (x0, x1, . . . , xn) is given by

lσ(γ) =
n−1∑

i=0

σ(xi, xi+1). (1.1)

As in [15] we make the following definitions.

2000 Mathematics Subject Classification. 35J10, 39A12, 47B25.

1



Definition 1.3. (i) A pseudo metric d on (V, b, µ) is called intrinsic if

1

µ(x)

∑

y∈V

b(x, y)(d(x, y))2 ≤ 1, for all x ∈ V.

(ii) An intrinsic path pseudo metric d = dσ on (V, b, µ) is called strongly intrinsic if

1

µ(x)

∑

y∈V

b(x, y)(σ(x, y))2 ≤ 1, for all x ∈ V.

Remark 1.4. On a locally finite graph (V, b, µ), the formula

σ1(x, y) = b(x, y)−1/2 min

{
µ(x)

deg(x)
,

µ(y)

deg(y)

}1/2

, with x ∼ y, (1.2)

where deg(x) is as in property (iii) of b(x, y), defines a strongly intrinsic path metric; see [15,

Example 2.1].

1.5. Cauchy boundary. For a path metric d = dσ on V , we denote the metric completion by

(V̂ , d̂). As in [15] we define the Cauchy boundary ∂CV as follows: ∂CV := V̂ \V . Note that

(V, d) is metrically complete if and only if ∂CV is empty. For a path metric d = dσ on V and

x ∈ V , we define

D(x) := inf
z∈∂CV

dσ(x, z). (1.3)

1.6. Inner product. In what follows, C(V ) is the set of complex-valued functions on V , and

Cc(V ) is the set of finitely supported elements of C(V ). By ℓ2µ(V ) we denote the space of

functions f ∈ C(V ) such that

‖f‖2 :=
∑

x∈V

µ(x)|f(x)|2 < ∞, (1.4)

where | · | denotes the modulus of a complex number.

In particular, the space ℓ2µ(V ) is a Hilbert space with the inner product

(f, g) :=
∑

x∈V

µ(x)f(x)g(x). (1.5)

1.7. Laplacian operator. We define the formal Laplacian ∆b,µ : C(V ) → C(V ) on (V, b, µ) by

the formula

(∆b,µu)(x) =
1

µ(x)

∑

y∈V

b(x, y)(u(x) − u(y)). (1.6)
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1.8. Magnetic Schrödinger operator. We fix a phase function θ : V ×V → [−π, π] such that

θ(x, y) = −θ(y, x) for all x , y ∈ V , and denote θx,y := θ(x, y). We define the formal magnetic

Laplacian ∆b,µ;θ : C(V ) → C(V ) on (V, b, µ) by the formula

(∆b,µ;θu)(x) =
1

µ(x)

∑

y∈V

b(x, y)(u(x) − eiθx,yu(y)). (1.7)

We define the formal magnetic Schrödinger operator H : C(V ) → C(V ) by the formula

Hu := ∆b,µ;θu+Wu, (1.8)

where W : V → R.

1.9. Statements of the results. We are ready to state our first result.

Theorem 1. Assume that (V, b, µ) is a locally finite, weighted, and connected graph. Let d = dσ
be an intrinsic path metric on V such that (V, d) is not metrically complete. Assume that there

exists a constant C such that

W (x) ≥ 1

2(D(x))2
− C, for all x ∈ V, (1.9)

where D(x) is as in (1.3). Then H is essentially self-adjoint on Cc(V ).

Remark 1.10. It is possible to find µ, b, and a potential W satisfying W (x) ≥ k
2(D(x))2

with

0 < k < 1, such that H = ∆b,µ +W is not essentially self-adjoint; see [2, Section 5.3.2].

If the graph (V, b, µ) has a special type of covering, the condition (1.9) on W can be relaxed

with the help of “effective potential,” as seen in the next theorem. First, we give a description of

this special type of covering. In what follows, for a graph (V, b, µ), we define the set of unoriented

edges as E := {{x, y} : x, y ∈ V and b(x, y) > 0}. Sometimes, when we want to emphasize the

set E, instead of G = (V, b, µ) we will use the notation G = (V,E).

Definition 1.11. Let m ∈ N. A good covering of degree m of G = (V,E) is a family Gl =

(Vl, El)l∈L of finite connected sub-graphs of G so that

(i) V = ∪l∈LVl;

(ii) for any {x, y} ∈ E,

0 < #{l ∈ L | {x, y} ∈ El} ≤ m.

Remark 1.12. It is known that a graph with bounded vertex degree admits a good covering;

see [3, Proposition 2.2]. The graph in Example 5.1 below does not have a bounded vertex degree.

Note that this graph has a good covering of degree m = 2.

Assume that (V, b, µ) has a good covering (Vl, El)l∈L. Let θl be the restriction of θ to Vl × Vl.

