
�>���G �A�/�, �?���H�@�y�y�d�9�d�8�d�8

�?�i�i�T�b�,�f�f�?���H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�?���H�@�y�y�d�9�d�8�d�8�p�9

�a�m�#�K�B�i�i�2�/ �Q�M �N �P�+�i �k�y�R�j �U�p�9�V�- �H���b�i �`�2�p�B�b�2�/ �9 �6�2�# �k�y�R�9 �U�p�8�V

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�6�`�Q�K �"���M�/�B�i�b �i�Q �J�Q�M�i�2�@�*���`�H�Q �h�`�2�2 �a�2���`�+�?�, �h�?�2
�P�T�i�B�K�B�b�i�B�+ �S�`�B�M�+�B�T�H�2 ���T�T�H�B�2�/ �i�Q �P�T�i�B�K�B�x���i�B�Q�M ���M�/

�S�H���M�M�B�M�;
�_�û�K�B �J�m�M�Q�b

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�_�û�K�B �J�m�M�Q�b�X �6�`�Q�K �"���M�/�B�i�b �i�Q �J�Q�M�i�2�@�*���`�H�Q �h�`�2�2 �a�2���`�+�?�, �h�?�2 �P�T�i�B�K�B�b�i�B�+ �S�`�B�M�+�B�T�H�2 ���T�T�H�B�2�/ �i�Q �P�T�i�B�@
�K�B�x���i�B�Q�M ���M�/ �S�H���M�M�B�M�;�X �k�y�R�9�X ���?���H�@�y�y�d�9�d�8�d�8�p�9��

https://hal.archives-ouvertes.fr/hal-00747575v4
https://hal.archives-ouvertes.fr

Foundations and Trends R in Machine Learning
Vol. XX, No. XX (2013) 1�130
c 2013 Remi Munos

DOI: 10.1561/XXXXXXXXXX

From Bandits to Monte-Carlo Tree Search:
The Optimistic Principle Applied to

Optimization and Planning

Rémi Munos
INRIA Lille � Nord Europe 1

remi.munos@inria.fr

1Part of this work has been written during my visit at Microsoft Research New
England

Contents

1 The stochastic multi-armed bandit problem 4
1.1 The K -armed bandit . 5
1.2 Extensions to many arms 13
1.3 Conclusions . 17

2 Monte-Carlo Tree Search 19
2.1 Historical motivation: Computer-Go 20
2.2 Upper Con�dence Bounds in Trees22
2.3 Poor �nite-time performance 23
2.4 Conclusion . 25

3 Optimistic optimization with known smoothness 26
3.1 Illustrative example . 28
3.2 General setting . 33
3.3 Deterministic Optimistic Optimization 35
3.4 X -armed bandits . 44
3.5 Conclusions . 57

4 Optimistic Optimization with unknown smoothness 60
4.1 Simultaneous Optimistic Optimization 61
4.2 Extensions to the stochastic case77
4.3 Conclusions . 89

ii

iii

5 Optimistic planning 91
5.1 Deterministic dynamics and rewards93
5.2 Deterministic dynamics, stochastic rewards100
5.3 Markov decision processes105
5.4 Conclusions and extensions114

6 Conclusion 118

Abstract

This work covers several aspects of theoptimism in the face of un-
certainty principle applied to large scale optimization problems under
�nite numerical budget. The initial motivation for the research reported
here originated from the empirical success of the so-calledMonte-Carlo
Tree Searchmethod popularized in Computer Go and further extended
to many other games as well as optimization and planning problems.
Our objective is to contribute to the development of theoretical foun-
dations of the �eld by characterizing the complexity of the underlying
optimization problems and designing e�cient algorithms with perfor-
mance guarantees.

The main idea presented here is that it is possible to decompose
a complex decision making problem (such as an optimization problem
in a large search space) into a sequence of elementary decisions, where
each decision of the sequence is solved using a(stochastic) multi-armed
bandit (simple mathematical model for decision making in stochastic
environments). This so-calledhierarchical bandit approach (where the
reward observed by a bandit in the hierarchy is itself the return of an-
other bandit at a deeper level) possesses the nice feature of starting the
exploration by a quasi-uniform sampling of the space and then focusing
progressively on the most promising area, at di�erent scales, according
to the evaluations observed so far, until eventually performing a lo-
cal search around the global optima of the function. The performance
of the method is assessed in terms of the optimality of the returned
solution as a function of the number of function evaluations.

