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Abstract

LetΩ⊂R2 be a smooth bounded simply connected domain. We consider the simplified Ginzburg-

Landau energy Eε(u) = 1
2

ˆ
Ω
|∇u|2 + 1

4ε2

ˆ
Ω

(1− |u|2)2, where u : Ω→ C. We prescribe |u| = 1 and

deg (u,∂Ω) = 1. In this setting, there are no minimizers of Eε. Using a mountain pass approach,
we obtain existence of critical points of Eε for large ε. Our analysis relies on Wente estimates and
on the study of bubbling phenomena for Palais-Smale sequences.

1 Introduction
We consider a smooth bounded simply connected domain Ω⊂R2 and set Γ= ∂Ω. Let

E = {
u ∈ H1(Ω;C); |tr u| = 1

}
.

Here, tr u denotes the trace of u on Γ. If u ∈ E and we let g = tr u, then g ∈ H1/2(Γ;S1), and therefore
we may define the winding number (degree) of g [15, Appendix], denoted by deg (u,Γ) or deg (g,Γ).1

In particular, for d ∈N∗ we may define the class

Ed = {
u ∈ H1(Ω;C); |tr u| = 1 on Γ,deg (u,Γ)= d

}
.

For ε ∈ (0,∞], we consider the simplified Ginzburg-Landau energy

Eε(u)= 1
2

ˆ
Ω
|∇u|2 + 1

4ε2

ˆ
Ω

(1−|u|2)2.
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Our paper is devoted to the existence of critical points of Eε in Ed, with special focus on the case d = 1.
Boundary condition |tru| = 1 can be regarded as a relaxation of the S1-valued Dirichlet boundary

condition. This latter condition was considered in detail in the classical work [11], where the asymp-
totic behavior of critical points of Eε was studied in the limit ε→ 0. It was shown, in particular, that
zeroes (vortices) of critical points are distant from the boundary, i.e., boundary “repels” vortices. The
Ginzburg-Landau equation with the Neumann boundary condition presents another extremal effect –
“vortices flow through the boundary outside the domain”, more precisely, there are no stable (global)
minimizers with vortices [40]. The semi-stiff boundary conditions were introduced and studied in
[10], [6], [9]. These conditions are intermediate between the Dirichlet and Neumann conditions in
the following sense: the Dirichlet condition |u| = 1 is assumed for the modulus and the Neumann one
for the phase of u on the boundary.

In order to obtain nontrivial (nonconstant) critical points one can prescribe nonzero degree on
the boundary. Note that the topological degree is continuous with respect to the strong convergence
in H1(Ω;C) and one can show that the sets Ed are the connected components of E (in the topology
inherited from H1(Ω;C)). Thus minimizers of Eε in Ed (if they exist) are local minimizers in E .

A first natural issue is existence of minimizers of Eε in Ed. When ε=∞, it is easy to see that the
minimizers of E∞ in E1 are precisely the conformal representations of Ω into the unit disc D; it is
also possible to characterize the minimizers E∞ in Ed for d ≥ 2 (Corollary 3.2). When ε<∞, Eε does
not attain its minimum in Ed unless d = 0 (Lemma 3.4). This contrasts with the case of thin doubly
connected domains, in which minimizers of Eε with prescribed degrees one and one do exist [28], [6].2

Next natural question is existence of critical points. Our main result is the following.

1.1 Theorem. There exists some ε0 > 0 such that, for ε> ε0, Eε has critical points in E1.

The interesting features of existence/nonexistence of critical points were observed in [10]. Next a
nontrivial result on the existence of critical points for the Ginzburg-Landau functional with semi-stiff
boundary conditions was obtained in [28] for annuli by minimization of Eε with prescribed degrees
d on both connected component of the boundary. This result (in the case d = 1) was improved and
extended in [6] to general doubly connected domains. The existence/nonexistence study for doubly
connected domains was completed in [4]. Works [6] and [4] show that the existence of minimizers
crucially depends on the upper energy bound obtained by minimizing the Dirichlet energy among
S1-valued maps.3 Namely, if this bound does not exceed a certain threshold then minimizers exist
for all ε, otherwise they exist for large ε and do not exist for small ε. It can be conjectured on the
basis of aforementioned works that global minimizers with prescribed degrees either do not exist
or, if they exist, have no zeroes (vortices). However, in [9] it was shown that critical points with
zeroes (vortices) do exist (for small ε) for all prescribed degrees on components of a doubly connected
domain. The method in [9] makes use of nontrivial topological structure of energy sublevel sets
in the case of doubly connected domain, and critical points found in [9] are local minimizers. This
approach extends to general multiply connected domains [23], but cannot be applied to find critical
points in simply connected domains. An important tool in the construction of [9] is the approximate
bulk degree functional, introduced in that work for doubly connected domains. The latter notion can
be generalized to multiply connected domains [23]; however, it does not have an analogue for simply
connected domains.

The techniques developed in the works cited above for semi-stiff boundary conditions do not lead
to (locally or globally) minimizing solutions in simply connected domains. Thus a natural question

2A well-known similar situation occurs for the equation −∆u = u(n+2)/(n−2) in Ω ⊂ Rn with n ≥ 3, where a non trivial
topology leads to the existence of critical points [22], [3].

3In turn, this bound can be explicitly expressed in terms of the H1-capacity of the domain.
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arises: can one find minimax (saddle) critical points for semi-stiff boundary conditions? This question
motivated the present work.

By contrast with the above references and especially [9], our approach is not based on the direct
method: in Theorem 1.1, critical points are minimax type ones; their existence is obtained via the
Mountain Pass Theorem of Ambrosetti and Rabinowitz [1] combined with an asymptotic analysis of
the Palais-Smale sequences. This analysis is rather delicate, since our problem is non compact. Non
compact problems have been broadly considered in the PDE literature for more then three decades.
They include nonlinear problems with critical growth (in particular, the celebrated Yamabe problem),
three body problem, Yang-Mills equations, harmonic map problem etc. (see e.g. the references in
[16]). In non compact problems, analysis of Palais-Smale sequences and the validity of the (PS)c
(Palais-Smale condition at the energy level c) condition of Brezis, Coron and Nirenberg [18] play a
crucial role. This analysis is also at the heart of the proof of Theorem 1.1.

After our work was completed, our analysis for large ε was complemented in [32] by several exis-
tence results for small ε. The main results in [32] assert that, for small ε, Eε has critical points with
prescribed degree one provided:

1. Either Ω is close (in a suitable sense) to a disc.

2. Or Ω is a generic (in a suitable sense) simply connected domain.

Unlike the methods we develop here, the approach in [32] relies on inverse function techniques, in
the spirit of the construction of critical points of Eε with Dirichlet boundary condition performed by
Pacard and Rivière [36]. However, the two approaches have something in common: they are restricted
to the prescribed degree one. The proof in the present paper is based on a contradiction argument
which works only for relatively small energies (less than 2π); this is why we consider here only the
case of degree one. More specifically, the argument goes as follows. We first establish existence of a
mountain pass geometry for the energy functional Eε for an appropriate choice of the function space.
Using the Mountain Pass Theorem [1], this leads to the existence of sequences of almost critical
points of Eε. The key point is then to prove the following compactness result: any possible weak limit
u of such a sequence still has degree one.4 The above compactness is obtained by contradiction. To
be more precise, we prove that, up to a subsequence, a non compact sequence (un) has exactly one
vortex approaching the boundary and that the energy Eε(un) asymptotically splits into the sum of
two terms: the first one equals π and corresponds to the energy concentrated near the vortex, while
the second term is Eε(u) (the energy of the weak limit u of the sequence). When the energies of the
un’s are asymptotically below the critical value 2π, the weak limit u turns out to be a critical point of
Eε whose energy lies in the interval (0,π). We complete the proof by proving that there is no such a
critical point minimizing the functional with respect to its own boundary conditions.

This approach however cannot be directly applied for finding critical points with degrees greater
than one; this remains an interesting open problem.

Our paper is organized as follows. In Section 2, we recall the existence and the basic properties
of the boundary degree for maps in E , as well as some applications of the Wente estimates, which
are crucial in the analysis of the Palais-Smale sequences. In Section 3, we prove the (non)existence
of minimizers of Eε. The basic objects involved in this analysis are the Blaschke products, that play
a crucial role in what follows. Section 4 gives the structure of maps close (in a suitable sense) to
Moebius transforms, and more generally to Blaschke products. The results in Section 4 are used in
Section 5 for establishing a mountain pass geometry (in a suitable functional setting). In Section 5,
we rely on the Mountain Pass Theorem in order to obtain sequences of almost critical points of Eε and
an almost critical level c > π. In Section 6 we prove Theorem 1.1. The rather simple proof requires

4Such a limit is a critical point of Eε with degree one.
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both ε large and c < 2π. Once the existence of critical points is established, we determine in Section 7
their behavior as ε→∞. We next turn to the task of generalizing Theorem 1.1 to a larger range of ε’s.
This relies on a careful analysis of the Palais-Smale sequences. Although Theorem 1.1 is about degree
1 and simply connected domains, we found interesting to present in Sections 8 and 9 the analysis of
the Palais-Smale sequences when the boundary degree is arbitrary and the domain is allowed to
be multiply connected.5 We next rely on this analysis in order to obtain a slight generalization of
Theorem 1.1; see Theorem 8.14. In Section 9, we present an application of the bubbling analysis in
multiply connected domains. More specifically we obtain, in thick circular annuli and for large ε,
existence of critical points with prescribed degrees one and zero (Theorem 9.6).

Acknowledgements. We are grateful to J.-M.Coron for a very helpful conversation in the early
stages of this paper. The work of LB was supported by NSF grant DMS-1106666. The work of VR
was partially supported by NSF grant DMS-1106666. PM was supported by the ANR project ANR-
12-BS01-0013-03.
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2 Functional setting
We start by specifying some notation used throughout the paper.

1. D, respectively S1, denote the unit disc, respectively the unit circle. More generally, we will
denote {z ∈C; |z| < r}, respectively {z ∈C; |z| = r}, by Dr, respectively Cr.

2. ω and Ω will usually denote smooth open subsets of R2.

3. When ω ⊂ R2 is smooth,
∂

∂τ
stands for the tangential differentiation on ∂ω endowed with its

natural orientation (counterclockwise on the outer boundary of ω, clockwise on the inner com-

ponents of ∂ω). The notation
∂

∂ν
stands for the differentiation with respect to the outward

normal.
5If we specialize to simply connected domains, some of our arguments can be substantially simplified. See e.g. Lemma

2.24 and Remark 2.25.
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4. If ω⊂R2 is a smooth bounded open set and if g ∈ L1(∂ω;C), then we let u(g) denote the harmonic

extension of g, i.e., u(g) ∈ W1,1(ω) satisfies

{
∆u(g)= 0 in ω

tr u(g)= 0 on ∂ω
. If in addition g ∈ H1/2(∂ω;C),

then we define a semi-norm in H1/2 via the formula

|g|2H1/2 =
1
2

ˆ
ω

|∇u(g)|2. (2.1)

As well-known, this semi-norm is equivalent to the standard (Gagliardo) semi-norm

g 7→
(ˆ

∂ω

ˆ
∂ω

|g(x)− g(y)|2
|x− y|2 dsxdsy

)1/2

, g ∈ H1/2(∂ω;C).6

5. ∧ stands for the vector product of complex numbers: (a1+ıa2)∧(b1+ıb2)= a1b2−a2b1. Similarly,
the notation u∧∇v, with u and v complex-valued functions, stands for the vector-field u1∇v2 −
u2∇v1.

6. If u ∈ C1(ω;C), u = u1 + ıu2, then Jac u =∇u1 ∧∇u2 = ∂xu∧∂yu is the Jacobian determinant of
u. When ω is smooth bounded and u ∈ C1(ω), we note the integration by parts formula

ˆ
ω

Jac u = 1
2

ˆ
∂ω

u∧ ∂u
∂τ

. (2.2)

Formula (2.2) extends to H1 maps; see Lemma 2.3.

7. If (a,b) ∈ R2, then (a,b)⊥ = (−b,a). With complex notation, z⊥ = ız. In the same vein, for
functions f = f (x, y), we let ∇⊥ f = (−∂y f ,∂x f ).

8. With the above notation, we have Jac ( f , g)=−∇ f ·∇⊥g.

9. · stands for the real scalar product. E.g., we have (a1 + ıa2) · (b1 + ıb2) = a1b1 + a2b2, and if
u = u1 + ıu2 and v = v1 + ıv2 are complex vectors, then u ·v = u1 ·v1 +u2 ·v2.

10. Several function spaces will appear frequently:

a) E = {u ∈ H1(Ω;C); |tr u| = 1}. If, in addition, Ω is simply connected and d ∈Z, then Ed = {u ∈
E ; deg (u,∂Ω)= d}.

b) When Ω=D, the two above spaces are denoted G , respectively Gd.

c) We let H = H1/2(S1;S1) and Hd = {g ∈H ; deg g = d}.

We next turn to the description of a functional setting adapted to the study of critical points.
If g ∈ H1/2(S1;C), then the semi-norm |g|H1/2 is easily expressed in terms of Fourier coefficients: if

we write g =∑
aneınθ, then

|g|2H1/2 =π
∑ |n||an|2. (2.3)

As noticed first by Boutet de Monvel and Gabber [15, Appendix], a map g ∈ H1/2(S1;S1) has a
well-defined winding number (degree), denoted deg (g,S1), or simply deg g. This degree is defined as

6When ω is simply connected, this equivalence is already implicit in Gagliardo’s paper on trace theory [25].
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follows. On the one hand, C∞(S1;S1) is dense in H1/2(S1;S1) [15, Appendix].7 On the other hand, if
we write in Fourier series a smooth circle-valued map g as g =∑

aneınθ , then

deg g =∑
n|an|2. (2.4)

Via (2.3), we easily obtain that the degree of smooth maps is continuous with respect to the H1/2

convergence. This implies that the right side of (2.4) is an integer for each map g ∈ H1/2(S1;S1); this
integer is the degree of g.

When S1 is replaced by a smooth simple closed planar curve Γ, the degree of a map g ∈ H1/2(Γ;S1)
can be defined using the above procedure: we first establish density of C∞(Γ;S1) into H1/2(Γ;S1),
next prove continuity of the degree of smooth maps for H1/2 convergence. An alternative equivalent
approach is the following. Let Ω be the domain enclosed by the curve Γ. We fix some conformal rep-
resentation Φ ∈ C∞(Ω;D). Let Ψ=Φ|Γ : Γ→S1. If g ∈ H1/2(Γ;S1), then we have g ◦Ψ−1 ∈ H1/2(S1;S1)
and thus we may set

deg (g,Γ)= deg (g ◦Ψ−1,S1). (2.5)

Formula (2.5) reduces the study of degree to the case where Γ = S1 and Ω = D. Existence of the
degree suffices to describe the functional setting we need. However, in subsequent sections we will
use further properties of the degree. For the convenience of the reader, these properties are recalled
below. The results we present are well-known to the experts but difficult to find in the literature. We
follow mainly unpublished lecture notes of a graduate course of H. Brezis at Paris 6. Some of the
results in this section are also presented in [15, 20, 21, 14, 19]. Proofs of Lemmas 2.1-2.3 and 2.5-2.8
are part of Ginzburg-Landau folklore, but most of them unavailable; see however [37, p. 37–41] for
some proofs.

2.1 Lemma. 1. C∞(Γ;S1) is dense in H1/2(Γ;S1).

2. The degree of H1/2(Γ;S1) maps is continuous with respect to the strong H1/2-convergence.

3. The degree of H1/2(Γ;S1) maps is not continuous with respect to the weak H1/2-convergence.

Proof. The first two items rephrase the beginning of this section. For the third one, we let Γ=S1 and
proceed as follows: let ga(z) = z−a

1−az
, z ∈ S1, a ∈ (0,1). Then ga * −1 as a → 1 and deg ga = 1, but

deg (−1)= 0.

The lack of continuity of the degree with respect to weak convergence makes the minimization of
Eε in Ed non trivial.

We continue with a result relating the degree of H1/2 maps to the more familiar degree of contin-
uous maps.

2.2 Lemma. Let u ∈ H1(D;C)∩C(D;C). Assume that 0 < c ≤ |u| ≤ C <∞ in a neighborhood of S1 and
that |tr u| = 1. Then, for r close to 1, we have

deg (tr u,S1)= deg (u,Cr)= deg (u/|u|,Cr). (2.6)

In the remaining part of this section, unless otherwise stated, Ω is a smooth bounded simply
connected domain and Γ= ∂Ω.

We continue with two useful formulas giving the degree. The first one is merely an interpretation
of (2.4).

7The point here is not density of smooth maps, but density of smooth circle-valued maps.
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2.3 Lemma. Let g ∈ H1/2(Γ;S1) and let u ∈ H1(Ω;C) be such that tr u = g. Then

deg g = 1
2ıπ

〈
∂g
∂τ

, g
〉

H−1/2,H1/2
= 1

2π

ˆ
Γ

g∧ ∂g
∂τ

(2.7)

and

deg g = 1
π

ˆ
Ω

Jac u. (2.8)

The second equality in (2.7) is valid only when g is sufficiently smooth, say g ∈ C1. In this paper,
we often use this equality, but the integral has to be understood in the sense of the H1/2 − H−1/2

duality.

2.4 Corollary. Let u ∈ H1(Ω;C).

1. If |u| = 1 on ∂Ω, then
ˆ
Ω
|∇u|2 ≥ 2π|deg (tr u,∂Ω)|. (2.9)

2. If |u| ≥ ρ > 0 on ∂Ω, then
ˆ
Ω
|∇u|2 ≥ 2πρ2|deg (tr u,∂Ω)|. (2.10)

Proof. The first conclusion above is obtained by combining (2.8) with the pointwise inequality 2|Jac u| ≤
|∇u|2. The second one is obtained by applying (2.9) to Φ(u), where Φ(z)=

{
z/ρ, if |z| ≤ ρ
z/|z|, if |z| > ρ .

As one may expect, the degree of H1/2 maps inherits some well-known properties of the degree of
continuous maps.

2.5 Lemma. deg is locally constant in H1/2(Γ;S1).

2.6 Lemma. Let g,h ∈ H1/2(Γ;S1). Then the following hold.

1. If g is continuous, then the degree of g in the sense H1/2 maps is the same as the degree of g in the
sense of continuous maps.

2. deg (gh)= deg g+deg h.

3. deg (g/h)= deg g−deg h.

4. deg g = 0⇐⇒ g = eıψ for some ψ ∈ H1/2(Γ;R).
More generally, deg g = d ⇐⇒ g = g0eıψ for some ψ ∈ H1/2(Γ;R) and a fixed smooth reference map
g0 ∈ C∞(Γ;S1) of degree d.

Item 4. above gives a first characterization of maps with zero degree. Further characterization
are related to the existence of circle-valued extensions.
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2.7 Lemma. 1. Let u ∈ H1(Ω;C) be such that essinf |u| > 0. Then we may write u = ρeıϕ, where
ρ = |u| ∈ H1(Ω;R) and ϕ ∈ H1(Ω;R).