Let ∆
(l)
1,µ;θ be as in (1.7) with V = Vl, θ = θl, and b ≡ 1. Then ∆

(l)
1,µ;θ is a bounded and

non-negative self-adjoint operator in ℓ2µ(Vl). Let pl denote the lowest eigenvalue of ∆
(l)
1,µ;θ. With
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these notations, for a graph (V, b, µ) and the phase function θ, we define the effective potential

corresponding to a good covering (Vl, El)l∈L of degree m as follows:

We(x) :=
1

m

∑

{l∈L |x∈Vl}

pl inf
{y,z}∈El

b(y, z). (1.10)

We now state our second result.

Theorem 2. Assume that (V, b, µ) is a locally finite, weighted, and connected graph. Assume

that (V, b, µ) has a good covering (Vl, El)l∈L. Let d = dσ be an intrinsic path metric on V such

that (V, d) is not metrically complete. Assume that there exists a constant C such that

We(x) +W (x) ≥ 1

2(D(x))2
− C, for all x ∈ V, (1.11)

where We is as in (1.10) and D(x) is as in (1.3). Then H is essentially self-adjoint on Cc(V ).

In the setting of metrically complete graphs, we have the following result:

Theorem 3. Assume that (V, b, µ) be a locally finite, weighted, and connected graph. Let dσ be

a strongly intrinsic path metric on V . Let q : V → [1,∞) be a function satisfying

|q−1/2(x)− q−1/2(y)| ≤ Kσ(x, y), for all x, y ∈ V such that x ∼ y, (1.12)

where K is a constant. Let H be as in (1.8) with W : V → R satisfying

W (x) ≥ −q(x), for all x ∈ V. (1.13)

Let

σq(x, y) = min{q−1/2(x), q−1/2(y)} · σ(x, y) (1.14)

and let dσq be the path metric corresponding to σq. Assume that (V, dσq ) is metrically complete.

Then H is essentially self-adjoint on Cc(V ).

1.13. Some comments on the existing literature. The notion of intrinsic metric allows

us to remove the bounded vertex degree assumption present in [2, 3, 20]. More specifically,

Theorem 1 extends [2, Theorem 4.2], which was proven in the context of graphs of bounded

vertex degree for the operator ∆b,µ + W , with ∆b,µ as in (1.6). Theorem 2 is an extension

of [3, Theorem 3.1], which was proven in the context of graphs of bounded vertex degree for

the operator ∆b,µ;θ. In this regard, the first two results of the present paper answer a question

posed in [3, Section 5]. Theorem 3 extends [20, Theorem 1], which was proven in the context of

graphs of bounded vertex degree for the operator ∆b,µ;θ+W with W as in (1.13). We should also

mention that in the context of locally finite graphs (with an assumption on b and µ originating

from [17]), a sufficient condition for the essential self-adjointness of a semi-bounded from below

operator ∆b,µ;θ +W is given in [19, Theorem 1.2]. Another sufficient condition for the essential

self-adjointness of ∆b,µ;θ + W is given in [9, Proposition 2.2]: Let (V, b, µ) be a locally finite

weighted graph. Let W : V → R and δ > 0. Take λ ∈ R so that

{x ∈ V : λ+Deg(x) +W (x) = 0} = ∅, (1.15)
4



where Deg(x) denotes the “weighted degree”

Deg(x) :=
1

µ(x)

∑

y∈V

b(x, y), x ∈ V. (1.16)

Suppose that for every sequence of vertices {y1, y2, . . . } such that yj ∼ yj+1, j ≥ 1, the following

property holds:

∞∑

n=1

((an)
2µ(yn)) = ∞, where an :=

n−1∏

j=1

(
δ

Deg(yj)
+

∣∣∣∣1 +
λ+W (yj)

Deg(yj)

∣∣∣∣
)
, n ≥ 2, (1.17)

and a1 := 1. Then ∆b,µ;θ +W is essentially self-adjoint on Cc(V ).

Note that [9, Proposition 2.2] allows potentials that are unbounded from below. We mention

that Example 5.1 below describes a situation where Theorem 2 is applicable, while neither [19,

Theorem 1.2] nor [9, Proposition 2.2] is applicable. Additionally, Example 5.2 below describes

a situation where Theorem 3 is applicable, while neither [19, Theorem 1.2] nor [9, Proposition

2.2] is applicable.

The recent study [15] is concerned with the operator ∆b,µ as in (1.6), with property (iii) of b

(see Section 1.1 above) replaced by the following more general condition:

∑

y∈V

b(x, y) < ∞, for all x ∈ V.

Using the notion of intrinsic distance d with finite jump size, the authors of [15] show that if

the weighted degree (1.16) is bounded on balls defined with respect to any such distance d, then

∆b,µ is essentially self-adjoint. In the context of a locally finite graph, the authors of [15] show

that if the graph is metrically complete in any intrinsic path metric with finite jump size, then

∆b,µ is essentially self-adjoint. In the metrically incomplete case, one of the results of [15] shows

that if the Cauchy boundary has finite capacity, then ∆b,µ has a unique Markovian extension

if and only if the Cauchy boundary is polar (here, “Cauchy boundary is polar” means that the

Cauchy boundary has zero capacity). Another result of [15] shows that if the upper Minkowski

codimension of the Cauchy boundary is greater than 2, then the Cauchy boundary is polar.

