N

N

Self-adjoint extensions of discrete magnetic Schrodinger
operators

Francoise Truc, Ognjen Milatovic

» To cite this version:

Francoise Truc, Ognjen Milatovic. Self-adjoint extensions of discrete magnetic Schrédinger operators.
Annales Henri Poincaré, 2014, 15 (5), pp.917-936. 10.1007/s00023-013-0261-9 . hal-00747698v2

HAL Id: hal-00747698
https://hal.science/hal-00747698v2
Submitted on 6 Dec 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00747698v2
https://hal.archives-ouvertes.fr

SELF-ADJOINT EXTENSIONS OF DISCRETE MAGNETIC SCHRODINGER
OPERATORS

OGNJEN MILATOVIC, FRANCOISE TRUC

ABSTRACT. Using the concept of intrinsic metric on a locally finite weighted graph, we give
sufficient conditions for the magnetic Schrédinger operator to be essentially self-adjoint. The
present paper is an extension of some recent results proven in the context of graphs of bounded
degree.

1. INTRODUCTION AND THE MAIN RESULTS

1.1. The setting. Let V be a countably infinite set. We assume that V is equipped with a
measure p: V — (0,00). Let b: V x V — [0,00) be a function such that

(i) b(x,y) = b(y,x), for all z, y € V;
(ii) b(z,z) =0, for all z € V;

(iii) deg(x) := t{y € V:b(z,y) > 0} < oo, for all x € V. Here, §S denotes the number of
elements in the set S.

Vertices x, y € V with b(z,y) > 0 are called neighbors, and we denote this relationship by
x ~ y. We call the triple (V,b, ) a locally finite weighted graph. We assume that (V,b, p) is
connected, that is, for any x, y € V there exists a path = joining = and y. Here, v is a sequence
xo, T2, ..., Ty € V such that x =z, y = vy, and z; ~ xj4q forall 0 < j <n — 1.

1.2. Intrinsic metric. Following [15] we define a pseudo metric to be amap d: V xV — [0, 00)
such that d(z,y) = d(y,x), for all z, y € V; d(x,z) = 0, for all x € V; and d(z,y) satisfies the
triangle inequality. A pseudo-metric d = d,, is called a path pseudo-metric if there exists a map
o: V xV —[0,00) such that o(z,y) = o(y,x), for all x, y € V; o(z,y) > 0 if and only if = ~ y;
and

de = inf{l,(7): v = (zo,x1,...,2y),n > 1,is a path connecting = and y},

where the length [, of the path v = (zg,z1,...,x,) is given by

i
L

lo(7) =) oz wit1). (1.1)

i

Il
o

As in [15] we make the following definitions.
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Definition 1.3. (i) A pseudo metric d on (V,b, u) is called intrinsic if

1
— b(x,y)(d(z,y))? <1, for all x € V.
) 2 e ale)

(ii) An intrinsic path pseudo metric d = d, on (V, b, u) is called strongly intrinsic if
1
— b(x,y)(o(x,y)? <1, for all x € V.
) 2 Mool )

Remark 1.4. On a locally finite graph (V, b, i), the formula

. 1/2
o1(z,y) = b(x,y)"Y? min { d/;é(u)v)’ dgé?;)} , with & ~ y, (1.2)

where deg(z) is as in property (iii) of b(z,y), defines a strongly intrinsic path metric; see [15,
Example 2.1].

1.5. Cauchy boundary. For a path metric d = d, on V', we denote the metric completion by
(V,d). As in [15] we define the Cauchy boundary OcV as follows: 8oV := V\V. Note that
(V,d) is metrically complete if and only if ¢V is empty. For a path metric d = d, on V and
x €V, we define

D(x) := Zeiggv do(x, 2). (1.3)

1.6. Inner product. In what follows, C (V) is the set of complex-valued functions on V', and
C.(V) is the set of finitely supported elements of C(V). By Ez(V) we denote the space of
functions f € C(V) such that

1P = wl@)|f (@) < oo, (1.4)
z€V
where | - | denotes the modulus of a complex number.