2. Let g ∈ H1/2(Γ;S1). Then

deg g = 0 ⇐⇒ g = tr u for some u ∈ H1(Ω;S1)
⇐⇒ g = tr u for some u ∈ H1(Ω;C) such that essinf |u| > 0.

3. Let g ∈ H1/2(Γ;S1) be such that deg g = 0. Write g = eıψ, with ψ ∈ H1/2(Γ;R) and define H1
g(Ω;S1) :=

{u ∈ H1(Ω;C); |u| = 1 and tr u = g}. Then we have

H1
g(Ω;S1)= {eıϕ; ϕ ∈ H1(Ω;R) and tr ϕ=ψ}.

Similarly, for C > 0 we have the equality

{u ∈ H1(Ω;C); essinf |u| ≥ C, tr u = g}= {ρeıϕ; ρ,ϕ ∈ H1(Ω;R), tr ϕ=ψ,essinf ρ ≥ C}.

Let us also note that, if we may write u = ρeıϕ for some ϕ ∈ H1 and for some ρ ∈ H1∩L∞ such that
essinf ρ > 0, then we have the identities

|∇u|2 = |∇ρ|2 +ρ2|∇ϕ|2 and ∇ϕ=
(

u
ρ

)
∧∇

(
u
ρ

)
= 1
ρ2 u∧∇u. (2.11)

Like for continuous maps, in a multiply connected domain ω a circle-valued H1 map u need not have
a global phase ϕ as in Lemma 2.7. However, as a consequence of Lemma 2.7 1, if essinf |u| > 0 then
we may locally write

u = ρ eıϕ, with ρ = |u| and such that (2.11) holds. (2.12)

In particular, ∇ϕ is globally defined. Global existence of ϕ itself is governed by the next result, which
is the H1-counterpart of a well-known property of continuous circle-valued maps.

2.8 Lemma. Let ω ⊂ R2 be a smooth bounded domain. Let u ∈ H1(ω;C) be such that essinf |u| > 0.
Then

u = |u|eıϕ, with ϕ ∈ H1(ω;R)⇐⇒ deg
(

u
|u| ,γ

)
= 0, ∀γ component of ∂ω.

2.9 Corollary. Let ω⊂R2 be a smooth bounded domain. Let u j ∈ H1(ω;C), j ∈ J1,2K, be such that 0 <
essinf |u j| ≤ esssup |u j| <∞, j ∈ J1,2K. Assume that deg

(
u1

|u1|
,γ

)
= deg

(
u2

|u2|
,γ

)
, for each component

γ of ∂ω.

Then we may write u2 = u1ηeıϕ, where η=
∣∣∣∣u2

u1

∣∣∣∣ ∈ H1(ω;R) and ϕ ∈ H1(ω;R).

By Lemma 2.1, the class Ed (and in particular Gd) is closed with respect to strong H1 convergence,
but is not closed with respect to the weak H1 convergence. However, we do have weak closedness in
absence of vortices, as explained in the next couple of results.

Let ω⊂R2 be smooth and bounded. Let Γ j, j ∈ J1,kK, be the components of ∂ω. Consider, for λ> 0,
the class H (λ) := {u ∈ H1(ω;C); |u| ≥λ}. For u ∈H (λ), let d(u) ∈Zk, d j(u) := deg (u/|u|,Γ j).
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2.10 Lemma. Let (un) ⊂ H (λ) be such that un * u weakly in H1. Then, for large n, we have d(un) =
d(u).

In particular, for every d ∈Zk, the class

H (λ)
d := {u ∈H (λ); d(u)=d}

is weakly closed.

Proof. The above lemma follows essentially from the results of White on the existence of homotopical
invariants [43], but we present below a simple direct proof.

It is straightforward that, if un * u, then
un

|un|
*

u
|u| . Therefore, we may assume that all the maps

are circle-valued.
Let f ∈ C∞(ω). Then we have the identity [6, (2.2)]

2
ˆ
ω

f Jac un =
ˆ
∂ω

f un ∧ ∂un

∂τ
+
ˆ
ω

(
∂ f
∂y

un ∧ ∂un

∂x
− ∂ f
∂x

un ∧ ∂un

∂y

)
. (2.13)

Since un is circle-valued, we have Jac un ≡ 0 [19]. Combining this fact with (2.7) we find that, if f is
such that f = 1 on Γ j and f = 0 on ∂ω\Γ j, then (2.13) becomes

deg (un,Γ j)=± 1
2π

ˆ
ω

(
∂ f
∂y

un ∧ ∂un

∂x
− ∂ f
∂x

un ∧ ∂un

∂y

)
, (2.14)

where, according to the orientation of Γ j, the minus sign corresponds to the outer component of ∂ω,
and the plus sign corresponds to all other components of ∂ω. We conclude via the fact that the right-
hand side of (2.14) is continuous with respect to the weak H1 convergence of uniformly bounded
maps.

By combining Lemma 2.10 with Corollary 2.9 and with (2.11), we obtain the following straightfor-
ward consequence, whose proof is left to the reader.

2.11 Lemma. Let ω be as above. Let (un)⊂H (λ) satisfy un * u and |un| ≤Λ.
Then, for large n, we may write un = uηneıψn , with λ/Λ≤ ηn ≤Λ/λ and ηn * 1, ψn * 0 in H1(ω;R).

The next result is essentially due to Brezis and Nirenberg [21, Theorem A3.2].

2.12 Lemma. Let u ∈ H1(Ω;C) satisfy ∆u ∈ L∞ and |tr u| = 1. Then

lim
z→∂Ω

|u(z)| = 1. (2.15)

Proof. When ∆u = 0, (2.15) follows by combining [21, Theorem A3.2] with the embedding H1/2(Γ) ,→
V MO.

In the general case, we write u = v+w, with v harmonic and tr w = 0. Then w ∈ C0(Ω) and thus
lim

z→∂Ω
w(z)= 0. We conclude via the fact that lim

z→∂Ω
|v(z)| = 1.

We will also need the following version of Lemma 2.12.

2.13 Lemma. Let u j,u ∈ H1(Ω;C) be such that |tr u j| = 1, u j → u in H1 and |∆u j| ≤ C. Then

|u j|→ |u| uniformly in Ω. (2.16)
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Proof. By standard interior estimates [27, Theorem 9.11, p. 235], we have u j → u uniformly on
compact subsets of Ω.

In order to describe the boundary behavior of u j, write, as in the previous lemma, u j = v j+w j and
u = v+w. The proof of [21, Theorem A3.2] gives the following uniform convergence:

lim
z→∂Ω

inf
j
|v j(z)| = 1. (2.17)

On the other hand, w j → w in W2,p(Ω), ∀p ∈ (1,∞), by standard elliptic estimates [27, Theorem 9.15,
p. 241], and thus w j → w uniformly in Ω.

We conclude by combining this uniform convergence with (2.17).

We next return to our initial problem of finding critical points of Eε in Ed and transfer it from
Ω to D. To this end we consider a fixed conformal representation Φ : Ω→ D. Let w = Jac Φ−1 ∈
C∞(D; (0,+∞)) and set β= 1

ε2 w. We associate to Φ and ε the energy

Fβ(u)= 1
2

ˆ
D

|∇u|2 + 1
4

ˆ
D

β(x)(1−|u|2)2, (2.18)

and to E and Ed the classes G = {u ∈ H1(D;C); |tr u| = 1}, respectively

Gd = {
u ∈ H1(D;C); |tr u| = 1,deg (u,S1)= d

}
. (2.19)

In view of the conformal invariance of the Dirichlet integral, it is easy to see that finding critical
points (or minimizers) of Eε in Ed is equivalent to finding critical points (or minimizers) of Fβ in Gd.
It will be convenient to consider the energy Fβ for more general weights. In what follows, we always
assume that

β is non negative and essentially bounded. (2.20)

We continue with a brief discussion concerning the critical points of Fβ (with respect to the pre-
scribed degree boundary condition, but this is implicitly assumed and will not be specified).

2.14 Definition. By a critical point of Fβ we mean a solution of
−∆u = β u(1−|u|2) in D
|tr u| = 1 on S1ˆ

D

(u∧∇u) ·∇ζ = 0 ∀ζ ∈ H1(D)

deg (u,S1) = d

. (2.21)

The above definition is motivated by the fact that (2.21) consists of the Euler-Lagrange equations
obtained by variations of u with compact support in D and by variations of the type ueıt f , where
f ∈ C∞(D;R).

We warn the reader that there is another natural notion of critical point of Fβ, when g = tr u is
prescribed. In this case, u satisfies{ −∆u = β u(1−|u|2) in D

u = g on S1 . (2.22)

A solution of (2.22) will be referred to as a critical point of Fβ with respect to its own Dirichlet
boundary condition.

Problems (2.21) and (2.22) transpose steadily to multiply connected domains.
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2.15 Lemma. Let u belong to Gd. Then u is a critical point of Fβ if and only if u ∈W2,p(D), ∀p ∈ [1,∞),
and 

−∆u = β u(1−|u|2) in D
|tr u| = 1 on S1

u∧ ∂u
∂ν

= 0 on S1

deg (u,S1) = d

. (2.23)

In addition, if β is smooth, then so is u.

Proof. Follow the argument in [5, Lemma 4.4].

2.16 Remark. Let us comment the condition u∧∂u/∂ν= 0 on S1. Since u belongs to W2,p, p <∞, we
have u ∈ C1(D). Given some point z ∈ S1, we may write, locally near z, u in the form u = ρeıϕ, and
then the conditions |u| = 1 and u∧∂u/∂ν= 0 read, locally near z:

ρ = 1 and
∂ϕ

∂ν
= 0. (2.24)

We also note the that (2.24) holds for critical points of the original energy, Eε, in Ω.

For further use, let us mention the maximum principle, essentially established in [11].

2.17 Lemma. Let u ∈ G be a critical point of Fβ with respect to its own boundary condition g ∈
H1/2(S1;S1). Then |u| ≤ 1 in D.

In our analysis we also rely on the following Price Lemma [6, Lemma 1].

2.18 Lemma. Let ω ⊂ R2 be smooth and bounded. Let Γ j, j ∈ J1,kK, be the components of ∂Ω. Let
(un)⊂ H1(ω;C) satisfy: un * u in H1(ω), |tr un| = 1, deg (un,Γ j)≡ d j. Let β ∈ L∞(ω). Then

liminf Fβ(un)≥ Fβ(u)+π
k∑

j=1
|d j −deg (u,Γ j)|. (2.25)

We complete this section by recalling one of the important tools in our proofs, the Wente estimates
[42] in the sharp form of Bethuel and Ghidaglia [12], and some of their applications.

In the remaining part of this section, ω⊂R2 is assumed to be smooth and bounded.

2.19 Lemma. Let f ∈ H1
0(ω;R) and g,h ∈ H1(ω;R). Let u ∈ W1,1

0 (ω) be the solution of ∆u = Jac (g,h).
Then:

1. We have u ∈ C(ω)∩H1(ω) and

‖u‖L∞ ≤ 2‖∇g‖L2‖∇h‖L2 , (2.26)

‖∇u‖L2 ≤
p

2‖∇g‖L2‖∇h‖L2 . (2.27)

In particular, the map

[H1(D;R)]2 3 (g,h) 7→ u ∈ C(ω)∩H1(ω)

is continuous.
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2. We have∣∣∣∣ˆ
ω

f Jac (g,h)
∣∣∣∣≤p

2‖∇ f ‖L2‖∇g‖L2‖∇h‖L2 . (2.28)

2.20 Lemma. Let

H := {h ∈ H1(ω;R);∆h = 0}. (2.29)

Let f ∈ H1
0(ω;R), g ∈ H1(ω;R) and h ∈H. Then∣∣∣∣ˆ

ω

f∇g ·∇h
∣∣∣∣≤ C(ω)‖∇ f ‖L2‖∇g‖L2‖∇h‖L2 . (2.30)

Proof. We start with the simpler case where ω is simply connected. If h ∈ H, let h∗ denote the

harmonic conjugate of h, normalized by
ˆ
∂ω

h∗ = 0. Recall the identity

Jac (g,h) :=−∇g ·∇⊥h.8 (2.31)

Using (2.31) and the fact that ∇h∗ =∇⊥h, we have
ˆ
ω

f∇g ·∇h =−
ˆ
ω

f Jac (g,h∗). By this equality

and (2.28), we obtain (2.30) with C(ω)=p
2.

We next turn to a multiply connected domain. Let ω j, j ∈ J1,kK, be the bounded components of

R2 \ω. Fix a j ∈ω j and let X j(x) := 1
2π

(∇ ln(x−a j)
)⊥. Note that each X j is closed. Let X := (∇h)⊥. By

a standard mean value argument, we may find curves Γ j ⊂ω, j ∈ J1,kK, such that the following hold:

1. Γ j is homotopic in ω to ∂ω j.9

2.

∣∣∣∣∣
ˆ
Γ j

X ·τ
∣∣∣∣∣≤ C‖∇h‖L2 .

Let c j :=
ˆ
Γ j

X ·τ and set Y := X −∑
j c j X j. By construction, the vector field Y is closed, and satisfies

‖Y ‖L2 ≤ C‖∇h‖L2 and
ˆ
Γ j

Y ·τ = 0, ∀ j.10 Since the Γ j ’s span the homotopy group π1(ω), this implies

that
ˆ
Γ

Y ·τ= 0 for each smooth closed curve Γ⊂ω. Thus we may write Y =∇u for some u, and it is

easy to see that ‖∇u‖L2 ≤ C‖∇h‖L2 . Using (2.28), we find that∣∣∣∣ˆ
ω

f∇g ·∇h
∣∣∣∣=

∣∣∣∣∣
ˆ
ω

f Jac (g,u)+∑
j

c j

ˆ
ω

f∇g · X⊥
j

∣∣∣∣∣≤ C(ω)‖∇ f ‖L2‖∇g‖L2‖∇h‖L2 .

Recall that, given a function f on ∂ω, we let u( f ) denote the harmonic extension of f .
8Recall that (a,b)⊥ = (−b,a).
9In particular, these curves span the homotopy group π1(ω).

10The latter property follows from the identity
ˆ
Γ j

X l =
{

1, if j = l
0, if j 6= l

.
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2.21 Lemma. If f , g ∈ H1/2(∂ω), then u := u( f g)−u( f )u(g) belongs to C(ω)∩H1
0(ω) and we have

‖u‖L∞ ≤ C(ω)| f |H1/2 |g|H1/2 (2.32)

and

‖u‖H1 ≤ C(ω)| f |H1/2 |g|H1/2 . (2.33)

Proof. It suffices to establish the above estimates when f and g are smooth. In this case, u is smooth
and we have11{

−∆u = 2∇u( f ) ·∇u(g) in ω

u = 0 on ∂ω
. (2.34)

If we multiply (2.34) by u and use (2.30), we find that
ˆ
ω

|∇u|2 ≤ C(ω)‖∇u‖L2‖∇u( f )‖L2‖∇u(g)‖L2 ≤ C(ω)‖∇u‖L2 | f |H1/2 |g|H1/2 ,

whence (2.33).
On the other hand, by the proof of Lemma 2.20, we may write ∇u(g)=−∇v− c j X⊥

j , with ‖∇v‖L2 ≤
C|g|H1/2 and |c j| ≤ C|g|H1/2 . We find that

∆u = 2Jac (u( f ),v)−2
∑

c j(∇u( f ))∧ X j. (2.35)

Then using Lemma 2.19, we obtain that

‖u‖L∞ ≤ C(ω)
(‖∇u( f )‖L2‖∇v‖L2 +

∑ |c j|‖∇u( f )‖L2‖X j‖L∞
)≤ C(ω)| f |H1/2 |g|H1/2 .

From the above, if fn * f and gn * g in H1/2, then for the corresponding u’s we have un * u in
H1(ω). This conclusion can be strengthened as follows.

2.22 Lemma. Let f , gn, g ∈ H1/2(∂ω) be such that gn * g in H1/2. Then u( f gn)−u( f )u(gn)→ u( f g)−
u( f )u(g) strongly in H1(ω).

As a consequence, if fn → f and gn * g in H1/2 then u( fn gn)− u( fn)u(gn) → u( f g)− u( f )u(g)
strongly in H1(ω).

Proof. Let un := u( f gn)−u( f )u(gn)−u( f g)+u( f )u(g). By Lemma 2.21, we have |un| ≤ C and un * 0
in H1(ω). Thus un∇u( f )→ 0 in L2(ω). Since −∆un = 2∇u( f ) · (∇u(gn)−∇u(g)

)
, we find that

ˆ
ω

|∇un|2 = 2
ˆ
ω

(
un∇u( f )

) · (∇u(gn)−∇u(g)
)→ 0 as n →∞.

2.23 Remark. Lemma 2.22 can be restated as follows: if gn * g weakly in H1/2, then ∇u( f )·∇u(gn)→
∇u( f )·∇u(g) strongly in H−1(ω). The above proof leads to the following more general fact: if u ∈ H1(ω)
and vn * v in H1(ω), with vn harmonic, then ∇u ·∇vn →∇u ·∇v strongly in H−1(ω).12

11For further use, let us note that a byproduct of the proof is that (2.34) still holds for arbitrary f and g.
12For a cousin assertion when ω is simply connected, see [24, Lemma 4.2].
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2.24 Lemma. Let f , gn ∈ H1/2(∂ω;S1). Assume that gn * 1 in H1/2. Then
ˆ
ω

|∇u( f gn)|2 =
ˆ
ω

|∇u( f )|2 +
ˆ
ω

|∇u(gn)|2 + o(1) as n →∞. (2.36)

Equivalently, | f gn|2H1/2 = | f |2
H1/2 +|gn|2H1/2 + o(1).

Proof. Let u := u( f ) and vn := u(gn). In view of Lemma 2.22, (2.36) is equivalent to
ˆ
ω

|u∇vn +vn∇u|2 =
ˆ
ω

|∇u|2 +
ˆ
ω

|∇vn|2 + o(1). (2.37)

Using the maximum principle Lemma 2.17 combined with the fact that vn → 1 a.e. in ω and ∇vn * 0
in L2(ω), we find that

ˆ
ω

(u∇vn) · (vn∇u)=
ˆ
ω

∇vn · (vnu∇u)→ 0.

Then (2.37) amounts to
ˆ
ω

|u|2|∇vn|2 +
ˆ
ω

|vn|2|∇u|2 =
ˆ
ω

|∇vn|2 +
ˆ
ω

|∇u|2 + o(1). (2.38)

In turn, (2.38) is easily obtained by combining the following ingredients:

1. |u(z)|→ 1 uniformly as dist(z,∂ω)→ 0 (cf Lemma 2.12).

2.
ˆ

K
|∇vn|2 → 0 on each compact subset K ⊂ω.

3. |vn| ≤ 1 (cf Lemma 2.17).

4. vn → 1 uniformly on compact subsets of ω.

2.25 Remark. The proof of (2.36) is much simpler when ω is simply connected. Indeed, by conformal
invariance of the quantities we consider, we may assume that ω=D. In this case, if f =∑

aneınθ, then
Parseval’s identity combined with (2.3) yields

ˆ
S1

ˆ
S1

| f (x)− f (y)|2
|x− y|2 dxdy= 4π2 ∑ |n||an|2 = 4π| f |2H1/2 . (2.39)

Thus (2.36) amounts to
ˆ
S1

ˆ
S1

| f (x)gn(x)− f (y)gn(y)|2
|x− y|2 dxdy=

ˆ
S1

ˆ
S1

| f (x)− f (y)|2
|x− y|2 dxdy

+
ˆ
S1

ˆ
S1

|gn(x)− gn(y)|2
|x− y|2 dxdy+ o(1).