Additionally, we should mention that the authors of [15] prove Hopf–Rinow-type theorem for

locally finite weighted graphs with a path pseudo metric.

In recent years, various authors have developed independently the concept of intrinsic metric

on a graph. The definition given in the present paper can be traced back to the work [8]. For

applications of intrinsic metrics in various contexts, see, for instance, [1, 5, 6, 7, 10, 12, 13, 14, 18].

With regard to the problem of self-adjoint extensions of adjacency, (magnetic) Laplacian and

Schrödinger-type operators on infinite graphs, we should mention that there has been a lot of

interest in this area in the past few years. For references to the literature on this topic, see, for

instance, [2, 3, 9, 11, 15, 17, 20, 24].
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2. Proof of Theorem 1

In this section, we modify the proof of [2, Theorem 4.2]. Throughout the section, we assume

that the hypotheses of Theorem 1 are satisfied. We begin with the following lemma, whose proof

is given in [3, Lemma 3.3].

Lemma 2.1. Let H be as in (1.8), let v ∈ ℓ2µ(V ) be a weak solution of Hv = 0, and let f ∈ Cc(V )

be a real-valued function. Then the following equality holds:

(fv, H(fv)) =
1

2

∑

x∈V

∑

y∼x

b(x, y)Re [e−iθ(x,y)v(x)v(y)](f(x)− f(y))2. (2.1)

The key ingredient in the proof of Theorem 1 is the Agmon-type estimate given in the next

lemma, whose proof, inspired by an idea of [21], is based on the technique developed in [4] for

magnetic Laplacians on an open set with compact boundary in R
n.

Lemma 2.2. Let λ ∈ R and let v ∈ ℓ2µ(V ) be a weak solution of (H − λ)v = 0. Assume that

that there exists a constant c1 > 0 such that, for all u ∈ Cc(V ),

(u, (H − λ)u) ≥ 1

2

∑

x∈V

max

(
1

D(x)2
, 1

)
µ(x)|u(x)|2 + c1‖u‖2. (2.2)

Then v ≡ 0.

Proof. Let ρ and R be numbers satisfying 0 < ρ < 1/2 and 1 < R < +∞. For any ǫ > 0, we

define the function fǫ : V → R by fǫ(x) = Fǫ(D(x)), where D(x) is as in (1.3) and Fǫ : R
+ → R

is the continuous piecewise affine function defined by

Fǫ(s) =





0 for s ≤ ǫ

ρ(s − ǫ)/(ρ − ǫ) for ǫ ≤ s ≤ ρ

s for ρ ≤ s ≤ 1

1 for 1 ≤ s ≤ R

R+ 1− s for R ≤ s ≤ R+ 1

0 for s ≥ R+ 1

We first note that by the definition of Fǫ and continuity of D(x), the support of fǫ is compact.

Now by [15, Lemma A.3(b)] it follows that the support of fǫ finite. Using Lemma 2.1 with H−λ

in place of H, the inequality

Re [e−iθ(x,y)v(x)v(y)] ≤ 1

2
(|v(x)|2 + |v(y)|2),

and Definition 1.3(i) we have

(fǫv, (H − λ)(fǫv)) ≤
1

2

∑

x∈V

∑

y∼x

b(x, y)|v(x)|2(fǫ(x)− fǫ(y))
2

≤ ρ2

2(ρ− ǫ)2

∑

x∈V

∑

y∼x

|v(x)|2b(x, y)(d(x, y))2 ≤ ρ2

2(ρ− ǫ)2

∑

x∈V

µ(x)|v(x)|2, (2.3)

where the second inequality uses the fact that fǫ is a β-Lipschitz function with β = ρ/(ρ− ǫ).
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On the other hand, using the definition of fǫ and the assumption (2.2) we have

(fǫv, (H − λ)(fǫv)) ≥
1

2

∑

ρ≤D(x)≤R

µ(x)|v(x)|2 + c1‖fǫv‖2. (2.4)

We now combine (2.4) and (2.3) to get

1

2

∑

ρ≤D(x)≤R

µ(x)|v(x)|2 + c1‖fǫv‖2 ≤
ρ2

2(ρ− ǫ)2

∑

x∈V

µ(x)|v(x)|2.