In particular, the space Kz(V) is a Hilbert space with the inner product

(f,9) =Y u@)f(x)g(x). (1.5)

zeV

1.7. Laplacian operator. We define the formal Laplacian A ,: C(V) — C(V') on (V,b, 1) by
the formula

(Do) () = —— 3 bl y) () — u(y)). (1.6)
() =
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1.8. Magnetic Schrédinger operator. We fix a phase function 6: V x V' — [—m, 7| such that
O(z,y) = —0(y,x) for all x,y € V, and denote 0, := 0(z,y). We define the formal magnetic
Laplacian Ay .: C(V) = C(V) on (V,b, ) by the formula
1 i
(Appu) () = —— > b(w,y)(u(z) — ¢ ru(y)). (1.7)

wa) =
We define the formal magnetic Schrodinger operator H: C(V) — C(V) by the formula
Hu = Ay .u + W, (1.8)
where W: V — R.

1.9. Statements of the results. We are ready to state our first result.

Theorem 1. Assume that (V,b, 1) is a locally finite, weighted, and connected graph. Let d = d,,
be an intrinsic path metric on V' such that (V,d) is not metrically complete. Assume that there
exists a constant C such that

1
2(D(x))?

where D(z) is as in (1.3). Then H is essentially self-adjoint on C.(V').

W(zx) > —C, forallxeV, (1.9)

Remark 1.10. It is possible to find u, b, and a potential W satisfying W(x) > W with

0 < k <1, such that H = A, + W is not essentially self-adjoint; see [2, Section 5.3.2].

If the graph (V,b, u) has a special type of covering, the condition (1.9) on W can be relaxed
with the help of “effective potential,” as seen in the next theorem. First, we give a description of
this special type of covering. In what follows, for a graph (V, b, 1), we define the set of unoriented
edges as E := {{z,y}: =, y € V and b(z,y) > 0}. Sometimes, when we want to emphasize the
set E, instead of G = (V, b, 1) we will use the notation G = (V, E).

Definition 1.11. Let m € N. A good covering of degree m of G = (V, FE) is a family G| =
(Vi, Ey)ier, of finite connected sub-graphs of G so that

(1) V =UeLVi;

(ii) for any {z,y} € E,

0<#{leL|{x,y} € E} <m.

Remark 1.12. It is known that a graph with bounded vertex degree admits a good covering;
see [3, Proposition 2.2]. The graph in Example 5.1 below does not have a bounded vertex degree.
Note that this graph has a good covering of degree m = 2.

Assume that (V,b, 1) has a good covering (Vi, Ey)icr,. Let 6; be the restriction of 6 to V; x V}.

Let A o be as in (1.7) with V. =V}, 6 = 6, and b = 1. Then Agl)u,g is a bounded and

L
non-negative self-adjoint operator in Eﬁ(‘/}) Let p; denote the lowest eigenvalue of Agl)u,e. With
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these notations, for a graph (V,b, ) and the phase function 6, we define the effective potential
corresponding to a good covering (V}, E});er of degree m as follows:

1 .
We(z) = — Z m 1nfE by, z). (1.10)
(leL [zeV}} {y,2} B
We now state our second result.
Theorem 2. Assume that (V,b, ) is a locally finite, weighted, and connected graph. Assume

that (V,b, ) has a good covering (Vi, Ey)icr. Let d = d, be an intrinsic path metric on V' such
that (V,d) is not metrically complete. Assume that there exists a constant C such that

1
We(z) + W(x) > W

where We is as in (1.10) and D(x) is as in (1.3). Then H is essentially self-adjoint on C.(V).

—C, forallzeV, (1.11)

In the setting of metrically complete graphs, we have the following result:

Theorem 3. Assume that (V,b, 1) be a locally finite, weighted, and connected graph. Let d, be
a strongly intrinsic path metric on V. Let q: V — [1,00) be a function satisfying

lg7 () — ¢V (y)| < Ko(z,y), forall z,y € V such that x ~ vy, (1.12)
where K is a constant. Let H be as in (1.8) with W: V — R satisfying
W(x) > —q(z), forallzeV. (1.13)

Let
oq(z,y) = min{g*(z),¢2(y)} - o(z,y) (1.14)

and let dy, be the path metric corresponding to oq. Assume that (V,dg,) is metrically complete.
Then H s essentially self-adjoint on C.(V).