(2.40)

Using the fact that | f | = |gn| = 1, we obtain

| f (x)gn(x)− f (y)gn(y)|2
|x− y|2 = | f (x)(gn(x)− gn(y))+ ( f (x)− f (y))gn(y)|2

|x− y|2

= |gn(x)− gn(y)|2
|x− y|2 + | f (x)− f (y)|2

|x− y|2 +2Fn ·Gn,
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where Fn(x, y)= f (x)gn(y)
f (x)− f (y)
|x− y| and Gn(x, y)= gn(x)− gn(y)

|x− y| . Thus (2.40) is equivalent to

ˆ
S1

ˆ
S1

Fn ·Gn → 0. (2.41)

We obtain (2.41) using the fact that Fn → F(x, y) = f (x)
f (x)− f (y)
|x− y| strongly in L2(S1 ×S1) and Gn *

0 weakly in L2(S1 ×S1).13

3 The basic example
We discuss here the minimization of Fβ in Gd with d ∈N∗.14

Recall that a Blaschke product is a map of the form

Bα,a1,...,ad (z)=α
d∏

j=1

z−a j

1−a j z
, z ∈D, d ∈N∗, α ∈S1, a j ∈D, ∀ j ∈ J1,dK.

More specifically, we will call such a product a d-Blaschke product. In the special case d = 1, a
Blaschke products reduces to a Moebius transform

Mα,a(z)=α z−a
1−az

, z ∈ D,α ∈S1, a ∈D.

For further use, let us also define Ma = M1,a and the restriction of Ma to S1:

Na :S1 →S1, Na(z)= Ma(z), z ∈S1. (3.1)

3.1 Lemma. Assume that β= 0. Then u minimizes F0 in Gd if and only if u is a d-Blaschke product.

Proof. We argue as in [5, Section 4.1]. Since |∇u|2 ≥ 2Jac u, we have

F0(u)= 1
2

ˆ
D

|∇u|2 ≥
ˆ
D

Jac u =πdeg (u,S1)=πd, (3.2)

the second equality following from (2.8). Equality in (3.2) requires |∇u|2 = 2Jac u a.e., which implies
that u is holomorphic. In particular, if g = tr u, then u = u(g).

On the other hand, if g ∈ H1/2(S1;S1) and if u = u(g) is the harmonic extension of g, then Lemma
2.12 implies

lim
|z|→1

|u(z)| = 1. (3.3)

In order to complete the proof of Lemma 3.1, it suffices to combine (3.3) with the holomorphy of u and
with the following well-known result: let u ∈Hol(D).15 Then

lim
|z|→1

|u(z)| = 1 uniformly ⇐⇒ u is a Blaschke product.

13The first convergence is obtained by combining the fact that fn → f in H1/2 with dominated convergence. The second
convergence follows from the fact that gn −1* 0 in H1/2.

14The reader may wonder what happens when d ≤ 0. When d = 0, it is clear that minimizers of Fα are precisely the
constants of modulus 1. The case d < 0 is obtained from the case d > 0 by complex conjugation.

15We denote by Hol(Ω) the class of holomorphic functions in Ω.
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For the sake of completeness, we recall the proof of "=⇒" (implication "⇐=" being obvious). Let

z1, . . . , zd be the zeroes of u in D, counted with their multiplicities. Let v(z) =
d∏

j=1

z− z j

1− z j z
and set

w = u
v
∈Hol(D). Then w 6= 0 in D and lim

|z|→1
|w(z)| = 1 uniformly. Thus w = e f , where f ∈Hol(D) satisfies

lim
|z|→1

Re f (z) = 0. By the maximum principle, we have Re f ≡ 0, and thus Im f ≡ const. Therefore,

u =αv for some α ∈S1.

3.2 Corollary. Let g ∈ H1/2(S1;S1) have degree d > 0. Then |g|2
H1/2 ≥πd, with equality if and only if g

is a d-Blaschke product.

Fix now a smooth simply connected domain Ω and a conformal representation Φ :Ω→D. Then we
define a (generalized) d-Blaschke product16 by the formula

Bα,a1,...,ad ,Φ(z)=α
d∏

j=1

Φ(z)−a j

1−a jΦ(z)
, z ∈Ω, d ∈N∗, α ∈S1, a j ∈D, ∀ j ∈ J1,dK,

and a (generalized) Moebius transform via

Mα,a,Φ(z)=α Φ(z)−a
1−aΦ(z)

, z ∈Ω, α ∈S1, a ∈D.

Using Lemma 3.1 and the invariance of the Dirichlet integral under conformal representations, we
obtain

3.3 Corollary. The minimizers of E∞ in Ed are precisely the d-Blaschke products.

The next results implies, in particular, that the infimum of Eε in Ed is not attained when ε<∞.

3.4 Lemma. Let β 6≡ 0. If d 6= 0 then Fβ does not attain its minimum in Gd.

Proof. Let u ∈ Gd. Then Fβ(u) ≥ F0(u) = πd. We find that inf
Gd

Fβ ≥ πd. On the other hand, consider

the d-Blaschke product u =
d∏

j=1

Φ−a j

1−a jΦ
and let a j →−1, ∀ j. Then u* 1 in H1(Ω), and in particular

Fβ(u) → πd. We find that inf
Gd

Fβ = πd. In order to prove that the minimum is not attained, argue by

contradiction: assume that u minimizes Fβ in Gd. Then Fβ(u) = F0(u) = πd. Thus u is a d-Blaschke

product and
ˆ
Ω
β (1−|u|2)2 = 0. This is impossible, since |u| < 1 in D and thus β (1−|u|2)2 6≡ 0.

We complete this section with the following strong improvement of Lemma 3.1.

3.5 Lemma. The critical points of F0 in Gd are precisely:

a) the d-Blaschke products if d > 0.

b) the conjugates of (−d)-Blaschke products if d < 0.

c) constants of modulus 1 if d = 0.

After our work was completed, we learned that the same result has also been obtained indepen-
dently by V. Millot and Y. Sire [35].

16In Ω and with respect to Φ, but this will be tacitly understood in what follows.
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Proof. We rely on the properties of the Hopf differential in arbitrary domains Ω ⊂ R2, for which we
send the reader to [30, Chapter 4]; in particular, the reader will find there calculations similar to the
ones leading to (3.5) or (3.6). If u : Ω→ C is a smooth function, then the Hopf differential ξ of u is
defined by the formula

ξ :Ω→C, ξ(z)= 4(∂zu)(∂zu)= (∂xu− ı∂yu)(∂xu− ı∂yu). (3.4)

If, in addition, u is harmonic, then ξ is holomorphic, and the equality ξ = 0 is equivalent to either u
being holomorphic or u being anti-holomorphic.

We next derive some identities valid when Ω or u have additional properties. Assume first that
Ω is smooth and that u is smooth near some point z ∈ ∂Ω, and let ν = νx + ıνy denote the outward

normal to ∂Ω. Let
∂

∂τ
and

∂

∂ν
denote respectively the normal and the tangential derivative on ∂Ω

(with respect to the counterclockwise orientation). Using the equalities

∂

∂x
= νx

∂

∂ν
−νy

∂

∂τ
and

∂

∂y
= νy

∂

∂ν
+νx

∂

∂τ
u,

definition (3.4) can be rewritten as

ξ(z)= (νx − ıνy)2
(
∂u
∂ν

− ı
∂u
∂τ

)(
∂u
∂ν

− ı
∂u
∂τ

)
. (3.5)

If, in addition, u is a critical point of Eε in Ω (or of Fβ in D), then we have ∂ρ/∂τ= 0 on ∂Ω. Therefore,
(2.24) combined with (3.5) leads to

ξ= (νx − ıνy)2
[(
∂ρ

∂ν

)2
−

(
∂ϕ

∂τ

)2]
on ∂Ω. (3.6)

We now complete the proof of Lemma 3.5. Since problem (2.23) with β= 0 is invariant by conformal
representations, we may assume that Ω=D. When u is harmonic, the map η :D→C, η(z)= z2ξ(z), is
holomorphic. If in addition Ω=D and u solves (2.23), then (3.6) becomes

η=
(
∂ρ

∂ν

)2
−

(
∂ϕ

∂τ

)2
∈R on S1. (3.7)

By (3.7), η is constant in D. On the other hand, η vanishes at the origin. It follows that ξ ≡ 0, and
therefore u is either holomorphic or anti-holomorphic. Since |u| = 1 on S1, we obtain the desired
conclusion as in the proof of Lemma 3.1.

4 Moebius and almost Moebius transforms
In this section, we describe harmonic maps u which are “close” to Moebius maps. Recall that we
defined the class

Hd = {g ∈ H1/2(S1;S1); deg g = d}.

Recall that we denoted by Na the restriction to S1 of the Moebius transform M1,a. Recall also Corol-
lary 3.2: for g ∈ H1 we have |g|2

H1/2 ≥ π, with equality if and only if g = αNa for some a ∈ D and
α ∈S1.
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4.1 Theorem. There exists some δ0 > 0 and a function f : (0,δ0) → (0,∞) such that lim
δ→0

f (δ) = 0 with

the following property: if g ∈H1 satisfies |g|2
H1/2 <π+δ for some δ< δ0, then:

1. The harmonic extension u = u(g) of g has exactly one zero, a = a(u)= a(g).

2. If we write g = Naeıψ with ψ ∈ H1/2(S1;R), then |ψ|H1/2 ≤ f (δ).

3. The map g 7→ a is continuous.

4. In addition, given r ∈ (0,1) and µ> 0, we may pick δ0 such that ‖αu ◦M−a − Id‖C2(Dr) < µ for some
appropriate α ∈S1.

Before proceeding to the proof, let us make two comments. First, using repeatedly Lemma 2.6, we
find that

g
Na

has degree zero, and thus we may write g = Naeıψ for some ψ ∈ H1/2(S1;R). The point

in item 2. is that |ψ|H1/2 is small when |g|2
H1/2 is close to π. Second, an equivalent and possibly more

illuminating formulation of item 4. is the following: for sufficiently small δ0 and for g as above, we
have ‖u◦M−1

α,a−Id‖C2(Dr) <µ for some α ∈S1; that is, u is close, in an appropriate sense, to a Moebius
transform.

Proof. Step 1. u has at least one zero in D.
Indeed, otherwise we have u ∈ C(D;C\{0}) and lim

|z|→1
|u(z)| = 1. Thus |u| ≥α> 0 for some α. By Lemma

2.7, we may write u = |u|eıϕ, with ϕ ∈ H1(Ω;R). The fact that tr eıϕ = g combined with the degree
formula (2.8) leads to the contradiction

1= deg (g,S1)= 1
π

ˆ
D

Jac (eıϕ)= 0.

Let now a ∈ D be one of the (possibly several) zeroes of u. Set v = u ◦ M−a = u ◦ M−1
a . Then v is

harmonic, v(0) = 0, and v|S1 = h, with h = g ◦N−a. In addition, we have |h|H1/2 = |g|H1/2 , by conformal
invariance of the H1/2-semi-norm.

Step 2. Proof of 4.
Argue by contradiction: there are some µ> 0, r ∈ (0,1) such that

inf
α∈S1

‖αvn − Id‖C2(Dr) ≥µ

for some sequence (vn) of harmonic maps such that
vn(0)= 0
hn := vn|S1 has modulus 1 and degree 1.

|hn|2H1/2 ≤π+
1
n

We find that, possibly up to a subsequence, vn → v in C∞
loc(D), and hn * h ∈ H1/2(S1;S1). In addition,

we have v = u(h). The limit v satisfies
‖αv− Id‖C2(Dr) ≥µ, ∀α ∈S1

v(0)= 0 .
|h|2

H1/2 ≤π
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We consider first the case where deg (h,S1) = 1. Since |h|2
H1/2 ≤ π, Corollary 3.2 combined with

v(0)= 0 leads to v = γ Id for some γ ∈S1 and this is impossible.
Thus deg (h,S1) 6= 1. Then the Price Lemma 2.18 gives:

π= lim
1
2

ˆ
D

|∇vn|2 ≥ 1
2

ˆ
D

|∇v|2 +π|deg (hn,S1)−deg (h,S1)| = 1
2

ˆ
D

|∇v|2 +π|1−deg (h,S1)|. (4.1)

Therefore, v is a constant of modulus 1. This contradicts v(0)= 0.

In the remaining part of the proof, we assume that |g|2
H1/2 ≤ π+δ, where δ < δ0 and δ0 is to be

chosen later.

Step 3. For 0< s < r < 1 and for sufficiently small δ0 (depending on s and r), we have |v| ≥ s on D\Dr.
Indeed, let µ> 0 and let R ∈ (r,1) to be specified later. By Step 2. we have

1
2

ˆ
DR

|∇v|2 ≥πR2 −µ and |v(x)| ≥ |x|−µ in DR (4.2)

provided δ0 is sufficiently small. In particular, we have

1
2

ˆ
D\DR

|∇v|2 ≤π−πR2 +µ+δ0 and |v| ≥ R−µ on ∂(D\DR). (4.3)

We next invoke the following special cases of [24, Theorem 3.6] combined with [24, Example 3.5 c)].

4.2 Lemma. 1. Let 0 < R < 1 and set ω := D\DR . Let v ∈ H1(D) be a complex-valued harmonic
function. Assume that t ≤ |v| ≤ 1 on ∂ω, for some t ≥ 0, and let s = inf

ω
|v|. Then we have

ˆ
ω

|∇v|2 ≥ 4As,t,

where As,t is the area of the region {z ∈D; |z| ≤ t,Re z ≥ s}.

2. Same conclusion if ω=D.

3. Same conclusion if ω=D or D\DR and if v minimizes Fβ in Dwith respect with its own boundary
condition.

4. Special case: if v is as above and satisfies |v| = 1 on S1, and if
´
D
|∇v|2 ≤ c < 2π, then there exists

some λ=λ(c)> 0 such that |v| ≥λ in D.

Step 3 continued. Note that As,t does not depend on R. Therefore, by combining item 1. of Lemma
4.2 with (4.3), we obtain the following: if R is sufficiently close to 1 and if µ and δ0 are sufficiently
small, then |v| ≥ s in D\DR . We conclude by combining this fact with the second assertion in (4.2).

Step 4. The map u has exactly one zero.
Indeed, by combining Step 3. with Step 2., we find that v has exactly one zero for small δ0 (and that
this zero is located near the origin). Whence the conclusion for u.

Step 5. The continuity of g 7→ a.
This follows essentially from uniqueness, but some care is needed, since in principle zeroes could
escape to the boundary. Let gn → g in H1/2(S1;S1). Then there is some r > 0 independent of n such

|u(gn)| ≥ 1
2

in D\Dr,∀n. (4.4)
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This uniform version of (2.15) can be easily obtained by following the proof of [21, Theorem A3.2].
The continuity of g 7→ a is a straightforward consequence of (4.4).

Step 6. We prove 2.
Since | |H1/2 is invariant by composition with restrictions to S1 of Moebius transforms and by multi-
plication with unimodular constants, we may assume that u(0) = 0, and that the conclusion of item
4. holds with a = 0 and α= 1. Let θ denote the polar angle and let r ∈ (1/2,1). By item 4., for small δ
we are in position to apply Corollary 2.9 with ω=D\Dr, u1 = Id, u2 = u = u(g). Therefore, for small δ
we may write, in D\Dr, u = Idηeıϕ = |u|eı(θ+ϕ), with η,ϕ ∈ H1(D\Dr;R). By Step 3. and the maximum
principle Lemma 2.17, we can assume that 1/2≤ |u| ≤ 1.

We denote by o(1) a quantity which tends to 0 uniformly in g as δ→ 0. We will next prove the
estimate

‖∇ϕ‖L2(D\Dr) = o(1). (4.5)

Assuming (4.5) proved for the moment, item 2. follows from (4.5) by taking the H1/2 semi-norm of the
trace ψ of ϕ on S1.

In order to prove (4.5), we first note that ‖u − Id‖H1 = o(1). Indeed, consider a sequence (un),
un = u(gn), such that δn := |gn|2H1/2 −π→ 0 as n →∞ and that the conclusion of item 4. holds with
a = 0 and α= 1. Then we have un * Id weakly in H1(D), and

1
2

ˆ
D

|∇un|2 = |gn|H1/2 →π= 1
2

ˆ
D

|∇Id|2 as n →∞.

Therefore ‖un − Id‖H1 → 0. Next we write

|∇ϕ| =
∣∣∣∣∇ |Id|u

|u|Id
∣∣∣∣ in D\Dr,

and obtain (4.5) by combining the fact that ‖u− Id‖H1 = o(1) with the pointwise bounds 1/2 ≤ |u| ≤ 1
and 1/2≤ |Id| ≤ 1 on D\Dr.

4.3 Remark. Theorem 4.1 comes with no estimate of the function f (δ) in item 2. It would be inter-
esting to have a quantitative form of this result.

We continue with a result similar to Theorem 4.1, in which a loss of information on the zero a of
u(g) is compensated by the control of the phase ψ at higher energy levels of g.

4.4 Theorem. There exists a non increasing function h : (0,π] → (0,∞) such that: if g ∈ H1 satisfies
|g|2

H1/2 ≤ 2π−δ for some δ ∈ (0,π], then:

1. We may write g = Naeıψ for some ψ ∈ H1/2(S1;R) such that |ψ|H1/2 ≤ h(δ).

2. In addition, we may take the point a to be a zero of u(g), and the zeroes of u(g) are mutually close,
in the following sense: there exist some R = R(δ) ∈ (0,1) and µ= µ(δ) ∈ (0,1) such that, if a is a zero
of u(g), then |u(g)| ≥µ in D\ M−1

a (DR).

Before proceeding to the proof, let us note the following more informative form of item 2.:

if u(g)(0)= 0, then |u(g)| ≥µ outside DR . (4.6)
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Proof. As in the proof of Theorem 4.1, Step 6., it suffices to establish item 2. in the special case
where u(g)(0) = 0. We argue by contradiction: we assume that there exist a sequence (gn) ⊂H1 and
a sequence (zn)⊂D such that:

|gn|2H1/2 ≤ 2π−δ, |zn|→ 1, un := u(gn) satisfies un(0)= 0 and |un(zn)|→ 0. (4.7)

Possibly after passing to a subsequence, we may also assume that, for some D ∈ Z, g ∈ HD and
u = u(g), we have

un → u in C∞
loc(D), u(0)= 0. (4.8)

We first prove that D = 1. Indeed, by the argument leading to (4.1) we have

2π> 2π−δ≥ 1
2

ˆ
D

|∇u|2 +π|1−D|. (4.9)

By combining (4.9) with Corollary 3.2, we find that D = 0 or D = 1. If D = 0, then
ˆ
D

|∇u|2 ≤ 2(π−δ).

This inequality combined with Lemma 4.2 4. implies that |u| ≥λ in D for some λ> 0. This contradicts
(4.8). Thus D = 1.