We fix ρ and R, and let ǫ → 0+. After that, we let ρ → 0+ and R → +∞. As a result, we get

v ≡ 0. �

Conclusion of the proof of Theorem 1. Since ∆b,µ;θ|Cc(V ) is a non-negative operator, for

all u ∈ Cc(V ), we have

(u, Hu) ≥
∑

x∈V

µ(x)W (x)|u(x)|2,

and, hence, by assumption (1.9) we get:

(u, (H − λ)u) ≥ 1

2

∑

x∈V

1

D(x)2
µ(x)|u(x)|2 − (λ+ C)‖u‖2

≥ 1

2

∑

x∈V

max

(
1

D(x)2
, 1

)
µ(x)|u(x)|2 − (λ+ C + 1/2)‖u‖2. (2.5)

Choosing, for instance, λ = −C − 3/2 in (2.5) we get the inequality (2.2) with c1 = 1.

Thus, (H−λ)|Cc(V ) with λ = −C−3/2 is a symmetric operator satisfying (u, (H−λ)u) ≥ ‖u‖2,
for all u ∈ Cc(V ). In this case, it is known (see [22, Theorem X.26]) that the essential self-

adjointness of (H − λ)|Cc(V ) is equivalent to the following statement: if v ∈ ℓ2µ(V ) satisfies

(H − λ)v = 0, then v = 0. Thus, by Lemma 2.2, the operator (H − λ)|Cc(V ) is essentially

self-adjoint. Hence, H|Cc(V ) is essentially self-adjoint. �

3. Proof of Theorem 2

Throughout the section, we assume that the hypotheses of Theorem 2 are satisfied. We begin

with the following lemma.

Lemma 3.1. Let (Vl, El)l∈L be a good covering of degree m of (V, b, µ), let H be as in (1.8),

and let We be as in (1.10). Then, for all u ∈ Cc(V ) we have

(u,Hu) ≥
∑

x∈V

µ(x)(We(x) +W (x))|u(x)|2. (3.1)

Proof. It is well known that

(u,Hu) =
∑

{x,y}∈E

b(x, y)|u(x) − eiθ(x,y)u(y)|2 +
∑

x∈V

µ(x)W (x)|u(x)|2,
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where E is the set of unoriented edges of (V, b, µ). Thus, using the definition of the covering

(Vl, El)l∈L of degree m and the definition of pl we have

(u,Hu) ≥ 1

m

∑

l∈L

∑

{x,y}∈El

b(x, y)|u(x) − eiθ(x,y)u(y)|2 +
∑

x∈V

µ(x)W (x)|u(x)|2

≥ 1

m

∑

l∈L



(

inf
{y,z}∈El

b(y, z)

)
pl
∑

x∈Vl

µ(x)|u(x)|2

+

∑

x∈V

µ(x)W (x)|u(x)|2,

which together with (1.10) gives (3.1). �

Conclusion of the proof of Theorem 2. By Lemma 3.1 and assumption (1.11), for all

u ∈ Cc(V ) we have

(u, (H − λ)u) ≥
∑

x∈V

µ(x)(We(x) +W (x)− λ)|u(x)|2

≥ 1

2

∑

x∈V

max

(
1

D(x)2
, 1

)
µ(x)|u(x)|2 − (C + λ+ 1/2)‖u‖2.

From hereon we proceed in the same way as in the the proof of Theorem 1. �

4. Proof of Theorem 3

In this section we modify the proof of [20, Theorem 1], which is based on the technique of [23]

in the context of Riemannian manifolds. Throughout the section, we assume that the hypotheses

of Theorem 3 are satisfied.

We begin with the definitions of minimal and maximal operators associated with the expres-

sion (1.8). We define the operator Hmin by the formula Hminu := Hu, for all u ∈ Dom(Hmin) :=

Cc(V ). As W is real-valued, it follows easily that the operator Hmin is symmetric in ℓ2µ(V ). We

define Hmax := (Hmin)
∗, where T ∗ denotes the adjoint of operator T . Additionally, we define

D := {u ∈ ℓ2µ(V ) : Hu ∈ ℓ2µ(V )}. Then, the following hold: Dom(Hmax) = D and Hmaxu = Hu

for all u ∈ D; see, for instance, [20, Section 3] or [24, Section 3] for details. Furthermore, by [16,

Problem V.3.10], the operator Hmin is essentially self-adjoint if and only if

(Hmaxu, v) = (u,Hmaxv), for all u , v ∈ Dom(Hmax). (4.1)

In the setting of graphs of bounded vertex degree, the following proposition was proven in [20,

Proposition 12].

Proposition 4.1. If u ∈ Dom(Hmax), then
∑

x,y∈V

b(x, y)min{q−1(x), q−1(y)}|u(x) − eiθx,yu(y)|2 ≤ 4(‖Hu‖‖u‖ + (K2 + 1)‖u‖2), (4.2)

where H is as in (1.8) and K is as in (1.12).
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Before proving Proposition 4.1, we define a sequence of cut-off functions. Let dσ and dσq be

as in the hypothesis of Theorem 3. Fix x0 ∈ V and define

χn(x) :=

((
2n− dσ(x0, x)

n

)
∨ 0

)
∧ 1, x ∈ V, n ∈ Z+. (4.3)

Denote

Bσ
n(x0) := {x ∈ V : dσ(x0, x) ≤ n}. (4.4)

The sequence {χn}n∈Z+
satisfies the following properties: (i) 0 ≤ χn(x) ≤ 1, for all x ∈ V ;

(ii) χn(x) = 1 for x ∈ Bσ
n(x0) and χn(x) = 0 for x /∈ Bσ

2n(x0); (iii) for all x ∈ V , we have

lim
n→∞

χn(x) = 1; (iv) the functions χn have finite support; and (v) the functions χn satisfy the

inequality

|χn(x)− χn(y)| ≤
σ(x, y)

n
, for all x ∼ y.