1.13. Some comments on the existing literature. The notion of intrinsic metric allows
us to remove the bounded vertex degree assumption present in [2, 3, 20]. More specifically,
Theorem 1 extends [2, Theorem 4.2], which was proven in the context of graphs of bounded
vertex degree for the operator Ay, + W, with Ay, as in (1.6). Theorem 2 is an extension
of [3, Theorem 3.1, which was proven in the context of graphs of bounded vertex degree for
the operator Ay ... In this regard, the first two results of the present paper answer a question
posed in [3, Section 5]. Theorem 3 extends [20, Theorem 1], which was proven in the context of
graphs of bounded vertex degree for the operator Ay .o+ W with W as in (1.13). We should also
mention that in the context of locally finite graphs (with an assumption on b and p originating
from [17]), a sufficient condition for the essential self-adjointness of a semi-bounded from below
operator Ay .0 + W is given in [19, Theorem 1.2]. Another sufficient condition for the essential
self-adjointness of Ay .9 + W is given in [9, Proposition 2.2]: Let (V,b,p) be a locally finite
weighted graph. Let W:V — R and § > 0. Take A\ € R so that

{x € V: A+ Deg(z) + W(z) =0} =0, (1.15)
4



where Deg(x) denotes the “weighted degree”
Deg(z) == — Z b(x,y), zeV. (1.16)

Suppose that for every sequence of vertices {y1, ya, ...} such that y; ~ yji1, j > 1, the following
property holds:

3 (-8 A+ W (y))
2 = 00 where a, := - MABLERAS. /24 n .
;((an) o)) = o0, where - an ]1;[1 (Deg(yj) ‘ " Deg(y;) > =2 (L17)

and ay := 1. Then Ay .0 + W is essentially self-adjoint on C.(V).

Note that [9, Proposition 2.2] allows potentials that are unbounded from below. We mention
that Example 5.1 below describes a situation where Theorem 2 is applicable, while neither [19,
Theorem 1.2] nor [9, Proposition 2.2] is applicable. Additionally, Example 5.2 below describes
a situation where Theorem 3 is applicable, while neither [19, Theorem 1.2] nor [9, Proposition
2.2] is applicable.

The recent study [15] is concerned with the operator A, , as in (1.6), with property (iii) of b
(see Section 1.1 above) replaced by the following more general condition:

Z b(x,y) < oo, for all z € V.
yev

Using the notion of intrinsic distance d with finite jump size, the authors of [15] show that if
the weighted degree (1.16) is bounded on balls defined with respect to any such distance d, then
Ay, is essentially self-adjoint. In the context of a locally finite graph, the authors of [15] show
that if the graph is metrically complete in any intrinsic path metric with finite jump size, then
Ay, is essentially self-adjoint. In the metrically incomplete case, one of the results of [15] shows
that if the Cauchy boundary has finite capacity, then A, has a unique Markovian extension
if and only if the Cauchy boundary is polar (here, “Cauchy boundary is polar” means that the
Cauchy boundary has zero capacity). Another result of [15] shows that if the upper Minkowski
codimension of the Cauchy boundary is greater than 2, then the Cauchy boundary is polar.
Additionally, we should mention that the authors of [15] prove Hopf-Rinow-type theorem for
locally finite weighted graphs with a path pseudo metric.

In recent years, various authors have developed independently the concept of intrinsic metric
on a graph. The definition given in the present paper can be traced back to the work [8]. For
applications of intrinsic metrics in various contexts, see, for instance, [1, 5, 6, 7, 10, 12, 13, 14, 18|.

With regard to the problem of self-adjoint extensions of adjacency, (magnetic) Laplacian and
Schrodinger-type operators on infinite graphs, we should mention that there has been a lot of
interest in this area in the past few years. For references to the literature on this topic, see, for
instance, [2, 3, 9, 11, 15, 17, 20, 24].



2. PROOF OF THEOREM 1

In this section, we modify the proof of [2, Theorem 4.2]. Throughout the section, we assume
that the hypotheses of Theorem 1 are satisfied. We begin with the following lemma, whose proof
is given in [3, Lemma 3.3].

Lemma 2.1. Let H be as in (1.8), letv € Ez(V) be a weak solution of Hv = 0, and let f € C.(V)
be a real-valued function. Then the following equality holds:

(fv, H(fv)) Zzb z,y) Re [e"" W o(@)o(y))(f (=) — f (). (2.1)
xEV Y~z
The key ingredient in the proof of Theorem 1 is the Agmon-type estimate given in the next
lemma, whose proof, inspired by an idea of [21], is based on the technique developed in [4] for
magnetic Laplacians on an open set with compact boundary in R".

Lemma 2.2. Let A € R and let v € Ei(V) be a weak solution of (H — A)v = 0. Assume that
that there exists a constant c; > 0 such that, for all u € C.(V),

(u, (H Zmax( 1) w(@u(@)]? + e ] (22)

JCEV
Then v = 0.