Let s ∈ (0,1) to be chosen later. By Lemma 2.12, there exists some R ∈ (0,1) such that |u(z)| > s
on CR . Then, thanks to (4.8), we have |u j| ≥ s on CR when j is large. On the other hand, we have
deg (u,CR)= 1 provided R is chosen sufficiently close to 1; this follows by combining Lemma 2.2 with
Lemma 2.12. By (4.8), for large n we have deg (un,CR)= 1. Using (2.10), we find that

1
2

ˆ
DR

|∇un|2 ≥πs2. (4.10)

On the other hand, since |un(zn)|→ 0 and |un| ≥ s on ∂(D\ DR), we obtain, by applying Lemma 4.2 1.,
that

liminf
n→∞

1
2

ˆ
D\DR

|∇un|2 ≥πs2. (4.11)

For s sufficiently close to 1, we obtain a contradiction by combining (4.10) with (4.11).
Once the existence of R and µ as in item 2. is established, item 1. is obtained as follows. By

conformal invariance, we may assume that u(0)= 0. By Lemma 2.2, we have deg (u,CR)= 1. Arguing
as at the beginning of Step 6. in the proof of Theorem 4.1, we may globally write, in D\DR ,

u = |u|eı(θ+ϕ). (4.12)

By (2.11), (4.12) and the bound
´
D
|∇u|2 ≤ 4π, we obtain that

ˆ
D\DR

|∇ϕ|2 ≤ C. (4.13)

Item 1. follows from (4.13).

4.5 Remark. It is not clear whether the restriction |g|2
H1/2 < 2π is optimal in Theorem 4.4. However,

some bound is required. Here is an example with a sketch of proof. Let g = gb,c,d = NbNc

Nd
. Then

|g|2
H1/2 ≤ 9π. If we let, say, b → 1, c →−1 and d → ı, then we claim that there exists no a = a(b, c,d)
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such that Theorem 4.4 1. holds. Argue by contradiction: otherwise, after passing to a subsequence,
we have a → ã ∈D. The limit ã cannot be close to 1, −1 and ı at the same time; say that we have ã 6= 1.
Then, near z = 1,

g
Na

is close to αNb for some α ∈S1. Using the fact that the H1/2-semi-norm of the

phase of Nb (computed near z = 1) tends to ∞ as b → 1, and the fact that the phase is unique modulo
2π [14], we find that Theorem 4.4 does not hold for g as above.

The next result explains that, at low energy, the lack of weak compactness of the class H1 is due
solely to Moebius transforms.

4.6 Corollary. Let t < 2π and let K (t)
1 = {g ∈H1; |g|2H1/2 ≤ t}.

Then K (t)
1 is weakly closed modulo Moebius transforms: If (gn) ⊂K (t)

1 , then there exists Nan such
that the sequence (gn ◦N−1

an
) is weakly compact in K (t)

1 .
In addition, we may take an to be any zero of u(gn).
In particular, for every t < 2π and a0 ∈D, the class

{g ∈H1; |g|2H1/2 ≤ t, u(g) vanishes at a0}

is weakly compact.

We continue by presenting another consequence of Theorem 4.4.

4.7 Lemma. Let

β ∈ L∞(D), β≥ 0, β 6≡ 0. (4.14)

Consider a Lebesgue point a0 ∈D of β at which the approximate limit of β is b > 0. Then

c(β,a0) := inf
{
Fβ(v); g = tr v ∈H1, u(g) vanishes at a0

}>π. (4.15)

Proof. If c(β,a)≥ 2π, there is nothing to prove. Otherwise, we apply Corollary 4.6 and obtain that the
minimum is attained in (4.15). Argue by contradiction and assume that c(β,a0) = π. If v attains the
minimum in (4.15) then, by Corollary 3.2, v = Mα,a and

ˆ
D

β(1−|v|2)2 = 0. (4.16)

Our choice of a implies that

lim
r→0

 
B(a,r)

β(1−|v|2)2 = b(1−|v|2)2(a). (4.17)

We obtain a contradiction by combining (4.16) and (4.17).

Though this will not be used in the subsequent analysis, we found useful to mention that part of
Theorem 4.1 still holds for higher degrees.17

17Or for negative degrees, but this is simply obtained by complex conjugation.
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4.8 Theorem. Let d ∈ N. Then there exists some δ0 > 0 and a function f : (0,δ0) → (0,∞) such that
lim
δ→0

f (δ)= 0 with the following property: if g ∈Hd satisfies |g|2
H1/2 <πd+δ for some δ< δ0, then we can

write g = Na1 . . . Nad eıψ for some a1, . . . ,ad ∈D and for some ψ ∈ H1/2(S1;R) such that |ψ|H1/2 ≤ f (δ).

Consequently, if u ∈ Gd is a harmonic function and if
1
2

ˆ
D

|∇u|2 < πd +δ, with δ < δ0, then u =
B1,a1,...,ad u(eıψ)+w, where ψ ∈ H1/2(S1;R), w ∈ H1

0(D;C), |ψ|H1/2 ≤ f (δ) and ‖w‖H1 ≤ h(δ). Here, h(δ)→ 0
as δ→ 0.

Proof. The last part of the theorem follows by combining the first part of the theorem with Lemma
2.21.

In order to prove the first part, it suffices to establish the following fact: if (gn)⊂Hd is such that
|gn|2H1/2 →πd, then, possibly up to a subsequence and for large n, we may write gn = Na1(n) . . . Nad(n) eıψn ,
with |ψn|H1/2 → 0 as n →∞. The proof of this fact is by induction on d.

Step 1. The case where d = 0.
By Lemma 2.13, we have |u(gn)| → 1 uniformly in D. By Lemma 2.7 and (2.11), for large n we may
write u(gn)= ρneıϕn , with ∇ϕn → 0 in L2(D). We conclude by letting ψn = tr ϕn.

Step 2. The case where d ≥ 1.
By Step 1. in the proof of Theorem 4.1, the map u(gn) has to vanish somewhere. Since our hypotheses
and conclusions are invariant by conformal transforms, we may assume that u(gn)(0) = 0. Up to a
subsequence, we have gn * g, with g ∈ HD for some D ∈ Z. By combining (2.9) with the Price
Lemma 2.18, we find that D ∈ J0,dK and that |g|2

H1/2 = πD. By Corollary 3.2, u(g) is a D-Blaschke
product. Since in addition we have u(g)(0)= 0, we find that D ∈ J1,dK. If D = d, then we actually have
gn → g strongly in H1/2,18 and thus gn/g → 1.19 In this case, Step 1. implies that gn = geıψn , with
|ψn|H1/2 → 0, and we are done.

We next turn to the more delicate case where D < d. Let hn := gn/g, so that hn ∈ Hd−D and
hn * 1. By Lemma 2.24 combined with the fact that |g|2

H1/2 = πD, we have |hn|2H1/2 → π(d −D). By
the induction hypothesis,20 we may write, for large n, hn = Na1(n) . . . Nad−D (n) eıψn , with |ψn|H1/2 → 0.
We obtain the desired conclusion by noting that gn = ghn and that g is the trace of a D-Blaschke
product.

5 Mountain pass approach
In this section and in Sections 8 and 9, we will prove existence of (almost) critical points of Fβ in
different situations. Each case we examine will require a different functional setting; however the
general strategy is the same, and is based on the existence of a mountain pass geometry. So let us
start by recalling the standard mountain pass framework; see e.g. [34, Chapter 4]. This framework
requires five objects and an inequality. The five objects are: two compact metric spaces K0 ⊂ K , a
Banach space or Banach manifold X , a map J : X → R (usually assumed C1), and a fixed continuous

18Since gn * g and |g|2
H1/2 = lim |gn|2H1/2 .

19Here, we use the fact that multiplication is continuous in H1/2(S1;S1). This is folklore and is a special case of the
following more general fact. If un,u,v ∈W s,p ∩L∞, with 1≤ p <∞ and s > 0, and if un → u in W s,p and ‖un‖L∞ ≤ C, then
unv → uv in W s,p.

20Recall that D ≥ 1 and thus d−D < d.
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map χ ∈ C(K0; X ). 21 We associate to these objects the minimization problem

c = inf
{

max
K

J ◦F; F ∈ M
}

, where M = {
F ∈ C(K ; X ); F = χ on K0

}
. (5.1)

Mountain pass geometry is characterized by the strict inequality

c > c1 =max
t∈K0

J(χ(t)). (5.2)

We next recall the Mountain Pass Theorem of Ambrosetti and Rabinowitz [1], which will be used in
the following form [34, Theorem 4.3, p. 77].

5.1 Theorem. Let K0, K , J, X and χ be as above. Assume that (5.2) holds. Assume that X is a Banach
space and that J ∈ C1(X ;R). Then for every δ> 0 there exists xδ ∈ X such that

c−δ≤ J(xδ)≤ c+δ (5.3)

and

‖J′(xδ)‖ ≤
p
δ. (5.4)

Equivalently, there exists a sequence

(xn)⊂ X such that J(xn)→ c and J′(xn)→ 0 as n →∞. (5.5)

The same holds when X is a Banach manifold and J ∈ C1.

A sequence as in (5.5) is a “Palais-Smale sequence”, and the xn’s are “almost critical points of J”.22

Under the additional assumption

(PS)c each sequence (xn) satisfying (5.5) contains a convergent subsequence (5.6)

(the (PS)c) condition of Brezis, Coron and Nirenberg [18]), (5.2) leads to the existence of a critical
point x of J such that J(x)= c.

In practice, we will always take

K = Dr, K0 = Cr for some appropriate r ∈ (0,1). (5.7)

The underlying idea (in this section and in Section 8) is to create mountain pass geometry by letting
χ(a) = Ma, ∀a ∈ Cr, and J = Fβ. While the above choice of χ is not straightforward, and is one of the
main ideas of this paper, the natural choices for J and X are J = Fβ and X = G (the set of complex-
valued H1 maps with modulus 1 on the boundary) or possibly X =G1. However, G and G1 do not have
a straightforward manifold structure. In this section, we present a first way of circumventing this
difficulty. The approach we develop here allows us to prove the main result of this paper (Theorem
1.1), but has the drawback of working only for large values of ε.23

Thus we address the question of the existence of critical points under the assumption that β is
small.24 More specifically, we assume that the first eigenvalue λ1(−∆−β) of the operator −∆−β
satisfies

λ1(−∆−β)> 0, (5.8)
21In order to distinguish the different constructions we will perform later, we will denote the corresponding function

spaces X by X∗, respectively X ]. We distinguish similarly the other objects.
22At the level c, but this will be omitted.
23A second, more subtle, approach will be presented in the next section.
24Of particular interest for us is the fact that the assumption (5.8) is satisfied when in the original problem of finding

critical points for Eε we take a large ε.
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i.e., there is some δ> 0 such that

(1−δ)
ˆ
D

|∇v|2 ≥
ˆ
D

βv2, ∀v ∈ H1
0(D;R).

For such β and fixed boundary condition g ∈ H1/2(S1;C), the energy functional Fβ is continuous,
coercive and strictly convex in the affine space

H1
g(D;C)= {u ∈ H1(D;C); tr u = g}.

Therefore, Fβ has exactly one critical point in the above space. Equivalently, the problem{
−∆u =βu(1−|u|2) in D
u = g on S1 , (5.9)

has a unique solution, which we denote T(g).
With this in mind, the role of the space X is played by X∗ = H1/2(S1;R), and the role of the

functional J by

J∗ : X∗ →R, J∗(ψ)= Fβ

(
T

(
N0eıψ))

, ∀ψ ∈ X∗.

Recall that we let K = Dr and K0 = Cr, where 0 < r < 1. It remains to define the map χ∗ playing
the role of χ. For this purpose, we note the following. If a ∈ Cr, then the restriction Na of Ma to S1

can be written as Na = N0eıψa = eı(θ+ψa) for some ψa ∈ H1/2(S1;R). The idea is to let, for any a ∈ Cr,
χ∗(a) =ψa. The next result shows that, when ψa is properly chosen, χ∗ is a continuous map from Cr
into X∗.

5.2 Lemma. There exists a map H ∈ C∞(D;C∞(S1;R)) such that Na = N0eıH(a), ∀a ∈D.

Proof. Let ga = Na/N0 and let

F(a, ·)= ga ∧ ∂ga

∂τ
=−ıga

∂ga

∂τ
.25

Then clearly F ∈ C∞(D×S1;R), and
´
S1 F(a, z)dsz = 0. Therefore, if we let η(a, ·) be the primitive of

F(a, ·) with zero average, then η is smooth in both variables. In addition, we have

∂

∂τ

(
ga e−ıη(a,·)

)
= ga e−ıη(a,·)

(
ga

∂

∂τ
ga − ı

∂

∂τ
η(a, ·)

)
= 0,

i.e., ga e−ıη(a,·) is constant. Define L(a) := ga(1) e−ıη(a,1). Then L ∈ C∞(D;S1), and thus we may write
L = eıζ for some ζ ∈ C∞(D;R). Finally, if we let H = η+ζ, then H has all the required properties.

In what follows, we let ψa = H(a), a ∈ Cr.
We next prove that we do have a mountain pass geometry.

5.3 Lemma. Assume (4.14) and (5.8). Then, for r sufficiently close to 1, we have

c∗ := inf

{
max
Dr

J∗ ◦F; F ∈ C(Dr;H1/2(S1;R)), F = χ∗ on Cr

}
> c∗1 :=max

Cr
J∗ ◦χ∗. (5.10)

25The last identity is easily checked using the fact that |ga|2 = 1, and thus ga · ∂ga

∂τ
= 0.
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Proof. It is easy to see that |Ma|→ 1 in L4(D) as |a|→ 1, and thus c∗1 →π as r → 1. We claim that, if r
is sufficiently large, then c∗ is bounded from below by a constant larger than π; this implies (5.10).

In order to prove the claim, we fix a Lebesgue point a0 of β where the approximate limit of β is
(strictly) positive. We assume that c∗ < π+δ0, with δ0 as in Theorem 4.1, for otherwise we are done.
Let r > |a0|. For such r, consider any competitor F in (5.10), i.e., an F ∈ C(Dr;H1/2(S1;R)) such that
F = χ∗ on Cr. Then we claim that there exists some z0 ∈Dr (depending on F) such that the harmonic
extension u(tr F(z0)) of tr F(z0) has a zero at a0. Indeed from Theorem 4.1 and using the notation
there, the map

G :Dr →D, Dr 3 z G−→ a(tr F(z)) ∈D

is continuous. Since G coincides with the identity on Cr, G must take the value a0 in Dr, by the
Brouwer fixed point theorem.

Next, from Lemma 4.7 we find that J∗(F(z0)) ≥ c(β,a0) > π, and thus c∗ > c(β,a0) > π. We obtain
the desired conclusion by choosing r sufficiently close to 1 in order to have c∗1 <min{c(β,a0),π+δ0}.

We now prove that J∗ is C1 (Lemma 5.8). As an immediate consequence, we will characterize the
Palais-Smale sequences associated to (5.10) (Corollary 5.12). Before proceeding, let us recall a useful
elementary fact.

5.4 Lemma. Let X , Y be normed spaces. Let Z be a dense subspace of X . Let F ∈ C(X ;Y ) and
T ∈ C(X ;B(X ;Y )) be such that

∂F

∂z
(x)=T (x)(z), ∀x, z ∈Z . (5.11)

Then F ∈ C1 and (5.11) holds for every x, z ∈X .

Here, B(X ;Y ) denotes the space of bounded linear operators from X into Y . In practice, we will
apply the above with Z = C∞, and the point will be to check the continuity of F and T .

We start with a straightforward consequence of the embedding H1(D) ,→ L4(D).

5.5 Lemma. The map Fβ is C1 in H1(D;C) and

F ′
β(u)(v)=

ˆ
D

∇u ·∇v−
ˆ
D

βu ·v(1−|u|2), ∀u,v ∈ H1(D;C). (5.12)

Similarly, the map

G : H1(D;C)→R, H1(D;C) 3 u 7→ 1
4

ˆ
D

β (1−|u|2)2,

is C1, and G′(u)(v)=−
ˆ
D

βu ·v(1−|u|2).

Recall that · denotes the real scalar product.

5.6 Lemma. Assume that (5.8) holds. Then the map g → T(g), where T(g) denotes the unique solution
of (5.9), is C1 in a neighborhood of H .
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Proof. Consider the maps

U : H1/2(S1;C)→ H1(D;C), g U−→ u(g)

and

V : H1
0(D;C)×H1/2(S1;C)→ H−1(D;C), (v, g) V−→−∆v−β(v+u(g))(1−|v+u(g)|2).

Thanks to the embedding H1(D) ,→ L4(D) and to the continuity of U , it is easy to see that V ∈ C1 and
that the partial differential of V (v, g) in the v variable is given by

∂V
∂v

(v, g)(w)=−∆w−β(1−|v+u(g)|2)w+2β(w · (v+u(g))) (v+u(g)), ∀w ∈ H1
0(D;C).

The conclusion of the lemma follows via the implicit function theorem if we prove that the opera-

tor W = ∂V
∂v

(v, g) is invertible at each couple (T(g)− u(g), g) with g ∈ H . Since W is symmetric in

H1
0(D;C),26 it suffices to prove that the quadratic form Q associated to W is definite positive. We note

that

Q(w)=
ˆ
D

|∇w|2 −
ˆ
D

β(1−|T(g)|2)|w|2 +2
ˆ
D

β(w ·T(g))2 ≥
ˆ
D

|∇w|2 −
ˆ
D

β(1−|T(g)|2)|w|2,

and positivity follows from (5.8) combined with the maximum principle Lemma 2.17.

The next result is reminiscent of the fact that H1 harmonic functions have traces of the normal
derivative on the boundary.

5.7 Lemma. Let g ∈H and let u satisfy (5.9). Then the vector field u∧∇u has a trace tr (u∧∇u) on
S1, and this trace belongs to H−1/2(S1).

If, in addition, (5.8) holds, then the map

Y : H → H−1/2(S1), H 3 g Y−→ tr (T(g)∧∇T(g)) ∈ H−1/2(S1),

is continuous.

Proof. The vector field u∧∇u belongs to L2 and (by (5.9)) is divergence free. Existence of the trace is
then standard; let us briefly recall the argument. By the (L2-version of the) Poincaré lemma, we may
write u∧∇u =−∇⊥h for some h ∈ H1(D). We then set

tr
(
u∧ ∂u

∂ν

)
= ∂

∂τ
tr h ∈ H−1/2(S1).

When u is smooth, say u ∈ C1,
∂

∂τ
tr h is nothing else than u∧ ∂u

∂ν
; with an abuse of notation, we keep

the notation u∧ ∂u
∂ν

even if u is merely H1.
We note the integration by parts formula
ˆ
D

(u∧∇u) ·∇ζ=
〈

u∧ ∂u
∂ν

,tr ζ
〉

H−1/2,H1/2
=
ˆ
S1

(
u∧ ∂u

∂ν

)
ζ, ∀ζ ∈ H1(D;R). (5.13)

26Here, we endow C with the scalar product of R2 and we identify H1
0(D;C) with a space of R2-valued functions.
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Although the last integral in (5.13) is defined only when u is sufficiently smooth, we will use the
integral notation for a general u.