The properties (i)–(iii) and (v) can be checked easily. By hypothesis, we know that (V, dσq ) is

a complete metric space and, thus, balls with respect to dσq are finite; see, for instance, [15,

Theorem A.1]. Let B
σq

2n(x0) be as in (4.4) with dσ replaced by dσq . Since q ≥ 1 it follows that

Bσ
2n(x0) ⊆ B

σq

2n(x0). Thus, property (iv) is a consequence of property (ii) and the finiteness of

B
σq

2n(x0).

Proof of Proposition 4.1. Let u ∈ Dom(Hmax) and let φ ∈ Cc(V ) be a real-valued function.

Define

I :=


 ∑

x,y∈V

b(x, y)|u(x) − eiθx,yu(y)|2((φ(x))2 + (φ(y))2)




1/2

. (4.5)

We will first show that

I2 ≤ 4|(φ2Hu, u)|+ 4(φ2qu, u)

+
√
2I


 ∑

x,y∈V

b(x, y)(φ(x) − φ(y))2|(u(x) + eiθx,yu(y)|2



1/2

. (4.6)

To do this, we first note that

I2 = 4(φ2Hu, u)− 4(φ2Wu,u)

+
∑

x,y∈V

b(x, y)(eiθx,yu(y)− u(x))(e−iθx,yu(y) + u(x))((φ(x))2 − (φ(y))2), (4.7)

which can be checked by expanding the terms under summations on both sides of the equality

and using the properties b(x, y) = b(y, x) and θ(x, y) = −θ(y, x). The details of this computation

can be found in the proof of [20, Proposition 12].

The inequality (4.6) is obtained from (4.7) by using (1.13), the factorization

(φ(x))2 − (φ(y))2 = (φ(x) − φ(y))(φ(x) + φ(y)),
9



Cauchy–Schwarz inequality, and

(φ(x) + φ(y))2 ≤ 2(φ2(x) + φ2(y)).

Let χn be as in (4.3) and let q be as in (1.13). Define

φn(x) := χn(x)q
−1/2(x). (4.8)

By property (iv) of χn it follows that φn has finite support. By property (i) of χn and since

q ≥ 1, we have

0 ≤ φn(x) ≤ q−1/2(x) ≤ 1, for all x ∈ V. (4.9)

By property (iii) of χn we have

lim
n→∞

φn(x) = q−1/2(x), for all x ∈ V. (4.10)

By (1.12), properties (i) and (v) of χn, and the inequality q ≥ 1, we have

|φn(x)− φn(y)| ≤
(
1

n
+K

)
σ(x, y), for all x ∼ y, (4.11)

where K is as in (1.12). We will also use the inequality

|eiθx,yu(y) + u(x)|2 ≤ 2(|u(x)|2 + |u(y)|2). (4.12)

By (4.11), (4.12), and Definition 1.3(ii), we get


 ∑

x,y∈V

b(x, y)(φn(x)− φn(y))
2|(u(x) + eiθx,yu(y)|2




1/2

≤
√
2

(
1

n
+K

)
 ∑

x,y∈V

b(x, y)(σ(x, y))2(|u(x)|2 + |u(y)|2)




1/2

= 2

(
1

n
+K

)

∑

x,y∈V

b(x, y)(σ(x, y))2 |u(x)|2



1/2

≤ 2

(
1

n
+K

)(∑

x∈V

µ(x)|u(x)|2
)1/2

(4.13)

By (4.6) with φ = φn, (4.13), and (4.9), we obtain

I2n ≤ 4‖Hu‖‖u‖ + 4‖u‖2 + 2
√
2In

(
1

n
+K

)
‖u‖, (4.14)

for all u ∈ Dom(Hmax), where In is as in (4.5) with φ = φn.
10



Using the inequality ab ≤ a2

4 + b2 with a =
√
2In in the third term on the right-hand side

of (4.14) and rearranging, we obtain

I2n ≤ 8

(
‖Hu‖‖u‖ +

((
1

n
+K

)2

+ 1

)
‖u‖2

)
. (4.15)

Letting n → ∞ in (4.15) and using (4.10) together with Fatou’s lemma, we get

∑

x,y∈V

b(x, y)|u(x) − eiθx,yu(y)|2(q−1(x) + q−1(y))