Proof. Let p and R be numbers satisfying 0 < p < 1/2 and 1 < R < +oo. For any € > 0, we
define the function f.: V — R by fc(x) = F.(D(x)), where D(z) is as in (1.3) and F.: RT - R
is the continuous piecewise affine function defined by

(0 fors<e
p(s—¢€)/(p—e)fore<s<p
sfor p<s<1
lforl1<s<R
R+1—-sforR<s<R+1
Ofors>R+1

F(s) =

We first note that by the definition of F, and continuity of D(z), the support of f. is compact.
Now by [15, Lemma A.3(b)] it follows that the support of f, finite. Using Lemma 2.1 with H — A
in place of H, the inequality

—10(x 1
Re [ Vu(x)u(y)] < 5 (ju(@)]” + o)),
and Definition 1.3(i) we have

(Foo, (H = M) < 5 30 3 blar, ) @) (fela) — fulw))?

J:E\/Z/NﬂC
2
20— 2 2@ bt ), )? < Q(p’%) Su@l@P?,  (23)
zeV y~x zeV

where the second inequality uses the fact that f. is a S-Lipschitz function with 8 = p/(p — €).
6



On the other hand, using the definition of f. and the assumption (2.2) we have

1
(fev, (H = A)(fev)) 2 5 Y u@)@) + el feol . (2.4)
p<D(z)<R
We now combine (2.4) and (2.3) to get
1
32 r@el alflf < 5 3 uta
p<D(x)<R zeV

We fix p and R, and let ¢ — 0+4. After that, we let p — 0+ and R — 4o00. As a result, we get
v=0. O

Conclusion of the proof of Theorem 1. Since Ay ,.9|c,(v) is a non-negative operator, for
all w € C.(V), we have
(u H) > 3 w(o)W @),

zeV
and, hence, by assumption (1.9) we get:
(w, (H = 2u) 2 2 57— L u(@)fu@)? - (O + ) ul?
’ ~ 2 zeV D(x)z
> 1§ ax (L 1> p(@)u(@)]? — A+ C + 1/2) ull?. (2.5)
) = D(x)?’

Choosing, for instance, A = —C — 3/2 in (2.5) we get the inequality (2.2) with ¢; = 1.

Thus, (H—M)|c,(v) with A = =C—3/2 is a symmetric operator satisfying (u, (H—A)u) > [ul|?,
for all u € C.(V). In this case, it is known (see [22, Theorem X.26]) that the essential self-
adjointness of (H — A)|c,(v) is equivalent to the following statement: if v € Ei(V) satisfies
(H — MAv = 0, then v = 0. Thus, by Lemma 2.2, the operator (H — A)|c,(v) is essentially
self-adjoint. Hence, H|c, (v is essentially self-adjoint. O

3. PROOF OF THEOREM 2

Throughout the section, we assume that the hypotheses of Theorem 2 are satisfied. We begin
with the following lemma.

Lemma 3.1. Let (V}, E))icr be a good covering of degree m of (V,b, ), let H be as in (1.8),
and let W be as in (1.10). Then, for all u € C.(V) we have

(u, Hu) > > (@) (We(x) + W (@) u(z)]. (3.1)
zeV
Proof. 1t is well known that

(u, Hu) Z b(z, y)|u(z) — @V (y)2 + Z w(@)[?,



where E is the set of unoriented edges of (V,b, ). Thus, using the definition of the covering
(Vi, Ep)ier, of degree m and the definition of p; we have

(w Hu) > =5 S bl y)lule) — PEuly)? + 3 )W (@) ul)

leL {z,y}€E; eV
1
> _ : f b , 2 + 27
> mlz <{y,1£eEl (y Z)> ey @) > nlz) ()
eL zeV] zeV
which together with (1.10) gives (3.1). O

Conclusion of the proof of Theorem 2. By Lemma 3.1 and assumption (1.11), for all
u € C.(V) we have

(u, (H = Nu) 2 ) pl@)(We(z) + W (@) = Alu()|?

eV
- Zmax( 1) (@) u(x)? — (C + X+ 1/2)||ul)?.
:BEV
From hereon we proceed in the same way as in the the proof of Theorem 1. O

4. PROOF OF THEOREM 3

In this section we modify the proof of [20, Theorem 1], which is based on the technique of [23]
in the context of Riemannian manifolds. Throughout the section, we assume that the hypotheses
of Theorem 3 are satisfied.