The second part of the lemma is obtained as follows: let gn → g in H . Set un = T(gn) and u = T(g).
Then un → u in H1 (since T is continuous). Using the fact that |un| ≤ 1 (Lemma 2.17), we find that

un ∧∇un → u∧∇u in L2. If we normalize the corresponding potentials hn such that
ˆ
D

hn = 0, then

hn → h in H1. This implies convergence of tr (un ∧∇un) to tr (u∧∇u) in H−1/2.

5.8 Lemma. Assume (5.8). Then we have J∗ ∈ C1 and, if u := T
(
N0eıψ)

, then

J∗′(ψ)(η)=
ˆ
S1

(
u∧ ∂u

∂ν

)
η=

ˆ
D

(u∧∇u)·∇ζ, ∀ψ,η ∈ H1/2(S1;R), ∀ζ ∈ H1(D;R) such that tr ζ= η. (5.14)

More generally, the same holds if we consider the map

H1/2(S1;R) 3ψ J∗
d−−→ Fβ(T(Nd

0 eıψ)), where d ∈Z.

Proof. Note that the equality of the two integrals in (5.14) is a consequence of (5.13). In order to prove
(5.14), we rely on Lemma 5.4. Clearly, J∗ is continuous. On the other hand, if we let ζ= u(η) in (5.14)
and we use the continuity of the map H1/2 3ψ 7→ u∧∇u ∈ L2, then we see that the second integral in
(5.14) defines a map

T ∈ C(H1/2(S1;R),H−1/2(S1;R)), T (ψ)(η) :=
ˆ
D

(u∧∇u) ·∇u(η).

Therefore, it suffices to prove that (5.14) holds when ψ and η are smooth and when ζ= u(η). For such
ψ and η, let gt = N0 eı(ψ+tη) and set ut = T(gt) (so that u = u0). It is easy to see that t 7→ gt ∈ H is
smooth. By Lemma 5.5 and Lemma 5.6, the maps t 7→ ut and t 7→ J∗(ψ+ tη) are C1, and

d
dt

[J∗(ψ+ tη)]=
ˆ
D

∇ut ·∇
(

d
dt

ut

)
−
ˆ
D

βut ·
(

d
dt

ut

)
(1−|ut|2). (5.15)

On the other hand, if v ∈ H1(Ω;C) is such that v = ıuζ on S1, where ζ ∈ C1(S1;R), and if u solves (5.9),
then ˆ

D

∇u ·∇v−
ˆ
D

β(u ·v)(1−|u|2)=
ˆ
S1

(
u∧ ∂u

∂ν

)
ζ. (5.16)

Indeed, when u is smooth, this is a consequence of (5.9) and of the identity

∂u
∂ν

· (ıuζ)=
(
u∧ ∂u

∂ν

)
ζ on S1.

The general case follows by approximation, using Lemma 2.1 1. and the following fact: given β

satisfying (5.8), we may find a uniformly bounded sequence (βn) of smooth function satisfying (5.8)
and such that βn →β.27

We next note that ut = N0eı(ψ+tη) on S1, and therefore
∂

∂t
ut = ıutη on S1. Thus, in (5.16), we may

take u = ut and v = ∂

∂t
ut. We obtained the first identity in (5.14) by combining this remark with

(5.15).
27For an alternative argument not relying on (5.8), see Remark 5.9 below.
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5.9 Remark. Here is an alternative proof of (5.16), valid without the assumption (5.8). In view of
(5.9), (5.16) holds when v ∈ H1

0, so that it suffices to prove (5.16) for a special v such that v = ıuζ on
S1. Consider a C1 extension of ζ, still denoted ζ, and let v = ıuζ. For this v, (5.16) is nothing else but
(5.13).

5.10 Remark. Lemma 5.8 hides a small miracle. Recall that J∗ is constructed as follows:

J∗ = Fβ ◦T ◦S, H1/2(S1;R) 3ψ S−→ g = N0eıψ T−→ u = T(g)
Fβ−−→ Fβ(u).

By Lemmas 5.6 and 5.5, we know that T and Fβ are C1. We also know that J∗ is C1 (Lemma 5.8).
However, S is not C1; see Lemma 5.11 below. Since J∗ is the composition of two operators, one,
Fβ ◦T, smooth, the other one, S, non smooth, the conclusion of Lemma 5.8 is that the smoothing
effect prevails. Smoothness comes from the main ingredient of the proof of Lemma 5.8, which is the
existence of the boundary trace of the vector field u∧∇u whenever u is a solution of (5.9). In turn,
this relies basically on the Poincaré lemma and on the maximum principle. All in all, this turns Fβ◦T
(and finally J∗) into a smooth operator. On the other hand, we note that S is almost smooth: it is
clearly Lipschitz.

5.11 Lemma. S is not differentiable. More generally, if g ∈H , then the map

Sg : H1/2(S1;R)→H , H1/2(S1;R) 3ψ Sg−−→ g eıψ ∈H

is not differentiable.

Proof. We start by reducing the general case to the special case g = 1. Let d = deg g and write
g = Nd

0 eıϕ, with ϕ ∈ H1/2(S1;R) (cf Lemma 2.6 4.). Multiplication with Nd
0 being clearly a linear con-

tinuous bijective operator in H1/2, we see that Sg is differentiable at ψ if and only if S is differentiable
at ψ+ϕ.

We continue by finding functions ψ such that S is not differentiable at ψ. It is easy to see that, for
η ∈ C∞(S1;R), we have

lim
t→0

S(ψ+ tη)−S(ψ)
t

= A(ψ,η) := ıS(ψ)η, (5.17)

the limit being considered in H1/2. If S is differentiable atψ, then (5.17) holds for every η ∈ H1/2(S1;R),
and the map A(ψ,η) belongs to H1/2. The heuristics for concluding is the following: H1/2 ∩L∞ is an
algebra, but H1/2 is not. Thus, if we pick a function η ∈ H1/2 ∩L∞, then A(ψ,η) ∈ H1/2, but this need
not hold when η is merely H1/2. Formally, we continue as follows: if S is differentiable at ψ, then
A(ψ,ψ) = ıeıψψ ∈ H1/2, and in particular B(ψ) := ψcosψ belongs to H1/2. We recall the following
result of Bourdaud and Kateb [13]: a superposition operator ψ 7→G ◦ψ acts on H1/2 if and only if G is
Lipschitz. Though the result in [13] is stated in H1/2(Rn), the construction of counterexamples yields,
for a non Lipschitz G, compactly supported maps ψ such that G◦ψ 6∈ H1/2; see [38, Section 5.3.1, proof
of Theorem 1]. Thus, even on the circle, G has to be Lipschitz. We conclude by noting that t 7→ tcos t
is not Lipschitz.

We are now in position to construct sequences of almost critical points. By combining Theorem
5.1 with Lemmas 5.3 and 5.8, we obtain the following.
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5.12 Corollary. Assume that (5.8) holds. Let c∗ be defined by (5.10). Then, for each δ> 0, there exists
some ψδ ∈ H1/2(S1;R) such that uδ = T(N0 eıψδ) satisfies

c∗−δ≤ J∗(ψδ)= Fβ(uδ)≤ c∗+δ (5.18)

and ∣∣∣∣ˆ
S1

(
uδ∧

∂uδ
∂ν

)
η

∣∣∣∣≤p
δ|η|H1/2 , ∀η ∈ H1/2(S1;R). (5.19)

In particular, the corollary applies if we take a large ε in the original energy Eε. Note that, by
(5.13), (5.19) is equivalent to∣∣∣∣ˆ

D

(uδ∧∇uδ) ·∇ζ
∣∣∣∣≤p

δ‖∇ζ‖L2 , ∀ζ ∈ H1(D;R). (5.20)

5.13 Corollary. Assume that (5.8) holds. Then every weak limit of uδ as δ→ 0 is a critical point of Fβ

in G , i.e., a solution of (2.23).

Proof. Assume that (possibly along a subsequence) uδ* u in H1. Then on the one hand u satisfies
−∆u =βu(1−|u|2) (this relies on the maximum principle Lemma 2.17). On the other hand, uδ∧∇uδ*
u ∧∇u in L2, and thus (using (5.20)) u satisfies (2.21), which is equivalent to (2.23), by Lemma
2.15.

6 Existence of critical points
We establish here the following generalization of Theorem 1.1.

6.1 Theorem. Assume that (5.8) holds and that the value c∗ in (5.10) satisfies

c∗ < 2π. (6.1)

Then c∗ is a critical value of Fβ in G1, i.e., there exists a solution u of (2.23) with d = 1 such that
Fβ(u)= c∗.

Before proceeding to the proof, let us note that, with the choice F(a)= Na, a ∈Dr, in (5.10), and for

β= 1
ε2 Jac Φ−1 in (2.18), where Φ :Ω→D is a conformal representation, we find that

c∗ ≤max
a∈D

(ˆ
D

|∇Ma|2 + 1
4ε2

ˆ
D

(1−|Ma|2)2 Jac Φ−1
)
≤π+ |Ω|

4ε2 .

The latter quantity is < 2π for large ε. Thus Theorem 6.1 generalizes indeed Theorem 1.1.

Proof. Let uδ be as in Corollary 5.12. Let u be such that, up to a subsequence δn → 0, we have
uδn * u in H1. By Corollary 5.13, u satisfies (2.23). In order to complete the proof of Theorem 6.1,
we will prove that deg (u,S1) = 1 and that Fβ(u) = c∗. In order to prove the former assertion, it
suffices to obtain the existence of some r ∈ (0,1) and of some λ> 0 such that (possibly along a further
subsequence, still denoted (δn))

|uδn(z)| ≥λ when |z| ≥ r. (6.2)
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Indeed, assume for a moment that (6.2) holds. Then deg (u,S1) = 1, by Lemma 2.10. Also, condition
(6.2) is essential in the proof of the strong convergence uδn → u in H1.

Validity of (6.2) is established by contradiction: assuming that there exist sequences δn → 0 and
an such that

uδn(an)→ 0 and |an|→ 1, (6.3)

we will prove that

Fβ(uδn)→π, (6.4)

which contradicts Lemma 5.3.
Before proceeding to the proof, we introduce lighter notation: we write un instead of uδn and still

denote by (un) any subsequence extracted from (un), and the same for (an).
We start by rescaling the sequence (un): we let

Φn = M−an , vn = u ◦Φn, βn =β◦Φn Jac Φn, Fn(w)= 1
2

ˆ
D

|∇w|2 + 1
4

ˆ
D

βn(1−|w|2)2. (6.5)

In particular, using Corollary 5.12 and the conformal invariance of the Dirichlet integral, we find that
the rescaled sequence (vn)⊂G1 satisfies, with cn → 0,

−∆vn =βnvn(1−|vn|2) in D
|tr vn| = 1∣∣∣∣ˆ
D

(vn ∧∇vn) ·∇ζ
∣∣∣∣≤ cn‖∇ζ‖L2 , ∀ζ ∈ H1(D)

vn(0)→ 0
Fn(vn)= Fβ(un)→ c∗

. (6.6)

We start by collecting some straightforward properties of βn and vn.

6.2 Lemma. 1. βn → 0 uniformly on compact subsets. In particular, (vn) converges, up to a subse-
quence and in C1,α

loc(D), 0 <α< 1, to some solution v ∈G of (2.23) with β= 0 and such that v(0) = 0.
Moreover, (by Lemma 3.5) v ∈Gd for some d 6= 0, and v is either a d-Blaschke product, or the conju-
gate of such a product.

2. λ1(−∆−βn) > 0. In particular, vn is a minimizer of Fβn with respect with its own boundary condi-
tion.

Proof. The fact that βn → 0 uniformly on compact subsets followed from the definition (6.5) combined
with the fact that |∇Φn| → 0 uniformly on compact subsets. This convergence, together with the
equation (6.6), implies that ∆vn → 0 uniformly on compact subsets. Let K be a compact subset of D
and let L ⊂ D be a compact neighborhood of K . By standard elliptic estimates [27, Theorem 9.13, p.
239], we have

‖vn‖W2,p(K) ≤ C(‖vn‖L2(D) +‖∆vn‖Lp(L))≤ C′, 1< p <∞,

and thus (vn) is bounded in W2,p
loc (D), 1 < p < ∞. By the Sobolev embeddings, (vn) is bounded in

C1,α
loc(D), 0<α< 1. Using (6.6) and Ascoli’s theorem, we find that (up to a subsequence) (vn) converges

in C1,α
loc(D), 0 < α < 1, to some harmonic function v ∈ G such that v(0) = 0. The last part in item 1. is

simply a restatement of Lemma 3.5.
Item 2. follows from (5.8).
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Step 1 (in the proof of Theorem 6.1). Let v be as in Lemma 6.2. Then we claim that v = Mα,0 for some
α ∈S1.
Indeed, we adapt the argument leading to (4.1): we have, by the Price Lemma 2.18 and Corollary 3.2,

2π> c∗ ≥ liminf
1
2

ˆ
D

|∇vn|2 ≥ 1
2

ˆ
D

|∇v|2 +π|1−d| ≥π|d|+π|1−d|,

where d = deg (v,S1). We find that d = 0 or d = 1. Since d 6= 0 (by Lemma 6.2 1.), we obtain the
desired conclusion by combining Lemma 6.2 1. with the fact that v(0)= 0.

Step 2. There exist r ∈ (0,1) and λ> 0 such that |vn(z)| ≥λ when |z| ≥ r.
In order to prove this, we argue by contradiction and assume that up to a subsequence we have
vn(zn) → 0, where the points zn ∈ D are such that |zn| → 1. By repeating the arguments leading to
(4.10) and (4.11), we obtain that, for each s ∈ (0,1), there exists some R ∈ (0,1) such that

liminf
1
2

ˆ
DR

|∇vn|2 ≥πs2 (6.7)

and

liminf
1
2

ˆ
D\DR

|∇vn|2 ≥πs2. (6.8)

Indeed, (6.7) is obtained exactly as (4.10). On the other hand, if we want to reproduce the argument
leading to (4.11) we have to be in position to apply Lemma 4.2. This lemma requires that vn minimizes
Fn with respect to its own boundary conditions. This holds indeed in our case, by Lemma 6.2 2.

By combining (6.7) with (6.8), we find that liminf
1
2

ˆ
D

|∇vn|2 ≥ 2π. But this contradicts the as-

sumption c∗ < 2π.

Step 3. We have (the contradiction) Fn(vn)→π.
This step is a consequence of Step 2., of (6.6) and of Lemma 6.3 below.

We start by stating the technical assumptions required in Lemma 6.3. For simplicity, we will state
Lemma 6.3 when the underlying domain is D, but the same argument works for any simply connected
domain.

We consider two sequences (βn) and (vn) and two maps γ and v such that:

βn,γ ∈ L∞(D), βn,γ≥ 0, (6.9)
βn → γ uniformly on compact subsets of D, (6.10)

vn,v ∈ H1(D;C), |tr vn| = 1, vn * v in H1, (6.11)

−∆vn =βnvn(1−|vn|2) in D, (6.12)∣∣∣∣ˆ
D

(vn ∧∇vn) ·∇ζ
∣∣∣∣≤ cn‖∇ζ‖L2 , ∀ζ ∈ H1(D), with cn → 0 as n →∞. (6.13)

Unlike our next hypothesis (6.14), the above assumptions are naturally satisfied by sequences of
almost critical points obtained via the functional J∗ (as in Corollary 5.12).

6.3 Lemma. Assume that (6.9)-(6.13) hold. Assume in addition that there exists some λ> 0 such that

|vn(z)| ≥λ ∀ z ∈D such that |z| ≥ 1−λ. (6.14)

Then we haveˆ
D

|∇vn|2 →
ˆ
D

|∇v|2 (6.15)
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and ˆ
D

βn(1−|vn|2)2 →
ˆ
D

γ(1−|v|2)2. (6.16)

Equivalently, we have vn → v strongly in H1 and

Fn(vn)→ Fγ(v). (6.17)

Step 3 completed. We take, in the above lemma, γ= 0 and v = Mα,0 as in Step 1.

Proof of Lemma 6.3. It suffices to establish (6.15)-(6.16) along a subsequence.
By the maximum principle Lemma 2.17, we have |vn|, |v| ≤ 1 in D. By standard elliptic estimates

[27, Theorem 9.13, p. 239], we have

vn → v in W2,p
loc (D), ∀ p <∞. (6.18)

By (6.10) and (6.18), we find that (6.15) and (6.16) hold if we replace D by D1−ε for each ε> 0. On the
other hand, we have

lim
ε→0

ˆ
D\D1−ε

(|∇v|2 +γ(1−|v|2)2)= 0.

Therefore, it suffices to prove that

lim
ε→0

limsup
n→∞

ˆ
D\D1−ε

(|∇vn|2 +βn(1−|vn|2)2)= 0. (6.19)

By (6.18), vn → v uniformly on compact subsets of D. Combining this fact with (6.14), we find that for
large n we have

d := deg
(

v
|v| ,Cr

)
= deg

(
vn

|vn|
,Cr

)
,∀ r ∈ [1−λ,1].

By Corollary 2.9 applied with u1 =
(

z
|z|

)d
, u2 = vn, ω=D\D1−λ, we may write, in ω, vn = ρneı(dθ+ϕn),

and similarly v = ρeı(dθ+ϕ), with λ ≤ ρn,ρ ≤ 1, and ϕn,ϕ ∈ H1(ω). By (2.11), we find that, possibly
after extracting suitable multiples of 2π, we have ϕn *ϕ and ρn * ρ in H1(ω). On the other hand, by
(6.18), we have ϕn →ϕ and ρn → ρ in C1

loc(ω). We also note the fact that v ∈ C1(D), by Lemma 2.15.
We next translate the properties of vn in terms of ρn and ϕn: (6.12) and (6.13) imply that

div (ρ2
n∇(dθ+ϕn))= 0 in ω

−∆ρn =βnρn(1−ρ2
n)−ρn|∇(dθ+ϕn)|2 in ω

tr ρn = 1 on S1

vn ∧∇vn = ρ2
n∇(dθ+ϕn) in ω∣∣∣∣ˆ

D

(vn ∧∇vn) ·∇ζ
∣∣∣∣≤ cn‖∇ζ‖L2 , ∀ζ ∈ H1(D)

. (6.20)

Let 0< ε<λ. Since ϕn →ϕ in C1(C1−ε), we find that that the function ϕn−ϕ, defined in D\D1−ε, has
an extension ζn ∈ H1(D) such that ‖∇ζn‖L2(D1−ε) → 0. Using the fact that

ρ2
n∇(dθ)→ ρ2∇(dθ) and ρ2

n∇ϕn * ρ2∇ϕ in L2(ω),
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we find that

0= lim
n→∞

ˆ
D

(vn ∧∇vn) ·∇ζn = lim
n→∞

ˆ
D\D1−ε

(vn ∧∇vn) ·∇ζn

= lim
n→∞

ˆ
D\D1−ε

[ρ2
n∇(dθ+ϕn)] ·∇(ϕn −ϕ)= lim

n→∞

ˆ
D\D1−ε

ρ2
n|∇ϕn|2 −

ˆ
D\D1−ε

ρ2|∇ϕ|2,

which implies easily that

lim
n→∞

ˆ
D\D1−ε

ρ2
n|∇(dθ+ϕn)|2 =

ˆ
D\D1−ε

ρ2|∇(dθ+ϕ)|2,

and in particular

lim
ε→0

lim
n→∞

ˆ
D\D1−ε

ρ2
n|∇(dθ+ϕn)|2 = 0. (6.21)

We next multiply by ηn = 1−ρn the equation satisfied by ρn and find that
ˆ
D\D1−ε

(
|∇ρn|2 + ρn

1+ρn
βn(1−|vn|2)2

)
=
ˆ
D\D1−ε

ρnηn|∇(dθ+ϕn)|2 +
ˆ

C1−ε
ηn
∂ρn

∂ν
, (6.22)

ν being the normal exterior to D1−ε.
We next note that, since v ∈ C1(D) and |v| = 1 on S1, we have

lim
ε→0

lim
n→∞

ˆ
C1−ε

ηn
∂ρn

∂ν
= lim
ε→0

ˆ
C1−ε

(1−ρ)
∂ρ

∂ν
= 0. (6.23)

By combining (6.22) with (6.21), with(6.23), and with the assumption (6.14), we find that

lim
ε→0

limsup
n→∞

ˆ
D\D1−ε

(|∇ρn|2 +βn(1−|vn|2)2)= 0. (6.24)

We obtain (6.19) (and thus complete the proof of Lemma 6.3) by combining (6.21) with (6.24) and with
the identity (2.11).