≤ 8
(
‖Hu‖‖u‖ + (K2 + 1)‖u‖2

)
. (4.16)

Since

2min{q−1(x), q−1(y)} ≤ q−1(x) + q−1(y), for all x, y ∈ V,

the inequality (4.2) follows directly from (4.16). �

Continuation of the proof of Theorem 3. Our final goal is to prove (4.1). Let dσq be as in

the hypothesis of Theorem 3. Fix x0 ∈ V and define

P (x) := dσq (x0, x), x ∈ V. (4.17)

In what follows, for a function f : V → R we define f+(x) := max{f(x), 0}. Let u , v ∈
Dom(Hmax), let s > 0, and define

Js :=
∑

x∈V

(
1− P (x)

s

)+ (
(Hu)(x)v(x) − u(x)(Hv)(x)

)
µ(x), (4.18)

where P is as in (4.17) and H is as in (1.8).

Since (V, dσq ) is a complete metric space, by [15, Theorem A.1] it follows that the set

Us := {x ∈ V : P (x) ≤ s}

is finite. Thus, for all s > 0, the summation in (4.18) is performed over finitely many vertices.

The following lemma follows easily from the definition of Js and the dominated convergence

theorem; see the proof of [20, Lemma 13] for details.

Lemma 4.2. Let Js be as in (4.18). Then

lim
s→+∞

Js = (Hu, v)− (u,Hv). (4.19)

In what follows, for u ∈ Dom(Hmax), define

Tu :=



∑

x,y∈V

b(x, y)min{q−1(x), q−1(y)}|u(x) − eiθx,yu(y)|2



1/2

. (4.20)

Note that Tu is finite by Proposition 4.1.
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Lemma 4.3. Let u, v ∈ Dom(Hmax), let Tu and Tv be as in (4.20), and let Js be as in (4.18).

Then

|Js| ≤
1

2s
(‖v‖Tu + ‖u‖Tv). (4.21)

Proof. A computation shows that

2Js =
∑

x,y∈V

(
(1− P (x)/s)+ − (1− P (y)/s)+

)
b(x, y)

(
(e−iθx,yv(y)− v(x))u(x)

−(eiθx,yu(y)− u(x))v(x)
)
,

which, together with the triangle inequality and property

|f+(x)− g+(x)| ≤ |f(x)− g(x)|,
leads to the following estimate:

2|Js| ≤
1

s

∑

x,y∈V

b(x, y)|P (x) − P (y)|
(
|eiθx,yv(y)− v(x)||u(x)|

+|eiθx,yu(y)− u(x)||v(x)|
)
. (4.22)

By (4.17) and (1.14), for all x ∼ y we have

|P (x)− P (y)| ≤ dσq (x, y) ≤ σq(x, y) = min{q−1/2(x), q−1/2(y)} · σ(x, y). (4.23)

To obtain (4.21), we combine (4.22) and (4.23) and use Cauchy–Schwarz inequality together

with Definition 1.3(ii). �

The end of the proof of Theorem 3. Let u ∈ Dom(Hmax) and v ∈ Dom(Hmax). By the

definition of Hmax, it follows that Hu ∈ ℓ2µ(V ) and Hv ∈ ℓ2µ(V ). Letting s → +∞ in (4.21) and

using the finiteness of Tu and Tv, it follows that Js → 0 as s → +∞. This, together with (4.19),

shows (4.1). �

5. Examples

In this section we give some examples that illustrate the main results of the paper. In

what follows, for x ∈ R, the notation ⌈x⌉ denotes the smallest integer N such that N ≥ x.

Additionally, ⌊x⌋ denotes the greatest integer N such that N ≤ x.

Example 5.1. In this example we consider the graph G = (V,E) whose vertices xj,k are

arranged in a “triangular” pattern so that the first row contains x1,1; for 2 ≤ j ≤ 4, the j-th row

contains xj,1 and xj,2; for 5 ≤ j ≤ 9, the j-th row contains xj,1, xj,2, and xj,3; for 10 ≤ j ≤ 16,

the j-th row contains xj,1, xj,2, xj,3, and xj,4; and so on. There are two types of edges in the

graph: (i) for every j ≥ 1, we have xj,1 ∼ xj+1,k for all 1 ≤ k ≤ ⌈(j + 1)1/2⌉; (ii) for every j ≥ 2,

we have the “horizontal” edges xj,k ∼ xj,k+1, for all 1 ≤ k ≤ ⌈j1/2⌉ − 1. Clearly, G does not

have a bounded vertex degree.
12



Let T = (VT , ET ) be the subgraph of G whose set of edges ET consists of type-(i) edges of

G described above. Note that T is a spanning tree of G. Additionally, note that for every

type-(ii) edge e of G the following are true: (i) e /∈ ET and (ii) there is a unique 3-cycle (a cycle

with 3 vertices) that contains e. Thus, by [3, Lemma 2.2], the corresponding 3-cycles, which we

enumerate by {Cl}l∈Z+
, form a basis for the space of cycles of G. Furthermore, by Definition 1.11,

the family {Cl = (Vl, El)}l∈Z+
is a good covering of degree m = 2 of G. Following [3, Proposition

2.4(i)] and [3, Lemma 2.9], we define the phase function θ : Vl × Vl → [−π, π] satisfying the

following properties: (i) if an edge {x, y} belongs to El\ET , we have θ(x, y) = −θ(y, x); (ii) if

{x, y} ∈ ET , we have θ(x, y) = 0; and (iii) pl = |1− eiπ/3|2 = 1, where pl is as in (1.10) with Gl

replaced by Cl.