We begin with the definitions of minimal and maximal operators associated with the expres-
sion (1.8). We define the operator Hy,i, by the formula Hynu := Hu, for all u € Dom(Hpin) :=
C.(V). As W is real-valued, it follows easily that the operator Hy,y, is symmetric in Eﬁ(V). We
define Hyax := (Hmin)*, where T denotes the adjoint of operator 7. Additionally, we define
D:={ue;(V): Hue (3(V)}. Then, the following hold: Dom(Hmax) = D and Hyaxu = Hu
for all u € D; see, for instance, [20, Section 3] or [24, Section 3] for details. Furthermore, by [16,
Problem V.3.10], the operator Hyi, is essentially self-adjoint if and only if

(Hmaxt, v) = (u, Hpax?), for all u,v € Dom(Hpax)- (4.1)

In the setting of graphs of bounded vertex degree, the following proposition was proven in [20,
Proposition 12].

Proposition 4.1. If u € Dom(Hnax), then

> b y)min{g ™ (@), a7 W)}Hu(@) — vy < A Hullllull + (K2 + Dlul?),  (4.2)
z,yeV

where H is as in (1.8) and K is as in (1.12).



Before proving Proposition 4.1, we define a sequence of cut-off functions. Let d, and d,, be
as in the hypothesis of Theorem 3. Fix zy € V and define

Xn(T) = <<w> v O> A1, zeV, neZ. (4.3)
Denote
B (xg) :=={x € V: dy(x9,2) <n}. (4.4)

The sequence {xn}necz. satisfies the following properties: (i) 0 < xn(z) < 1, for all € V;
(ii) xn(xz) = 1 for x € BJ(xp) and xn(xz) = 0 for x ¢ B, (zo); (iii) for all x € V, we have
lim x,(xz) = 1; (iv) the functions y,, have finite support; and (v) the functions yx,, satisfy the
n—oo

inequality

o(z,
)~ @) < T2 forall ey,

The properties (i)-(iii) and (v) can be checked easily. By hypothesis, we know that (V,d,,) is
a complete metric space and, thus, balls with respect to dg, are finite; see, for instance, [15,
Theorem A.1]. Let Bj!(zg) be as in (4.4) with d, replaced by do,. Since ¢ > 1 it follows that
B, (7o) C By (o). Thus, property (iv) is a consequence of property (ii) and the finiteness of

By (x0).

Proof of Proposition 4.1. Let u € Dom(Hyax) and let ¢ € C.(V') be a real-valued function.
Define

1/2
= Y bla,y)ul@) — ruly) P(6()* + (6w)*) | (4.5)
z,yeVvV
We will first show that
I* < 4(¢* Hu, w)| + 4(¢°qu, u)
1/2
V2D b y)(6(@) - 6()* (u() + P rum)? | (4.6)

z,yeV
To do this, we first note that
I? = 4(¢* Hu,u) — 4(¢*Wu, u)
+ ZV b(z, ) (e v uly) — u(x)) (e P=vuly) + u(@))((6(x)* = (6(y))*), (4.7)
RS

which can be checked by expanding the terms under summations on both sides of the equality
and using the properties b(x,y) = b(y, x) and 0(x,y) = —0(y, x). The details of this computation
can be found in the proof of [20, Proposition 12].

The inequality (4.6) is obtained from (4.7) by using (1.13), the factorization

(8(2))* = (6(1)* = (d(z) — d(y))(d(x) + B(y)),

9



Cauchy-Schwarz inequality, and
(6(x) + d(y))* < 2(¢*(x) + ¢°(y)).
Let X be as in (4.3) and let ¢ be as in (1.13). Define
() = xn(x)g /(). (4.8)

By property (iv) of x,, it follows that ¢, has finite support. By property (i) of x, and since
q > 1, we have

0 < ¢p(z) < q_l/z(x) <1, for all x € V. (4.9)

By property (iii) of x,, we have

nh—>n<;o tn(x) = ¢ (2), for all z € V. (4.10)

By (1.12), properties (i) and (v) of Xy, and the inequality ¢ > 1, we have

|on(z) — Dn(y)] < (% + K) o(x,y), for all z ~ vy, (4.11)

where K is as in (1.12). We will also use the inequality
e vuy) +u(@)]® < 2(Ju(@)* + [u(y)?). (4.12)