By combining (6.2) (whose validity has been established in the course of the proof of Theorem 6.1)
with Lemma 6.3 applied to the original sequence (un) and to the weights βn =β and γ=β, we obtain
the following improvement of Theorem 6.1.

6.4 Theorem. Assume that (5.8) holds and that c∗ < 2π. Then J∗ satisfies the Palais-Smale condition
at level c∗.

7 Asymptotic behavior of critical points as ε→∞
We describe here the asymptotic behavior, when ε → ∞, of critical points of Eε in E1 obtained by
the mountain pass approach described in Section 5. For simplicity, we transfer the problem on D (as
explained at the end of Section 2) and consider the energy Fβ, where

β=βε = 1
ε2 Jac Φ−1 = 1

ε2 w. (7.1)
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In order to emphasize dependence on ε, we denote by c∗ε the number c∗ associated to Fβ, i.e.,

c∗ε := inf

{
max
Dr

Fβε

(
T

(
N0 eıF

))
; F ∈ C(Dr;H1/2(S1;R)), F(a)=ψa for a ∈ Cr

}
; (7.2)

recall that

J∗(ψ)= Fβε

(
T

(
N0 eıF

))
. (7.3)

We assume that r is sufficiently close to 1 so that Lemma 5.3 holds (at this point we also allow r
to depend on ε).28 Before stating and proving our main result in this section, let us introduce some
useful notation. Given v ∈ H1(D;C),

ṽ is the harmonic function in D which agrees with v on S1, i.e., ṽ = u(tr v). (7.4)

Also, given a function F ∈ C(Dr;H1/2(S1;R)), we let

F(a) := the harmonic extension of N0 eıF(a). (7.5)

We next turn to the description of the asymptotic behavior of uε as ε→∞. Clearly, the Moebius
transforms Mα,a satisfy

ˆ
D

w(1−|Mα,a|2)2 > 0, ∀α ∈S1,∀a ∈D, and lim
|a|→1

ˆ
D

w(1−|Mα,a|2)2 = 0.

Therefore, the maximization problem

M :=max
a∈D
α∈S1

ˆ
D

w(1−|Mα,a|2)2 (7.6)

has a solution and, if Mα,a is a maximizer, then so is Mγ,a for every γ ∈S1. In addition, there exists
some r0 < 1 such that every maximizer in (7.6) satisfies |a| ≤ r0. In what follows, we always assume
that r0 < r < 1.

7.1 Theorem. Let uε be obtained via (7.2). Then, possibly up to a subsequence, uε → Mα,a as ε→∞,
strongly in H1(D). Here, Mα,a is a maximizer in (7.6).

7.2 Remark. Equivalently, Theorem 7.1 states that, if vε is a critical point in E1 obtained by the
mountain pass approach in Ω and for the original energy Eε, then the family (vε) converges (possibly
up to a subsequence) as ε→∞, strongly in H1(Ω), to a maximizer of

M :=max
a∈Ω
α∈S1

ˆ
Ω

(1−|Mα,a,Φ|2)2.

Before proceeding to the proof, let us note the following. Let H be the map given by Lemma 5.2.
Then the restriction H(r) of H to Dr is a competitor in (7.2). Thus (with β=βε)

c∗ε ≤max
Dr

Fβ

(
T

(
N0 eıH(r)

))
=max

a∈Dr

Fβ (T (Na)) . (7.7)

28It will be shown in the proof of Theorem 7.1 that for sufficiently large ε the value of r can be chosen independent of ε.
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Proof. Step 1. We have

c∗ε =π+
1

4ε2 M+ o
(

1
ε2

)
as ε→∞. (7.8)

Indeed, on the one hand the upper bound c∗ε ≤ π+ 1
4ε2 M is a consequence of (7.7) combined with the

fact that

Fβ(T(Na))=min{Fβ(u); tr u = Na}≤ Fβ(Ma)=π+ 1
4ε2

ˆ
D

w(1−|Ma|2)2. (7.9)

We obtain the upper bound by considering, as a competitor in (7.7), the map a 7→ H(a), a ∈ Dr, (with
H as in Lemma 5.2), and by using (7.9).

For the lower bound, fix some ξ ∈Dr such that Mξ is a maximizer in (7.6). Let F be a competitor

in (7.7) such that J∗(F(a)) < c∗ε +
1
ε4 for each a ∈ Dr. Clearly, u 7→ ũ is continuous from H1(D;C) into

itself. By Theorem 4.1 3., for large ε the map

G :Dr →D, G(a)= the zero of the harmonic extension F(a) of N0 eıF(a)

is continuous and satisfies G(a) = a if |a| = r. By the Brouwer fixed point theorem, we may find

some a = aε such that F(a) vanishes at z = ξ. Since
1
2

ˆ
D

|∇F(a)|2 ≤ c∗ε , we find, via Corollary 4.6 and

Corollary 3.2, that F(a) (which depends on ε) converges, as ε→ 0, strongly in H1(D) to Mα,ξ for some
α ∈S1. We find that

1
2

ˆ
D

|∇F(a)|2 + 1
4ε2

ˆ
D

w(1−|F(a)|2)2 ≥π+ 1
4ε2 M+ o

(
1
ε2

)
as ε→∞. (7.10)

The lower bound in (7.8) is obtained by combining (7.10) with Lemma 7.3 below. In order to state this
lemma, and for further use, let us introduce the following class.

Zε =
{

u ∈G ; −∆u = 1
ε2 w u(1−|u|2)

}
. (7.11)

7.3 Lemma. Let u ∈ Zε. Then

‖∇u−∇ũ‖L2(D) +‖u− ũ‖L∞(D) =O
(

1
ε2

)
as ε→∞, (7.12)

ˆ
D

|∇u|2 =
ˆ
D

|∇ũ|2 +O
(

1
ε4

)
as ε→∞, (7.13)

and ˆ
D

w(1−|u|2)2 =
ˆ
D

w(1−|ũ|2)2 +O
(

1
ε2

)
as ε→∞. (7.14)
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Proof of Lemma 7.3. Let v = u−ũ. Let p > 2. By combining the equation (5.9) satisfied by every u ∈ Zε

with the maximum principle Lemma 2.17, with the Sobolev embeddings and with standard elliptic
estimates [27, Theorem 9.15, p. 241], we have

‖∇v‖L2(D) +‖v‖L∞(D) ≤ C‖∆v‖Lp(D) = C‖∆u‖Lp(D) ≤
C′

ε2 ,

i.e., (7.12) holds.
We obtain (7.13) by combining (7.12) with the identity

´
D
|∇u|2 = ´

D
|∇ũ|2 +´

D
|∇v|2.

Finally, we note that (by the maximum principle Lemma 2.17) we have |u| ≤ 1, |ũ| ≤ 1 and therefore
|v| ≤ |u|+ |ũ| ≤ 2. We find that

ˆ
D

w(1−|u|2)2 −
ˆ
D

w(1−|ũ|2)2 =−
ˆ
D

w(2ũ ·v+|v|4)=O
(
‖v‖L2(D) +‖v‖2

L4(D)

)
=O

(
1
ε2

)
as ε→∞

(by (7.12) and |v| ≤ 2), and therefore (7.14) holds.

Proof of Theorem 7.1 continued. To summarize: we have the expansion (7.8) of the energy. Using the
identity |∇u|2 = 2Jac u+4|∂z̄u|2 and formula (2.8), we find that

2
ˆ
D

|∂z̄uε|2 + 1
4ε2

ˆ
D

w(|uε|2 −1)2 = 1
4ε2 M+ o

(
1
ε2

)
as ε→∞. (7.15)

In order to complete the proof of Theorem 7.1, it suffices to show that
ˆ
D

|∂z̄uε|2 = o
(

1
ε2

)
as ε→∞. (7.16)

Indeed, assume for the moment that (7.16) holds. As in the proof of Lemma 6.2, Step 1., we see that
any possible weak limit of the uε’s is either a constant of modulus 1, or a Moebius map Mα,a. By
(7.15) and (7.16), the former case cannot hold. By (7.8), (7.15), (7.16) and Corollary 3.2, we find that
uε→ Mα,a in H1(D), where Mα,a is a maximizer in (7.6).

Step 2 in the proof of Theorem 7.1. Proof of (7.16). This proof is similar to the analysis performed
in [7, Section 5] in somewhat different context of magnetic Ginzburg-Landau functional in a doubly
connected domain.

Introduce hε as a solution of{
∇⊥hε = uε∧∇uε in D
hε = 0 on S1 .

Existence of hε follows from the fact that (by (2.23)) we have div (uε∧∇uε) = 0 in D and uε∧ ∂uε
∂ν

= 0

on S1. Define

vε = 1−|uε|2
2

+hε. (7.17)

The following is straightforward and left to the reader.

7.4 Lemma. We have{
∆hε = 2Jac uε in D
hε = 0 on S1 , (7.18)
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∆vε = w
ε2 |uε|2(1−|uε|2)−4 |∂z̄uε|2 in D

vε = 0 on S1
(7.19)

and

|∇vε|2 = 4|uε|2 |∂z̄uε|2 . (7.20)

The key ingredient of the proof of Step 2. is the following

7.5 Lemma. We have

‖vε‖L∞(D) → 0 as ε→∞. (7.21)

Proof of Lemma 7.5. For large ε, let a = aε be the unique zero of ũε (cf Theorem 4.1 1.). Set Uε =
uε ◦ M−a and Hε = hε ◦ M−a. In view of (7.17), we have vε ◦ M−a = 1−|Uε|2

2
+ Hε, and thus (7.21)

amounts to

1−|Uε|2
2

+Hε→ 0 uniformly in D as ε→∞. (7.22)

As in Step 1., Corollaries 4.6 and 3.2 combined with (7.8) imply that, up to a subsequence,

Ũε→ Mγ,0 = γId strongly in H1(D) as ε→∞. (7.23)

By (7.12), we also have

Uε→ Mγ,0 = γId strongly in H1(D) as ε→∞. (7.24)

Using Lemma 2.19 1. combined with (7.24) and with the fact that (by (7.18)) Hε satisfies{
∆Hε = 2Jac Uε in D
Hε = 0 on S1 ,

we find that

Hε(z)→ 1
2

(|z|2 −1) uniformly in D as ε→∞. (7.25)

On the other hand, by combining Lemma 2.13 with (7.23), we find that

|Ũε(z)|→ |z| uniformly in D as ε→∞.

The above convergence combined with (7.12) implies that

|Uε(z)|→ |z| uniformly in D as ε→∞. (7.26)

Assertion (7.22) (and thus also assertion (7.21)) is obtained by combining (7.26) with (7.25).
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Step 2 continued. If we multiply (7.19) by vε and take (7.15), (7.20) and Lemma 7.5 into account, we
find thatˆ

D

|uε|2|∂z̄uε|2 = o
(

1
ε2

)
as ε→∞. (7.27)

In view of (7.26) and of the conformal invariance of the integral in (7.27), estimate (7.27) implies in
particular that

ˆ
D\D1/2

|∂z̄Uε|2 = o
(

1
ε2

)
as ε→∞. (7.28)

Therefore, in order to complete the proof of Step 2. it suffices to prove that
ˆ
D1/2

|∂z̄Uε|2 = o
(

1
ε2

)
as ε→∞. (7.29)

Estimate (7.29) is obtained via the equation satisfied by ∂z̄Uε. In view of (5.9), we have

∆(∂z̄Uε)= 1
ε2∂z̄

(
β◦M−aε Jac M−aεUε(1−|Uε|2)︸ ︷︷ ︸

γε

)
in D. (7.30)

We next invoke the following standard estimate. If ω is relatively compact in Ω, and if −∆u = f in Ω,
then

‖∇u‖L2(ω) ≤ C‖u‖L2(Ω\ω) +C‖ f ‖L2(Ω).
29 (7.31)

Noting that γε is uniformly bounded on compact subsets of D, we find, via (7.28) and (7.31), that

‖∂z̄Uε‖L2(D1/2) ≤ C‖∆(∂z̄Uε)‖L2(D3/4) +C‖∂z̄Uε‖L2(D3/4\D1/2) ≤ C
1
ε2 + o

(
1
ε

)
as ε→∞.

This implies (7.29). The proof of Theorem 7.1 is complete.

7.6 Remark. The construction of critical points of Eε in Ed and Theorem 7.1 can be generalized to
the case of magnetic Ginzburg-Landau functional, whose minimizers with prescribed degrees were
studied in [8] for ε ≥p

2. This shows that critical points with prescribed degree one still exist when
ε < p

2. However, their type changes when passing the critical value
p

2, namely when ε > p
2 we

have minimizers while for ε<p
2 they become minimax critical points.

29 This estimate is obtained as follows. We assume for simplicity that u is real-valued. We multiply the equation
−∆u = f by ζ2u, where ζ ∈ C∞

c (Ω;R) is fixed such that ζ= 1 in ω. After some straightforward calculations, we find that
ˆ
Ω
|∇(ζu)|2 =

ˆ
Ω
ζ2 f u+2

ˆ
Ω
ζu∇u ·∇ζ,

and this leads toˆ
Ω
|∇(ζu)|2 ≤ C1‖u‖2

L2(Ω\ω) +ε‖ζu‖2
L2(Ω) +C(ε)‖ f ‖2

L2(Ω). (7.32)

We obtain (7.31) by combining (7.32) with Poincaré’s inequality ‖ζu‖L2(Ω) ≤ C‖∇(ζu)‖L2(Ω).
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8 Bubbling analysis for small ε
When ε is small instead of large, our proof of Theorem 1.1 breaks down, although we expect its
conclusion to remain true. In fact the very definition of J∗ is valid only for large ε since it requires
the uniqueness of solutions of (5.9).

Nevertheless we present in this section an alternative minimax setting which is valid for any
ε > 0, and for which the proof of Theorem 1.1 can be carried out up to and including the analysis of
Palais-Smale sequences, i.e., the analog of Corollary 4.6. We believe this result is interesting in its
own right.

Let X ] := H1
0(D;C)×H1/2(S1;R) and

U : X ]→ H1(D;C), X ] 3 (v,ψ) 7→U(v,ψ) := v+u
(
N0eıψ)

.

Recall that N0 is the identity of S1 and that u(w) is the harmonic extension of w. Set J](v,ψ) :=
Fβ(U(v,ψ)).

As in Section 5, we let K =Dr, K0 = Cr and we write Na = N0eıψa . Define

χ] : Cr → X ], Cr 3 a 7→ χ](a)= (
0,ψa

)
.

We have U ◦χ](a)= Ma.
We also define

c] := inf
{

max
K

J] ◦F; F ∈ C(K ; X ]), F = χ] on K0

}
, c]1 :=max

K0
J] ◦χ]. (8.1)

8.1 Remark. Assume, just in this remark, that (5.8) holds. Then we clearly have c] = c∗ and c]1 = c∗1 ,
with c∗ and c∗1 as in (5.10).

By repeating the proof of Lemma 5.3, we find the following

8.2 Lemma. Assume (4.14). Then, for r sufficiently close to 1, we have c] > c]1.

We next establish the analogs of Lemma 5.8 and of Corollary 5.12 when J∗ is replaced by J]; this
will require more involved arguments. We start with some straightforward consequences of Lemma
5.4.

8.3 Lemma. Let 1≤ p <∞. Let u0 ∈ H1/2 ∩L∞(S1;C). Then the map

F1 : H1/2(S1;R)→ Lp(S1;C), H1/2(S1;R) 3ψ F1−−→ u0 eıψ,

is C1, and F1
′(ψ)(η)= ıu0 eıψη.

Proof. The point to be checked is that T (ψ)(η) := ıu0 eıψη defines a map T ∈ C(H1/2;B(H1/2;Lp)).
This follows from

‖T (ψ1)−T (ψ2)‖ ≤ sup
‖η‖H1/2≤1

‖(ψ1 −ψ2)η‖Lp ≤ sup
‖η‖H1/2≤1

‖ψ1 −ψ2‖L2p‖η‖L2p ≤ C‖ψ1 −ψ2‖H1/2 ,

by the Sobolev embedding H1/2(S1) ,→ L2p(S1).
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8.4 Lemma. Let 1≤ p <∞. Let u0 ∈ H1/2 ∩L∞(S1;C). Then the map

F2 : H1
0(D;C)×H1/2(S1;R)→ Lp(D), H1

0(D;C)×H1/2(S1;R) 3 (v,ψ) F2−−→ v+u
(
u0 eıψ)

,

is C1, and F2
′(v,ψ)(w,η)= w+u

(
ıu0 eıψη

)
.

Proof. It suffices to combine the previous lemma with the embedding H1(D) ,→ Lp(D) and with the
continuity of the map Lp(S1) 3 f 7→ u( f ) ∈ Lp(D).

By combining the above result with Lemma 5.5, we obtain

8.5 Lemma. With u0 as above and β ∈ L∞(D), the map

F3 : H1
0(D;C)×H1/2(S1;R)→R, H1

0(D;C)×H1/2(S1;R) 3 (v,ψ)
F3−−→ 1

4

ˆ
D

β
(
1− ∣∣v+u

(
u0 eıψ)∣∣2)2

,

is C1, and, if we set u := v+u
(
u0 eıψ)

, then

F3
′(v,ψ)(w,η)=−

ˆ
D

βu · (w+u
(
ıu0eıψη

))
(1−|u|2).

8.6 Lemma. The map

F4 : H1/2(S1;R)→R, H1/2(S1;R) 3ψ F4−−→ 1
2

ˆ
D

∣∣∇u
(
u0eıψ)∣∣2 ,

is C1, and, if u = u
(
u0eıψ)

, then

F4
′(ψ)(η)=

ˆ
S1

(
u∧ ∂u

∂ν

)
η=

ˆ
D

(u∧∇u)·∇ζ, ∀ψ,η ∈ H1/2(S1;R), ∀ζ ∈ H1(D;R) such that tr ζ= η. (8.2)

Proof. The equality of the two integrals in (8.2) is justified as in the proof of (5.14).