With this choice of pl and using the good covering {Cl}l∈Z+
of degree m = 2, the definition

of the effective potential (1.10) simplifies to

We(x) :=
1

2

∑

{l∈L |x∈Vl}

inf
{y,z}∈El

b(y, z). (5.1)

Let {bj}j∈Z+
be an increasing sequence of positive numbers. We define (i) b(x, y) = bj if x ∼ y

and x is in the j-th row and y is in the (j + 1)-st row; (ii) b(x, y) = bj if x ∼ y and x and y

are both in the (j + 1)-st row; (iii) b(x, y) = 0, otherwise. With this choice of b(x, y), we have

We(x1,1) = b1/2. Additionally, since bj is an increasing sequence of positive numbers, using (5.1)

it is easy to see that if a vertex x is in the j-th row, then

We(x) ≥
1

2
bj−1, for all j ≥ 2. (5.2)

Let 0 < β < 3/4, and set µ(x) := j−2β if the vertex x is in the j-th row. Let α > 0 satisfy

α+ 2β > 3/2, and set bj := jα, for all j ∈ Z+. With this choice of b(x, y) and µ(x), let σ1(x, y)

be as in (1.2) and let dσ1
be the intrinsic path metric associated with σ1 as in Section 1.2. As

there are ⌊√j⌋+ 3 edges departing from the vertex xj,1, we have

σ1(xj,1; xj+1,1) = j−α/2(j + 1)−β(⌊
√

j + 1⌋+ 3)−1/2, for all j ∈ Z+. (5.3)

Additionally, note that the path γ = (x1,1; x2,1; x3,1; . . . ) is a geodesic with respect to the path

metric dσ1
, that is, dσ1

(x1,1; xj,1) = lσ1
(x1,1; x2,1; . . . ; xj,1) for all j ∈ Z+, where lσ1

is as in (1.1).

Since α+ 2β > 3/2, it follows that

∞∑

j=1

j−α/2(j + 1)−β(⌊
√

j + 1⌋+ 3)−1/2 < ∞;

hence, by [15, Theorem A.1] the space (V, dσ1
) is not metrically complete. Let D(x) be as in (1.3)

corresponding to dσ1
. If a vertex x is in the n-th row, using (5.3) and

⌊
√

j + 1⌋+ 3 ≤ 3
√

j + 1, for all j ∈ Z+,

we have

D(x) ≥ 1√
3

∞∑

k=n

(j + 1)−β−α/2−1/4 ≥ (n+ 1)−β−α/2+3/4

√
3(β + α/2− 3/4)

,
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which leads to

1

2D(x)2
≤ 3(4β + 2α− 3)2(n + 1)2β+α−3/2

32
, (5.4)

for all vertices x in the n-th row, where n ≥ 1. Define W (x) = −n2β+α−3/2 for all vertices

x in the n-th row, where n ≥ 1. Using (5.2) and We(x1,1) = b1/2, together with (5.4) and

the assumption 0 < β < 3/4, it follows that there exists a constant C > 0 (depending on α

and β) such that (1.11) is satisfied. Thus, by Theorem 2 the operator ∆b,µ;θ +W is essentially

self-adjoint on Cc(V ). Clearly, Theorem 2 is also applicable in the case W (x) = 0 for all x ∈ V ,

that is, the operator ∆b,µ;θ is essentially self-adjoint on Cc(V ). A calculation shows that µ and

b in this example do not satisfy [19, Assumption A]; hence, we cannot use [19, Theorem 1.2].

We will now show that under more restrictive assumption 1/2 < β < 3/4, we cannot apply [9,

Proposition 2.2] to this example with W (x) ≡ 0. To see this, using (1.16) and the fact that

among the ⌊√j⌋+3 edges departing from the vertex xj,1, there are ⌊√j⌋+ 1 edges with weight

bj and 2 edges with weight bj−1, we first note that

Deg(x1,1) = 2, Deg(xj,1) = j2β((⌊
√

j⌋+ 1)jα + 2(j − 1)α), for all j ≥ 2.