By (4.11), (4.12), and Definition 1.3(ii), we get

z,yeV

1/2
( S b y)(6n () — du()?I(ulz) + e”w’yuw)?)
1/2

<3 (% +K> S b, )o@ )2 (u(@)? + [u(y)P)

z,yeVv

1/2
) (% T K> ( 3 b(x,y><o<x,y>>2u<x>2)

z,yeVv

1/2
<2 (% + K) <Z u(w)!u(x)\2> (4.13)

zeV

By (4.6) with ¢ = ¢,,, (4.13), and (4.9), we obtain
1
12 < ol + alulP + 2v21, ( 7+ ) Jul, (114)

for all uw € Dom(Hpmax), where I, is as in (4.5) with ¢ = ¢,,.
10



Using the inequality ab < Z—Q + b2 with @ = v/2I,, in the third term on the right-hand side
of (4.14) and rearranging, we obtain

I2<8 <HHuHHuH + ((% + K) + 1) HuH2> . (4.15)

Letting n — oo in (4.15) and using (4.10) together with Fatou’s lemma, we get

> b, y)lulx) — P vuly)P (g (@) + ¢ ()

z,yeV
< 8 ([1HullJull + (K2 + Dlull) - (4.16)
Since
2min{q™'(2),¢7 (1)} S ¢ (@) +q7(y), forallz, y eV,
the inequality (4.2) follows directly from (4.16). O

Continuation of the proof of Theorem 3. Our final goal is to prove (4.1). Let d,, be as in
the hypothesis of Theorem 3. Fix xg € V' and define

P(x) := dy, (x0, ), xeV. (4.17)

In what follows, for a function f: V — R we define f*(z) := max{f(z),0}. Let u,v €
Dom(Hpax), let s > 0, and define

5= 3 (1= P2 (0@ - o ) o) (1.18)

s
zeV
where P is as in (4.17) and H is as in (1.8).
Since (V,dg,) is a complete metric space, by [15, Theorem A.1] it follows that the set
Us:={zxeV: Px) <s}

is finite. Thus, for all s > 0, the summation in (4.18) is performed over finitely many vertices.
The following lemma follows easily from the definition of Js; and the dominated convergence
theorem; see the proof of [20, Lemma 13] for details.

Lemma 4.2. Let Js be as in (4.18). Then
lim Jg = (Hu,v) — (u, Hv). (4.19)
In what follows, for u € Dom(H,ax), define
1/2

Ty:i= | Y bla,y)min{g " (2),q () Hu(x) — P=ruly)* | . (4.20)
z,yeV

Note that T, is finite by Proposition 4.1.
11



Lemma 4.3. Let u, v € Dom(Hax), let T, and T, be as in (4.20), and let Jg be as in (4.18).
Then

1
sl < 5 ([0l T + [lullTs).- (4.21)
Proof. A computation shows that

27, = 3" (1= P()/s)" — (1= P)/s)) ble,) (e 0ly) — oa))ul)

z,yeVvV
~(e®vuly) - u(z))o(@))
which, together with the triangle inequality and property
[fH () — g™ (2)] < |f(z) — g(2)],

leads to the following estimate:

2 <o 3 b))~ P)l (|e%u(y) — o) ju()

zyeV
e vu(y) - u(@)|lo(@)]) (4.22)
By (4.17) and (1.14), for all z ~ y we have
|P(2) = P(y)| < do, (,y) < 0g(z,y) = min{g~2(2),¢ ' 2(y)} -o(y).  (4.23)
To obtain (4.21), we combine (4.22) and (4.23) and use Cauchy—Schwarz inequality together
with Definition 1.3(ii). O

The end of the proof of Theorem 3. Let u € Dom(Hyax) and v € Dom(Hyax). By the
definition of Hpax, it follows that Hu € £2(V) and Hv € £2,(V). Letting s — 400 in (4.21) and
using the finiteness of T}, and T, it follows that Js — 0 as s — 4o00. This, together with (4.19),
shows (4.1). O

5. EXAMPLES

In this section we give some examples that illustrate the main results of the paper. In
what follows, for x € R, the notation [z]| denotes the smallest integer N such that N > z.
Additionally, |x| denotes the greatest integer N such that N < z.