In order to prove that F4
′(ψ)(η)=T (ψ)(η), where T (ψ)(η) :=

ˆ
D

(u∧∇u) ·∇u(η), we rely on Lemma

5.4. The map ψ 7→ u∧∇u ∈ L2(D) is continuous,30 and thus T ∈ C(H1/2;H−1/2). On the other hand,
it is clear that F4 is continuous. Therefore, it remains to prove that (8.2) holds when ψ and η are
smooth. By replacing u0 with u0eıψ, we may assume that ψ= 0. We have

u0eıtη = u0(1+ ıtη)+R(t), with ‖R(t)‖H1/2 ≤ Ct2 as t → 0,

and thus

F4(tη)= 1
2

ˆ
D

|∇u|2 + t
ˆ
D

∇u ·∇u
(
ıu0η

)+S(t), with ‖S(t)‖H1/2 ≤ Ct2 as t → 0. (8.3)

Using (8.3) and (5.16) with β= 0, we find that

∂F4

∂η
(0)=

ˆ
D

∇u ·∇(ıu0η)=
ˆ
S1

(
u∧ ∂u

∂ν

)
η=T (0)(η).

30This argument was already used in the proof of Lemma 5.7.
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An immediate consequence of Lemma 8.6 is the analog of Lemma 5.8.

8.7 Lemma. The map J] is C1. In addition, with u = v+u
(
N0eıψ)

and with U = u
(
N0eıψ)

, we have

J]′(v,ψ)(w,η)=
ˆ
D

∇v ·∇w+
ˆ
D

(U ∧∇U) ·∇ζ−
ˆ
D

βu · (w+u
(
ıN0eıψη

))
(1−|u|2) (8.4)

for every ζ ∈ H1(D) such that tr ζ= η.

Proof. It suffices to note that J](v,ψ)=F4(ψ)+ 1
2

ˆ
D

|∇v|2, with F4 as in Lemma 8.6.31

We next turn to the properties of the Palais-Smale sequences associated to J]. Note that an
application of Theorem 5.1 in conjunction with Lemma 8.2 leads to a sequence (vn,ψn) such that,
with u∗

n := vn +u
(
N0eıψn

) ∈G , we have

J]′(vn,ψn)→ 0, J](vn,ψn)→ c], u∗
n * u in H1 as n →∞. (8.5)

In the asymptotic analysis of the Palais-Smale sequences, the smoothness of u∗
n is not sufficient.

In the remaining part of this section, we find a better Palais-Smale sequence and establish its main
properties. More specifically, we let un := v+u

(
N0eıψn

)
, where v ∈ H1

0(D) is such that vn * v as n →∞.
In the original variables of J], this amounts to replacing vn by v. The next result is the analog of
Corollary 5.12.

8.8 Lemma. Assume that (vn,ψn) satisfy (8.5), with u∗
n := vn +u

(
N0eıψn

)
, and that vn * v as n →∞.

Then, letting

un := v+u
(
N0eıψn

)
,

the sequence (un) has the following properties.

1. u is a solution of (2.23), and we have −∆v =βu(1−|u|2).

2. |un| ≤ C.

3. −∆un −βun(1−|un|2)→ 0 as n →∞ in every Lp, p <∞.

4. un −u∗
n → 0 as n →∞ in H1(D). In particular, un * u and Fβ(un)→ c] as n →∞.

5. (un) is a Palais-Smale sequence.

6. There exists a sequence cn → 0 such that∣∣∣∣ˆ
D

(un ∧∇un) ·∇ζ
∣∣∣∣≤ cn‖∇ζ‖L2 , ∀ζ ∈ H1(D;R). (8.6)

31With u0 = N0.

42



Proof. All items except item 6. are straightforward. Indeed, let Un := u
(
N0eıψn

)
. Since u∗

n = vn+Un *

u, we find that Un *U as n →∞ for some harmonic U ∈G , and thus and vn * v := u−U as n →∞.
Using the fact that (u∗

n) is a Palais-Smale sequence, we find, by passing to the limits in (8.4),32 that
−∆v = βu(1−|u|2), whence the last assertion in item 1. Item 2. follows by combining the inequality
|Un| ≤ 1 with the fact that v is smooth.33 Item 3. follows from the fact that un → u as n →∞ in Lp

for every p <∞. This item implies that un → u in W2,p as n →∞, ∀ p <∞, and thus item 4. Item 5.
is an easy consequence of the fact that vn → v in H1 as n →∞ (which in turn follows from item 4.)
combined with the fact that u∗

n −un → 0 as n →∞ in every Lp.
We now turn to property 6., which is at the heart of the lemma. Since ∆Un = 0 in D, we have
ˆ
D

(Un ∧∇Un) ·∇ζ=
ˆ
D

div((Un ∧∇Un)ζ)=
ˆ
S1

∂Un

∂ν
· (ıUnη)=

ˆ
D

∇Un ·∇u(ıN0eıψnη).

We plug this into (8.4) and integrate by parts to find, with ζ ∈ H1(D) such that tr ζ= η, that

J]′(v,ψn)(0,η)=
ˆ
D

∇Un ·∇u(ıN0eıψnη)−
ˆ
D

βun ·u
(
ıN0eıψnη

)
(1−|un|2)

=
ˆ
D

∇un ·∇u(ıN0eıψnη)−
ˆ
D

βun ·u
(
ıN0eıψnη

)
(1−|un|2)

=
ˆ
S1

un ∧ ∂un

∂ν
η−

ˆ
D

(
∆un +βun(1−|un|2)

) ·u (
ıN0eıψnη

)
=
ˆ
D

(un ∧∇un) ·∇ζ+
ˆ
D

un ∧∆unζ−
ˆ
D

(
∆un +βun(1−|un|2)

) ·u (
ıN0eıψnη

)
.

The above calculation is valid for smooth η and ζ. By density, it still holds for every η ∈ H1/2(S1;R)
and every η ∈ H1(D;R) such that tr ζ= η. In particular, we have∣∣∣∣ˆ

D

(un ∧∇un) ·∇ζ
∣∣∣∣≤ ∣∣∣J]′(v,ψn)(0,η)

∣∣∣+ˆ
D

|un ∧∆un| |ζ|+
ˆ
D

∣∣∆un +βun(1−|un|2)
∣∣ ∣∣u (

ıN0eıψnη
)∣∣ .

We take, in the above inequality, ζ with zero mean and such that η = tr ζ. With this choice, if we
invoke Poincaré’s inequality, combined with the bounds

|η|H1/2 ≤ C‖∇ζ‖L2 and ‖u
(
ıN0eıψnη

)‖Lp ≤ C|η|H1/2 , ∀ p <∞,

and with items 3. and 5., then we obtain item 6.
Finally, the first assertion in item 1. follows by combining 6. with the second part of item 1.

8.9 Definition. In the following we will denote by the term bubble either a Moebius transform or
the conjugate of a Moebius transform. We will denote such a bubble by Ba, with a ∈ D. Thus either
Ba = Ma or Ba = Ma.

A multi-bubble is either a (non trivial) Blaschke product, or the conjugate of such a product.

The key result in the analysis of the Palais-Smale sequences associated to J] is the following.

32(8.4) is applied to the couple (vn,ψn), with η= 0 and for fixed w.
33Here, we use Lemmas 2.17 and 2.15.
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8.10 Lemma. Let (vn)⊂G be a sequence of harmonic functions with the following properties:

vn * 1 in H1(D) as n →∞; (8.7)
1
2

ˆ
D

|∇vn|2 → Kπ as n →∞; (8.8)∣∣∣∣ˆ
D

(vn ∧∇vn) ·∇ζ
∣∣∣∣≤ cn‖∇ζ‖L2 , ∀ζ ∈ H1(D;R), with cn → 0 as n →∞. (8.9)

Then K is an integer and, up to a subsequence, there exist points a1(n), . . . ,aK (n), corresponding bub-
bles Ba j(n), j ∈ J1,KK and a constant γ ∈S1, such that

|a j(n)|→ 1 as n →∞, ∀ j ∈ J1,KK; (8.10)

vn −γ
K∏

j=1
Ba j(n) → 0 strongly in H1(D) as n →∞. (8.11)

Proof. The proof is by induction on the integer part [K] of K .

Step 1. Case where K < 1.
In this case, we will prove that vn → 1 strongly in H1(D) as n →∞. By Lemma 4.2 4., if K < 1 then
|vn| ≥ a > 0 for large n and some constant a. Thus we may write, globally in D, vn = ρneıϕn (Lemma
2.7 3.). If we take ζ = ϕn in (8.9), then using (2.11) we find that ∇ϕn → 0 in L2 as n →∞. Since vn

is harmonic, we have

{
∆ρn = ρn|∇ϕn|2 in D
ρn = 1 on S1 , and therefore ρn → 1 strongly in H1(D) as n →∞.34

Using (2.11) and the facts that ∇ϕn → 0 and ∇ρn → 0 in L2, we obtain that vn → 1 as n →∞ strongly
in H1, i.e., that (8.11) holds with K = 0.

Step 2. Induction step.
Assume that [K] ≥ 1. Then the H1 convergence of (vn) (or any subsequence of (vn)) to 1 is weak,
but not strong. By the argument developed in Step 1., there exists no a > 0 such that |vn| ≥ a holds
along a subsequence. Thus we may pick zn ∈ D such that vn(zn) → 0. In view of (8.7), we have
|zn|→ 1 as n →∞.

Let wn = vn ◦M−zn . The new sequence (wn) satisfies (8.8), (8.9) and wn(0)→ 0 as n →∞.
Let w be the weak limit of (wn) (possibly along a subsequence). Then w is harmonic, w(0)= 0 and,

by (8.9), w satisfies (2.23) with β= 0. In view of Lemma 3.5, there exist a1, . . . ,aL in D and a constant
γ ∈S1 such that

w = γMa1 . . . MaL , or w = γMa1 . . . MaL . (8.12)

In particular,
1
2

ˆ
D

|∇w|2 = Lπ, with L a positive integer. Let f := tr w and gn := tr (wnw). Then gn * 1

in H1/2(S1;S1) as n → ∞. We also note the following. On the one hand, we have wn = u( f gn). On
the other hand, if we set hn := u(gn), then hn * 1 in H1(D) as n →∞ (and also hn → 1 in C1

loc(D) as

n →∞.) By Lemmas 2.22 and 2.24, we have wn−whn → 0 in H1(D) and
1
2

ˆ
D

|∇hn|2 → (K−L)π as n →
∞. We now turn back to the original sequence (vn). Set tn := γnw ◦ Mzn , yn := hn ◦ Mzn , where
γn = w◦Mzn(0)/|w◦Mzn(0)| (note that |w◦Mzn(0)| = |w(−zn)|→ 1 as n →∞). Then we have:

34This is obtained by multiplying by ρn −1 the equation of ρn.
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1. vn −γntn yn → 0 in H1(D) as n →∞.

2. Letting a j(n) := M−zn(a j), we have |a j(n)| → 1 as n →∞, and either tn = γnγ
∏

j Ma j(n), or t̄n =
γnγ

∏
j Ma j(n).

3.
1
2

ˆ
D

|∇yn|2 → (K −L)π as n →∞.

4. yn * 1 in H1(D) as n →∞ (since vn * 1 and γnw◦Mzn * 1 as n →∞).

In order to complete the proof of Lemma 8.10, we apply the induction hypothesis to the sequence (yn).
To this end we need to establish the validity of (8.9) for the sequence (yn). This is done as follows. By
conformal invariance of (8.9) and the fact that (8.9) holds for (vn), we find that (8.9) holds for (wn).
On the other hand, (8.12) implies that

´
D

(w∧∇w) ·∇ζ= 0. We next recall that wn = whn + rn, where
rn → 0 in H1(D) as n →∞. Since ∆rn =−2∇w ·∇hn is bounded in L2(Ω), the sequence (rn) is bounded
in W1,p(D), ∀p ∈ [1,∞), and thus rn → 0 in L∞(D) as n →∞. Therefore, we have

wn ∧∇wn = |hn|2(w∧∇w)+|w|2(hn ∧∇hn)+Fn,

with Fn ∈ L2(D;R2) satisfying ‖Fn‖L2 → 0 as n →∞. From this we find that
ˆ
D

(hn ∧∇hn) ·∇ζ=
ˆ
D

(wn ∧∇wn) ·∇ζ+
ˆ
D

(1−|w|2)(hn ∧∇hn) ·∇ζ

+
ˆ
D

(1−|hn|2)(w∧∇w) ·∇ζ−
ˆ
D

(w∧∇w) ·∇ζ−
ˆ
D

Fn ·∇ζ

=
ˆ
D

(wn ∧∇wn) ·∇ζ+
ˆ
D

(1−|w|2)(hn ∧∇hn) ·∇ζ

+
ˆ
D

(1−|hn|2)(w∧∇w) ·∇ζ−
ˆ
D

Fn ·∇ζ.

(8.13)

The fact that hn → 1 in C1
loc(D) and in L4(D) as n →∞ and the fact that |w(z)| → 1 as |z| → 1 easily

imply that∣∣∣∣ˆ
D

(1−|w|2)(hn ∧∇hn) ·∇ζ
∣∣∣∣+∣∣∣∣ˆ

D

(1−|hn|2)(w∧∇w) ·∇ζ
∣∣∣∣≤ cn‖∇ζ‖L2 , with cn → 0 as n →∞. (8.14)

It follows from (8.13) and (8.14) that (hn) satisfies (8.9). By conformal invariance of (8.9), the same
holds for (yn).

8.11 Remark. Lemma 8.10 is about bubbling of harmonic functions in the unit disc D, and clearly
this analysis extends to the case of simply connected domains. It is still possible to study the case of
multiply connected domains. Such analysis, which is not relevant for the subsequent results in this
section, is postponed to Section 9.

8.12 Lemma. Let (vn,ψn) be a Palais-Smale sequence associated to J], and set u∗
n := vn +u

(
N0eıψn

)
.

Assume that u∗
n * u in H1(D) as n →∞. Set gn = tr(u∗

nu) and wn = u(gn). Then

1. u∗
n −uwn → 0 strongly in H1(D) as n →∞.

2. Fβ(u∗
n)= Fβ(u)+ 1

2

ˆ
D

|∇wn|2 + cn, with cn → 0 as n →∞.

3. The sequence (wn) satisfies the assumptions of Lemma 8.10.
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Proof. Let un = v+u
(
N0eıψn

)
, where v = limn vn as in Lemma 8.8. By Lemma 8.8, item 1. amounts to

proving that zn := uwn −un converges strongly to 0 in H1(D) as n →∞. By combining the fact that u
solves (2.21) with Lemma 8.8 (which implies that −∆un =−∆v = βu(1−|u|2)), and with the fact that
wn is harmonic, we find that the map zn solves{

−∆zn =βu(wn −1)(1−|u|2)−2∇u ·∇wn in D
zn = 0 on S1 .

Then, by Remark 2.23, we obtain that zn → 0 in H1(D).
We turn to item 2. By combining item 1. with the fact that wn * 1 weakly in H1 and wn → 1

strongly in Lp as n →∞, ∀p ∈ [1,∞) (p ≥ 1), we find that item 2. amounts to proving that, as n →∞,
we haveˆ

D

|∇(uwn)|2 =
ˆ
D

|∇u|2 +
ˆ
D

|∇wn|2 + o(1). (8.15)

The starting point in the proof of (8.15) is the identity

|∇(uwn)|2 = |u|2|∇wn|2 +|∇u|2|wn|2 +2(u∇wn) · (wn∇u).

Since wn is harmonic and wn * 1 in H1 as n →∞, we have wn → 1 in C1
loc as n →∞. On the other

hand, we have |u(x)|→ 1 uniformly as x → ∂D. Thereforeˆ
|u|2|∇wn|2 =

ˆ
|∇wn|2 + o(1) and

ˆ
|∇u|2|wn|2 =

ˆ
|∇u|2 + o(1) as n →∞.

Finally, since uwn∇u → u∇u strongly in L2(D) and ∇wn * 0 weakly in L2(D), we see thatˆ
(u∇wn) · (wn∇u)= o(1) as n →∞.

This proves (8.15) and item 2.
As for item 3., we start from the identityˆ

D

((uwn)∧∇(uwn)) ·∇ζ=
ˆ
D

(|u|2 −1)(wn ∧∇wn) ·∇ζ+
ˆ
D

(wn ∧∇wn) ·∇ζ+
ˆ
D

|wn|2(u∧∇u) ·∇ζ,

and argue as in the proof of Lemma 8.10.

A straightforward combination of the two preceding lemmas implies the main result of this sec-
tion.

8.13 Theorem. Let (vn,ψn) be a Palais-Smale sequence associated to J], and set u∗
n := vn+u

(
N0eıψn

)
.

Then, up to a subsequence, there exist: a critical point u of Fβ in G , an integer K , points a1(n), . . . ,aK (n),
corresponding bubbles Ba j(n), j ∈ J1,KK and a constant γ ∈S1, such that

|a j(n)|→ 1 as n →∞, ∀ j ∈ J1,KK; (8.16)

u∗
n −γu

K∏
j=1

Ba j(n) → 0 strongly in H1(D) as n →∞; (8.17)

Fβ(u∗
n)= Fβ(u)+Kπ+ cn, with cn → 0 as n →∞. (8.18)

In particular, we have (with c] given by (8.5))

c] = Fβ(u)+Kπ.35 (8.19)

35Thus we have the following obvious upper bound on the number K of bubbles: K ≤ c]/π.
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Proof. From Lemma 8.12, we have ‖u∗
n −uwn‖H1 → 0 as n →∞, where (wn) satisfies the hypotheses

of Lemma 8.10. In order to conclude, it suffices to apply Lemma 8.10 to (wn).

Results in the spirit of Theorem 8.13 has proven useful in many variational settings, especially
in geometry. Let us simply mention the pioneering work of Sacks and Uhlenbeck [39] about minimal
2-spheres, the analysis of Brezis and Coron [17] of constant mean curvature surfaces, or the one of
Struwe [41] of equations involving the critical Sobolev exponent. There are also abstract approaches
to bubbling as in the work of Lions [33] about concentration-compactness or the characterization of
lack of compactness of critical embeddings in Gérard [26], Jaffard [31] or Bahouri, Cohen and Koch
[2].

We conclude with the following obvious consequence of our analysis of the Palais-Smale sequences.

8.14 Theorem. Assume that c] given by (8.1) satisfies c] < 2π. Assume in addition that

there exists no solution u ∈G of (2.23) such that Fβ(u)= c]−π. (8.20)

Then Fβ has a critical point u ∈G1.
In addition, under the above assumptions the functional Fβ satisfies the (PS)c condition given by

(5.6) at the level c = c].

Note that, by Remark 8.1, our assumption on c] generalizes assumption (6.1).
Theorem 8.14 combined with our next result implies Theorem 6.1 (and thus Theorem 1.1).

8.15 Lemma. Assume that (5.8) and (5.10) hold. Let u be a critical point of Fβ in G such that
Fβ(u)<π. Then u is a constant (and thus Fβ(u)= 0).