Let λ ∈ R be such that (1.15) is satisfied, with W (x) ≡ 0. Let δ > 0 and let an be as in (1.17)

corresponding to the path γ = (x1,1; x2,1; x3,1; . . . ), the potential W ≡ 0, δ > 0, and λ. Then

a1 = 1,

(a2)
2 =

(
δ

2
+

∣∣∣∣1 +
λ

2

∣∣∣∣
)2

=
(δ + |2 + λ|)2

4
,

and

(an)
2 =

(δ + |2 + λ|)2
4

n−1∏

j=2

(
δ + |jα+2β(⌊√j⌋+ 1) + 2j2β(j − 1)α + λ|

jα+2β(⌊√j⌋+ 1) + 2j2β(j − 1)α

)2

, n ≥ 3.

Therefore,
∞∑

n=1

(an)
2µ(xn,1) = 1 +

(δ + |2 + λ|)2
4(2)2β

+

∞∑

n=3

(an)
2

n2β
.

Using Raabe’s test, it can be checked that the series on the right hand side of this equality

converges. (Here, we used the more restrictive assumption 1/2 < β < 3/4.) Hence, looking

at (1.17), we see that [9, Proposition 2.2] cannot be used in this example.

Example 5.2. Consider the graph whose vertices are arranged in a “triangular” pattern so that

x1,1 is in the first row, x2,1 and x2,2 are in the second row, x3,1, x3,2, and x3,3 are in the third

row, and so on. The vertex x1,1 is connected to x2,1 and x2,2. The vertex x2,i, where i = 1, 2,

is connected to every vertex x3,j , where j = 1, 2, 3. The pattern continues so that each of k

vertices in the k-th row is connected to each of k + 1 vertices in the (k + 1)-st row. Note that

for all k ≥ 1 and j ≥ 1 we have deg(xk,j) = 2k, where deg(x) is as in (1.2). Let µ(x) = k1/2

for every vertex x in the k-th row, and let b(x, y) ≡ 1 for all vertices x ∼ y. Following (1.2), for
14



every vertex x in the k-th row and every vertex y in the (k + 1)-st row, define

σ(x, y) := min

{
k1/2

2k
,
(k + 1)1/2

2(k + 1)

}1/2

= 2−1/2(k + 1)−1/4.

For all vertices x in the k-th row, define W (x) = −2k1/2 and q(x) = 2k. Clearly, the inequal-

ity (1.13) is satisfied. With this choice of q, following (1.14), for every vertex x in the k-th row

and every vertex y in the (k + 1)-st row, define

σq(x, y) := min{(2k)−1/2, (2(k + 1))−1/2} · σ(x, y) = 2−1(k + 1)−3/4.

Since
∞∑

j=1

2−1(j + 1)−3/4 = ∞,

by [15, Theorem A.1] it follows that the space (V, dσq ) is metrically complete. Additionally, it

is easily checked that (1.12) is satisfied with K = 1. Therefore, by Theorem 3 the operator

∆b,µ+W is essentially self-adjoint on Cc(V ). Furthermore, it is easy to see that for every c ∈ R,

there exists a function u ∈ Cc(V ) such that the inequality

((∆b,µ +W )u, u) ≥ c‖u‖2

is not satisfied. Thus, the operator ∆b,µ +W is not semi-bounded from below, and we cannot

use [19, Theorem 1.2].

It turns out that [9, Proposition 2.2] is not applicable in this example. To see this, using (1.16)

we first note that Deg(xk,j) = 2k1/2, for all k ≥ 1 and all j ≥ 1. Let λ ∈ R be such that (1.15)

is satisfied, with W as in this example. Let an be as in (1.17) corresponding to the path

γ = (x1,1; x2,1; x3,1; . . . ), the potential W (xk,1) = −2k1/2, δ > 0, and λ. Then a1 = 1, and for

n ≥ 2 we have

(an)
2 =

n−1∏

k=1

(
δ

2k1/2
+

∣∣∣∣∣1 +
λ− 2k1/2

2k1/2

∣∣∣∣∣

)2

=
n−1∏

k=1

(δ + |λ|)2
4k

=
(δ + |λ|)2n−2

4n−1(n − 1)!
.

Therefore,
∞∑

n=1

(an)
2µ(xn,1) = 1 +

∞∑

n=2

√
n · (δ + |λ|)2n−2

4n−1(n− 1)!
.

Using ratio test, it can be checked that the series on the right hand side of this equality converges.

Hence, looking at (1.17), we see that [9, Proposition 2.2] cannot be used in this example.
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Probab. Stat. 47 (2011) 650-662

[19] Milatovic, O.: Essential self-adjointness of magnetic Schrödinger operators on locally finite graphs. Integr.

Equ. Oper. Theory 71 (2011) 13–27

[20] Milatovic, O.: A Sears-type self-adjointness result for discrete magnetic Schrödinger operators. J. Math.

Anal. Appl. 396 (2012) 801-809

[21] Nenciu, G., Nenciu, I.: On confining potentials and essential self-adjointness for Schrödinger operators on

bounded domains in R
n. Ann. Henri Poincaré 10 (2009) 377–394
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