Example 5.1. In this example we consider the graph G' = (V,E) whose vertices x; are
arranged in a “triangular” pattern so that the first row contains 1 1; for 2 < j < 4, the j-th row
contains w1 and z;2; for 5 < j <9, the j-th row contains x; 1, x;2, and x;3; for 10 < 5 < 16,
the j-th row contains z;1, 2, x;3, and x;4; and so on. There are two types of edges in the
graph: (i) for every j > 1, we have xj1 ~ @41 for all 1 <k < [(j + 1)Y/27; (ii) for every j > 2,
we have the “horizontal” edges x;1 ~ @jp41, for all 1 < k < [jl/z] — 1. Clearly, G does not

have a bounded vertex degree.
12



Let T = (Vr, Er) be the subgraph of G whose set of edges Er consists of type-(i) edges of
G described above. Note that T is a spanning tree of G. Additionally, note that for every
type-(ii) edge e of G the following are true: (i) e ¢ Ep and (ii) there is a unique 3-cycle (a cycle
with 3 vertices) that contains e. Thus, by [3, Lemma 2.2], the corresponding 3-cycles, which we
enumerate by {C}},ez, , form a basis for the space of cycles of GG. Furthermore, by Definition 1.11,
the family {C; = (V}, Ej) }iez, is a good covering of degree m = 2 of G. Following [3, Proposition
2.4(i)] and [3, Lemma 2.9], we define the phase function 6: V; x V; — [—m, 7] satisfying the
following properties: (i) if an edge {x,y} belongs to E;\Er, we have 0(z,y) = —0(y, z); (ii) if
{z,y} € BEr, we have 6(x,y) = 0; and (iii) p; = |1 — ¢™/3|? = 1, where p; is as in (1.10) with G,
replaced by Cf.

With this choice of p; and using the good covering {C;}ez, of degree m = 2, the definition
of the effective potential (1.10) simplifies to

1
We(x) := = Z inf  b(y, 2). (5.1)
2 {yvz}EEl
(IeL |zeV}}

Let {b;}jez, be an increasing sequence of positive numbers. We define (i) b(z,y) = b; if x ~y
and x is in the j-th row and y is in the (j + 1)-st row; (ii) b(z,y) = b; if + ~ y and x and y
are both in the (j + 1)-st row; (iii) b(z,y) = 0, otherwise. With this choice of b(z,y), we have
We(z1,1) = b1/2. Additionally, since b; is an increasing sequence of positive numbers, using (5.1)
it is easy to see that if a vertex x is in the j-th row, then

1
We(z) > ibj,l, for all j > 2. (5.2)

Let 0 < B < 3/4, and set p(z) := j~27 if the vertex z is in the j-th row. Let o > 0 satisfy
a+28 > 3/2, and set bj := j¢, for all j € Z;. With this choice of b(z,y) and p(x), let o1(x,y)
be as in (1.2) and let d,, be the intrinsic path metric associated with o1 as in Section 1.2. As
there are |\/j| + 3 edges departing from the vertex x; 1, we have

o115 jr11) =7 205+ )P+ 1] +3)7 Y2, for all j € Z. (5.3)
Additionally, note that the path v = (21,1; 2,15 z31;...) is a geodesic with respect to the path
metric dg,, that is, dg, (21,15 ©51) = lo, (1,15 22,15 .5 ;1) for all j € Z,, where I, is asin (1.1).

Since o + 28 > 3/2, it follows that
Zj 2+ 1)7P(V5 + 1] +3)7Y? < oo

hence, by [15, Theorem A.l] the space (V, dy, ) is not metrically complete. Let D(z) be as in (1.3)
corresponding to dy, . If a vertex z is in the n-th row, using (5.3) and

[Vi+1]+3<3Vj+1, for all j € Z,

we have
—B—a/2+3/4

= —aj-1/a o (R+1)
Z::‘Hl 2\/§(ﬁ+oz/2—3/4)’

13



which leads to
1 _ 3046 +2a = 3)*(n+ 1)*He=5/2
2D(gzc)2 - 32 ’

(5.4)

for all vertices x in the n-th row, where n > 1. Define W (z) = —n??+*=3/2 for all vertices
x in the n-th row, where n > 1. Using (5.2) and W,(z1,1) = b1/2, together with (5.4) and
the assumption 0 < < 3/4, it follows that there exists a constant C' > 0 (depending on «
and () such that (1.11) is satisfied. Thus, by Theorem 2 the operator Ay .9 + W is essentially
self-adjoint on C.(V'). Clearly, Theorem 2 is also applicable in the case W (z) =0 for all x € V,
that is, the operator Ay ¢ is essentially self-adjoint on C.(V'). A calculation shows that ; and
b in this example do not satisfy [19, Assumption AJ; hence, we cannot use [19, Theorem 1.2].