Proof. Assumption (5.8) implies that critical points of Fβ are actually minimizers of Fβ with respect
to their own boundary conditions. We next argue as in Step 1. in the proof of Lemma 8.10. If u
is such a minimizer and Fβ(u) < π, then there exists some a > 0 such that |u| ≥ a (Lemma 4.2 4.).
Then we may write, globally in D, u = ρeıϕ (Lemma 2.7 3.). Assume, in addition, that u is a critical
point of Fβ. If we take ζ = ϕ in (2.21), then we find that ϕ is constant, say ϕ = 0. Thus ρ satisfies{
−∆ρ =βρ(1−ρ2) in D
ρ = 1 on S1 . By multiplying this equation with ρ−1, we find that ρ ≡ 1.

Open Problem 1. Let u ∈ G be a critical point of Fβ. Assume that Fβ(u) < π.36 Is it true that u is
a constant? More generally, does the same hold if we replace the smallness assumption Fβ(u) < π by

the weaker assumption
1
2

ˆ
D

|∇u|2 <π?

9 Bubbling analysis in multiply connected domains
In this section, we establish the analog of Theorem 8.13 in multiply connected domains Ω. To start
with, this requires defining Palais-Smale sequences and bubbles. In defining Palais-Smale sequences,
we can take as a starting point either Lemma 8.7 (and define a sequence (u∗

n)) or Lemma 8.8 (and
define a sequence (un)). We adopt here the latter point of view.

36But we do not make any smallness assumption on β. In particular, we do not assume (5.8).
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9.1 Definition. Let β ∈ L∞(Ω). A sequence (un)⊂ E is a Palais-Smale sequence for Fβ if there exists
a sequence cn → 0 as n →∞ such that∣∣∣∣ˆ

Ω
∇un ·∇w−

ˆ
Ω
βun ·w(1−|un|2)

∣∣∣∣≤ cn‖∇w‖L2 , ∀w ∈ H1
0(Ω;C); (9.1)

∣∣∣∣ˆ
Ω

(un ∧∇un) ·∇ζ
∣∣∣∣≤ cn‖∇ζ‖L2 , ∀ζ ∈ H1(Ω;R). (9.2)

We next define bubbles.

9.2 Definition. Let Γ`, ` ∈ J1,LK, be the components of ∂Ω. We assume that Γ1 encloses Ω. Let ω1 be
the simply connected domain enclosed by Γ1, and for `≥ 2 let ω` be the exterior domain bounded by
Γ` in the extended plane C∪ {∞}. For each `, fix a conformal representation Φ` : ω` → D . For a ∈ D
and ` ∈ J1,LK, the corresponding bubble B`

a is defined as either B`
a = M1,a,Φ`

, or B`
a = M1,a,Φ`

.

Note that, unlike the case of simply connected domains, bubbles do not belong to E . However, as
a →Γ`, the trace of B`

a almost fulfills the condition |tr B`
a| = 1.

The analog of Theorem 8.13 is

9.3 Theorem. Let (un) be a Palais-Smale sequence. Then, up to a subsequence, there exist: a critical
point u of Fβ in E , an integer K , indices `1, . . . ,`K ∈ J1,LK, points a1(n), . . . ,aK (n) ∈Ω, corresponding
bubbles B

` j
a j(n), j ∈ J1,KK and a constant γ ∈S1, such that

dist(a j(n),Γl j )→ 0 as n →∞, ∀ j ∈ J1,KK; (9.3)

un −γu
K∏

j=1
B

l j
a j(n) → 0 strongly in H1(Ω) as n →∞; (9.4)

Fβ(un)= Fβ(u)+Kπ+ cn, with cn → 0 as n →∞. (9.5)

Proof. Up to a subsequence, we have un * u ∈ E as n →∞. We define g`n : ∂Ω→S1 by

g`n =
{

tr (un/u) on Γ`
1 on ∂Ω\Γ`

,

so that gn := tr (un/u) satisfies gn = ∏L
`=1 g`n. Let vn := u(gn) and v`n := u(g`n). An inspection of the

proof of Lemma 8.12 shows that the conclusions of this lemma hold in our case.37 That is,

un−vnu → 0 strongly in H1(Ω), and Fβ(un)= Fβ(u)+ 1
2

ˆ
Ω
|∇vn|2+cn, with cn → 0 as n →∞. (9.6)

Moreover, the sequence (vn) satisfies (9.2).
We next prove an analogue of Lemma 8.10.
We first introduce two useful objects. Let w`

n denote the harmonic extension to ω` of the trace of
gn on Γ`. We also set W`

n :D→C, W`
n := w`

n ◦ (Φ`)−1.

37With un instead of u∗
n.
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9.4 Lemma. We have
ˆ
Ω
|∇vn|2 =

L∑
`=1

ˆ
Ω
|∇w`

n|2 + cn, with cn → 0 as n →∞, (9.7)

and

vn −
L∏
`=1

w`
n → 0 strongly in H1(Ω) as n →∞. (9.8)

Proof. By standard interior estimates [29, Proposition 1.13, p. 6] and global estimates [27, Theorem
9.19, p. 243], the fact that g`n * 1 in H1/2(∂Ω) as n →∞ and the fact that g`n = 1 on ∂Ω\Γ` imply

v`n → 1 in Ck
loc(Ω\Γ`) as n →∞. (9.9)

The same holds for w`
n. It is then clear that vn −v`n → 0 in Ck

loc(Ω\∪ j 6=`Γ j) as n →∞. Combined with
(9.9), this fact leads to the expansion

ˆ
Ω
|∇vn|2 =

L∑
`=1

ˆ
Ω
|∇v`n|2 + cn, with cn → 0 as n →∞

and to the strong convergence

vn −
L∏
`=1

v`n → 0 in C∞(Ω) as n →∞. (9.10)

By the above, in order to conclude it suffices to invoke the fact that |w`
n| ≤ 1 (Lemma 2.17) and to

prove that

w`
n −v`n → 0 strongly in H1(Ω) as n →∞. (9.11)

In turn, (9.11) is obtained by noting that y`n := w`
n−v`n is harmonic and that tr y`n → 0 in H1/2(∂Ω) as n →

∞.

9.5 Lemma. Up to a subsequence, the sequence (W`
n )n satisfies the assumptions of Lemma 8.10.

As a consequence, up to a subsequence there are integers K(`), points a1(n), . . . ,aK(`)(n) ∈Ω and a
constant γ ∈S1 such that:

1. dist (a j(n),Γ`)→ 0 as n →∞, ∀ j ∈ J1,K(`)K.

2.
1
2

ˆ
Ω
|∇w`

n|2 → K(`)π as n →∞.

3. w`
n −γ

∏K(`)
j=1 B`

a j(n) → 0 strongly in H1(Ω) as n →∞.

Proof. We have to prove that the sequence (W`
n )n satisfies (8.9). By conformal invariance, it suffices

to check the same property for (w`
n)n. By (9.11), we are reduced to checking the same for (v`n)n. Let

Ω` ⊂C be an open set such thatΩ`∩∂Ω=Γ`. Let η` ∈ C∞
c (Ω`;R) be such that η` = 1 in a neighborhood
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of Γ`. If ζ ∈ H1(Ω;R), set ξ` := η`ζ, λ` := ζ− ξ`. Assuming in addition that
ˆ
Ω
ζ = 0, we have the

Poincaré type inequality

‖∇ξ`‖L2 +‖∇λ`‖L2 ≤ C‖∇ζ‖L2 .38 (9.12)

Using Lemma 8.12, (9.9) and (9.10), we find that∣∣∣∣ˆ
Ω

(v`n ∧∇v`n) ·∇ξ`
∣∣∣∣≤ ∣∣∣∣ˆ

Ω`

(v`n ∧∇v`n) ·∇ξ`
∣∣∣∣+ ∣∣∣∣ˆ

Ω\Ω`

(v`n ∧∇v`n) ·∇ξ`
∣∣∣∣

≤
∣∣∣∣ˆ
Ω`

(vn ∧∇vn) ·∇ξ`
∣∣∣∣+ cn

ˆ
Ω
|∇ξ`| ≤ cn‖∇ξ`‖L2 , with cn → 0 as n →∞.

(9.13)

Similarly, we have∣∣∣∣ˆ
Ω

(v`n ∧∇v`n) ·∇λ`
∣∣∣∣≤ cn‖∇λ`‖L2 , with cn → 0 as n →∞. (9.14)

We obtain (8.9) for the sequence (v`n) by combining (9.12)-(9.14).
Items 1. and 3. are obtained from the analog results for W`

n via composition with Φ` . As for item
2., it follows from (8.8) once we note thatˆ

Ω
|∇w`

n|2 =
ˆ
D

|∇W`
n |2 −

ˆ
D\(Φ`)−1(Ω)

|∇W`
n |2 =

ˆ
D

|∇W`
n |2 + cn, with cn → 0 as n →∞;

here, we use the fact that W`
n → 1 in Ck

loc(D) as n →∞.

Proof of Theorem 9.3 completed. By combining Lemma 9.4 with Lemma 9.5, we obtain an analog of
Lemma 8.10, i.e.,

vn −γ
K∏

j=1
B

` j
a j(n) → 0 strongly in H1(Ω) as n →∞, and

1
2

ˆ
Ω
|∇vn|→ Kπ as n →∞,

for some integer K , for some constant γ ∈S1 and for some points a1(n), . . . ,aK (n) ∈Ω satisfying (9.3).
Using this fact in (9.6), we obtain (9.4) and (9.5).

We conclude with an application of the above analysis to the existence of critical points in doubly
connected domains. For simplicity, we assume that we have circular symmetry and we let Ω=D\DR ,
with 0 < R < 1, but Theorem 9.6 below extends to arbitrary doubly connected domains. With d =
(d1,d2) ∈Z2, we let

Ed := {u ∈ E ; deg (u,S1)= d1, deg (u,CR)= d2}.

Our result is the following.

9.6 Theorem. Assume that R is sufficiently small. Then there exists some ε0 such that, for ε ∈ (ε0,∞],
Eε has critical points in E(1,0).

The above result is reminiscent of Coron’s result on the existence of non trivial solution of the
equation −∆u = u(n+2)/(n−2) in domains Ω⊂Rn with small holes [22]. Since later Bahri and Coron [3]
proved that the size of the hole is irrelevant for existence of such solutions, we address the following

Open Problem 2. Let R ∈ (0,1). Does there exist some ε0 > 0 such that Eε has critical points in E(1,0)
for ε ∈ (ε0,∞]?

38This is easily obtained by contradiction.
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Proof of Theorem 9.6. We start by describing the functional setting. We let, with 0< r < 1,

K =Dr, K0 = Cr, X ] = H1
0(Ω;C)×H1/2(∂Ω;R).

Let N : ∂Ω→S1, N(z)=
{

z, if |z| = 1
1, if |z| = R

. Then we define

J] : X ]→R, H1
0(Ω;C)×H1/2(∂Ω;R) 3 (v,ψ) J]−→ Eε

(
v+u

(
Neıψ))

.

Note that v + u
(
N eıψ) ∈ E(1,0). For a ∈ D, we write, as in Section 5, Na = N0eıψa , and let ηa ={

ψa, on S1

0, on CR
. We then set

χ] ∈ C(K0; X ]), K0 3 a
χ]−→ (

0,ηa
)

and define

c = cR,r,ε = inf
{

max
K

J] ◦F; F ∈ C(K ; X ]), F = χ] on K0

}
.

The plan is to prove that, for small R and large ε, the compactness condition (PS)c described in (5.6)
is satisfied. This will imply existence of critical points of Eε in E(1,0).

To start with, note that, as in the proof of Lemma 3.1, we have

Eε(u)≥ 1
2

ˆ
Ω
|∇u|2 ≥

ˆ
Ω
|Jac u| ≥

∣∣∣∣ˆ
Ω

Jac u
∣∣∣∣=π, ∀u ∈ E(1,0). (9.15)

Before proceeding further, we establish few auxiliary results.

9.7 Lemma. Let δ> 0. Then there exist R0 < 1, r0 < 1, and ε0 > 0 such that c = cR,r,ε < π+δ provided
R < R0, r > r0 and ε> ε0.

We also have

lim
r→1

max
K0

J] ◦χ] =π. (9.16)

Proof. Let δ′ > 0 to be fixed later. Pick R0 such that for R < R0 there exists some ζR ∈ C∞(Ω; [0,1])

such that ζR = 1 near S1, ζR = 0 near CR and
ˆ
Ω
|∇ζR |2 < δ′. This is always possible provided R0 is

sufficiently small, since the H1-capacity of a point is zero. Define

P :D→ E(1,0), D 3 a P−→ ζR Ma +1−ζR .

Let also F(a)= (0,ηa), a ∈ K . Then tr P(a)= tr u (Neıηa), and a straightforward calculation leads to

c ≤max
K

J] ◦F =max
a∈K

Eε

(
u

(
Neıηa

))≤max
a∈K

Eε(P(a))

≤max
a∈K

(
1
2

ˆ
Ω

(1−ζR)2|∇Ma|2 +C(δ′+
p
δ′+ε−2)

)
≤π+C(δ′+

p
δ′+ε−2).

This implies the first part of the lemma. For the second part, let us note that, when |a| → 1, we have
aMa →−1 in Ck

loc(D), and this leads to

limsup
|a|→1

Eε(P(a))≤π. (9.17)

We conclude by combining (9.17) with (9.15). ä
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The next result is the content of [5, Lemma D.3].

9.8 Lemma. We have

inf{Eε(u); u ∈ E(1,1)}≥min{E∞(u); u ∈ E(1,1)}= 2π
1−R
1+R

. (9.18)

9.9 Lemma. Consider the minimization problem

mε = inf{Eε(u); u ∈ E(1,0)}. (9.19)

Then

1. mε =π and mε is not attained.

2. If (un) is a minimizing sequence in (9.19), then, up to a subsequence, un *α ∈S1 in H1(Ω).

Proof. Let Φt : C→ C, Φt(z) =
{

z/t, if |z| ≤ t
z/|z| if |z| ≥ t

. It is easy to see that, when a ∈D and |a| → 1, we may

pick some t = t(a)→ 1 such that we have Φt◦Ma ∈ E(1,0) and Eε(Φt◦Ma)→π. This together with (9.15)
implies that mε = π. As in the proof of Lemma 3.1, if Eε(u) = π, then u is holomorphic. However, we
claim that there is no holomorphic map in E(1,0). Indeed, otherwise we have:

a) u(Ω)⊂D (by the maximum principle).

b) u(Ω)⊃D (since the total degree of u on ∂Ω is one).

c)
ˆ
Ω
|Jac u| =π.

By the above and the area formula, for a.e. a ∈ D the set u−1(a) is a singleton. The latter fact
combined with the open mapping theorem for holomorphic functions implies that u is one-to-one. In
conclusion, u :Ω→D is a homeomorphism, which is the desired contradiction (since Ω and D are not
homeomorphic).

Consider now a minimizing sequence (un) and assume that un * u as n →∞. Since u 6∈ E(1,0), we
find that u is a constant, by the Price Lemma 2.18. This constant has to be of modulus one. ä

The next result is the analog of Theorem 4.1 in doubly connected domains. If u ∈ H1(Ω), then we
define u as the harmonic extension to D of the trace of u on S1. In particular, if u ∈ E(1,0), then u ∈ E1.

9.10 Lemma. There exists some δ0 = δ0(R)> 0 and a function f : (0,δ0)→ (0,∞) such that lim
δ→0

f (δ)= 0

with the following property: if u ∈ E(1,0) satisfies
1
2

ˆ
Ω
|∇u|2 < π+ δ, with δ < δ0, then

1
2

ˆ
D

|∇u|2 <
π+ f (δ).

In particular, if δ0 is sufficiently small then there exists a continuous map

H :
{

u ∈ E(1,0);
1
2

ˆ
Ω
|∇u|2 <π+δ0

}
→D, u H−→ a

(
u
)
, (9.20)

where a
(
u
)

is the unique zero of u.
Moreover, we have

|H(u)|→ 1 when
1
2

ˆ
D

|∇u|2 →π. (9.21)
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Proof. For the first part of the lemma, it suffices to prove that, if (un) ⊂ E(1,0) and
1
2

ˆ
Ω
|∇un|2 → π as

n →∞, then (possibly along a subsequence)
1
2

ˆ
D

|∇un|2 → π. By (9.15), we may assume that un is

harmonic. By Lemma 9.9 2., we have, up to a subsequence, un → α in Ck
loc(Ω). Thus, for R < r < 1,

the restriction of un to D\Dr has an extension vn to D such that

1
2

ˆ
D

|∇un|2 ≤ 1
2

ˆ
D

|∇vn|2 ≤ 1
2

ˆ
Ω
|∇un|2 + cn with cn → 0 as n →∞.

The second part of the theorem follows from Theorem 4.1. As for the last part, consider a sequence

(un) ⊂ E(1,0) such that
1
2

ˆ
Ω
|∇un|2 → π. By Lemma 9.9, we have, up to a subsequence, un * α ∈ S1,

and thus un *α, whence the conclusion. ä

Proof of Theorem 9.6 completed. We start by proving that c >π. Indeed, let δ0 = δ0(R) be such that H
given by (9.20) is well-defined and satisfies |H(u)| ≥ 1/2. We claim that c ≥ π+δ0. Indeed, otherwise
let F ∈ C(K ; X ]) be such that F = χ] on K0 and J] ◦F <π+δ0. Let

G :Dr →D\D1/2, G := H ◦U] ◦F.

Here,

U] : X ]→ E(1,0), X ] 3 (v,ψ) U]

−−→ v+u
(
Neıψ)

.

By construction, G is continuous and we have G =Id on Cr. This contradicts Brouwer’s fixed point
theorem.

The fact that c >π combined with (9.16) implies that for r close to 1 we have

c >max
K0

J] ◦χ], (9.22)

and that c does not depend on r close to 1.
(9.22), combined with the proofs of Lemmas 8.7 and 8.8 and with Lemma 9.7 and Theorem 9.3

leads to the following: if R < R0, r > r0 and ε> ε0, then:

1. π< c <min
{

2π,π+2π
1−R
1+R

}
.

2. There exists a sequence (un)⊂ E(1,0) as in Theorem 9.3.39

We complete the proof of Theorem 9.6 if we prove that the integer K in Theorem 9.3 is zero. Let u be
as in Theorem 9.3, and let D ∈Z2 be such that u ∈ ED. By Theorem 9.3 and the fact that c < 2π, one
of the following cases occurs:

1. K = 0 and D= (1,0), which is the desired conclusion.

2. K = 1, D= (1,1) and Eε(u)= c−π.

3. K = 1, D= (0,0) and Eε(u)= c−π.
39With Eε instead of Fβ.
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The second case is ruled out thanks to Lemma 9.8 and to the fact that c−π< 2π
1−R
1+R

.

We next turn to the third case. Since
1
2

ˆ
Ω
|∇u|2 <π,40 Lemma 4.2 4. implies that |u| ≥ a > 0 in Ω.

By Lemma 2.8, in Ω we may globally write u = ρeıϕ. As in the proof of Lemma 8.15, this implies that
u is constant. This contradicts the fact that c >π.

The proof of Theorem 9.6 is complete. ä
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