We will now show that under more restrictive assumption 1/2 < § < 3/4, we cannot apply [9,
Proposition 2.2] to this example with W (z) = 0. To see this, using (1.16) and the fact that
among the |v/7] + 3 edges departing from the vertex x; 1, there are |/j| 4+ 1 edges with weight
bj and 2 edges with weight b;_1, we first note that

Deg(z1,1) =2, Deg(wjn) =¥ (V7] +1)j* +2(j = 1)), forall j >2.

Let A € R be such that (1.15) is satisfied, with W (z) = 0. Let 6 > 0 and let a,, be as in (1.17)
corresponding to the path v = (x1,1; 2215 23.1;... ), the potential W =0, 6 > 0, and A. Then
a; = 15

(a2)? = (g+\1+g\>2:w

4 )
and
n— . - . . 2
2 _ @A (O LV + D) + 270 — D) 4 A -
()™ = = oF28 (/7] + 1) + 2528(j — 1) e
i J(VI+ 1) + 2570 - 1)
Therefore,
2 BN O (an)?
;(an) ,U'(xn,l) == 1+ 4(2)25 +7;’ nQB .

Using Raabe’s test, it can be checked that the series on the right hand side of this equality
converges. (Here, we used the more restrictive assumption 1/2 < g < 3/4.) Hence, looking
at (1.17), we see that [9, Proposition 2.2] cannot be used in this example.

Example 5.2. Consider the graph whose vertices are arranged in a “triangular” pattern so that
x1,1 is in the first row, w21 and x22 are in the second row, x31, x32, and 33 are in the third
row, and so on. The vertex x;; is connected to x21 and x22. The vertex xg;, where ¢ = 1,2,
is connected to every vertex x3j;, where j = 1,2,3. The pattern continues so that each of k
vertices in the k-th row is connected to each of k + 1 vertices in the (k + 1)-st row. Note that
for all K > 1 and j > 1 we have deg(zy ;) = 2k, where deg(z) is as in (1.2). Let u(z) = k/2

for every vertex z in the k-th row, and let b(z,y) = 1 for all vertices x ~ y. Following (1.2), for
14



every vertex z in the k-th row and every vertex y in the (k + 1)-st row, define

1/2
kY2 (k4 1)1/2 )
= 1 = 97 /2 _1/4
o(z,y) : mm{ TR TCESY 275 (k+ 1)

For all vertices « in the k-th row, define W(z) = —2k!/2? and ¢(z) = 2k. Clearly, the inequal-
ity (1.13) is satisfied. With this choice of ¢, following (1.14), for every vertex x in the k-th row
and every vertex y in the (k + 1)-st row, define

oq(x,y) == min{(2k) V2, (2(k + 1))"V%} - o(z,y) = 27 (b + 1) 73/
Since
22 (G+1)7%* = o,

by [15, Theorem A.1] it follows that the space (V,dg,) is metrically complete. Additionally, it
is easily checked that (1.12) is satisfied with K = 1. Therefore, by Theorem 3 the operator
Ay, + W is essentially self-adjoint on C.(V'). Furthermore, it is easy to see that for every ¢ € R,
there exists a function v € C.(V') such that the inequality

(Apu+W)u,u) 2 cllul?

is not satisfied. Thus, the operator Ay, + W is not semi-bounded from below, and we cannot
use [19, Theorem 1.2].

It turns out that [9, Proposition 2.2] is not applicable in this example. To see this, using (1.16)
we first note that Deg(zy, ;) = 2k'/2, for all k > 1 and all j > 1. Let A € R be such that (1.15)
is satisfied, with W as in this example. Let a, be as in (1.17) corresponding to the path
v = (x1,1; ©2,15 3,15 .. ), the potential W(xy 1) = —2k1/2,6 > 0, and X\. Then a; = 1, and for
n > 2 we have

n—1
) A\ — 2k1/2
2 __ _
(a") - H <2k1/2 + '1 + 2k1/2

o 5+ AD? (04 A2
) H || GRS

Pt 4l — )

Therefore,

& 5+ A 2n—2
Z(an) xnl _1+Z -1 n’_’i) .

n=1
Using ratio test, it can be checked that the series on the right hand side of this equality converges.
Hence, looking at (1.17), we see that [9, Proposition 2.2] cannot be used in this example.
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