Our main contribution to the �eld of function optimization is a
class of hierarchical optimistic algorithms designed for general search
spaces (such as metric spaces, trees, graphs, Euclidean spaces) with
di�erent algorithmic instantiations depending on whether the evalua-
tions are noisy or noiseless and whether some measure of the �smooth-
ness� of the function is known or unknown. The performance of the
algorithms depends on the �local� behavior of the function around its
global optima expressed in terms of the quantity of near-optimal states
measured with some metric. If this local smoothness of the function is
known then one can design very e�cient optimization algorithms (with

2

convergence rate independent of the space dimension). When this infor-
mation is unknown, one can build adaptive techniques which, in some
cases, perform almost as well as when it is known.

In order to be self-contained, we start with a brief introduction
to the stochastic multi-armed bandit problem in Chapter 1 and de-
scribe the UCB (Upper Con�dence Bound) strategy and several exten-
sions. In Chapter 2 we present the Monte-Carlo Tree Search method
applied to Computer Go and show the limitations of previous algo-
rithms such as UCT (UCB applied to Trees). This provides motivation
for designing theoretically well-founded optimistic optimization algo-
rithms. The main contributions on hierarchical optimistic optimization
are described in Chapters 3 and 4 where the general setting of a semi-
metric space is introduced and algorithms designed for optimizing a
function assumed to be locally smooth (around its maxima) with re-
spect to a semi-metric are presented and analyzed. Chapter 3 considers
the case when the semi-metric is known and can be used by the algo-
rithm, whereas Chapter 4 considers the case when it is not known and
describes an adaptive technique that does almost as well as when it
is known. Finally in Chapter 5 we describe optimistic strategies for a
speci�c structured problem, namely the planning problem in Markov
decision processes with in�nite horizon discounted rewards.

About optimism...

Optimists and pessimists inhabit di�erent worlds, reacting to the same
circumstances in completely di�erent ways.

Learning to Hope, Daisaku Ikeda.

Habits of thinking need not be forever. One of the most signi�cant
�ndings in psychology in the last twenty years is that individuals can
choose the way they think.

Learned Optimism, Martin Seligman.

Humans do not hold a positivity bias on account of having read
too many self-help books. Rather, optimism may be so essential to our
survival that it is hardwired into our most complex organ, the brain.

The Optimism Bias:
A Tour of the Irrationally Positive Brain , Tali Sharot.

3

1
The stochastic multi-armed bandit problem

We start with a brief introduction to the stochastic multi-armed ban-
dit setting. This is a simple mathematical model for sequential decision
making in unknown random environments that illustrates the so-called
exploration-exploitation trade-o� . Initial motivation in the context of
clinical trials dates back to the works of Thompson [1933, 1935] and
Robbins [1952]. In this chapter we consider theoptimism in the face
of uncertainty principle, which recommends following the optimal pol-
icy in the most favorable environment among all possible environments
that are reasonably compatible with the observations. In a multi-armed
bandit the set of �compatible environments� is the set of possible dis-
tributions of the arms that are likely to have generated the observed
rewards. More precisely we investigate a speci�c strategy, called UCB
(where UCB stands for upper con�dence bound) introduced by Auer,
Cesa-Bianchi, and Fischer in [Auer et al., 2002], that uses simple high-
probability con�dence intervals (one for each arm) for the set of pos-
sible �compatible environments�. The strategy consists of selecting the
arm with highest upper-con�dence-bound (the optimal strategy for the
most favorable environment).

We introduce the setting of the multi-armed bandit problem in Sec-

4

1.1. The K -armed bandit 5

tion 1.1.1, then present the UCB algorithm in Section 1.1.2 and existing
lower bounds in Section 1.1.3. In Section 1.2 we describe extensions of
the optimistic approach to the case of an in�nite set of arms, either
when the set is denumerable (in which case a stochastic assumption is
made) or where it is continuous but the reward function has a known
structure (e.g. linear, Lipschitz).

1.1 The K -armed bandit

1.1.1 Setting

Consider K arms (actions, choices) de�ned by distributions (� k)1� k� K

with bounded support (here we will assume that the support lies in
[0; 1]) that are initially unknown to the player. At each round t =
1; : : : ; n, the player selects an armI t 2 f 1; : : : ; K g and obtains a reward
X t � � I t , which is a random sample drawn from the distribution � I t

corresponding to the selected armI t , and is assumed to be independent
of previous rewards. The goal of the player is to maximize the sum of
obtained rewards in expectation.

De�ne � k = EX � � k [X] as the mean values of each arm, and� � =
maxk � k = � k � as the mean value of one best armk� (there may exist
several).

If the arm distributions were known, the agent would select the arm
with the highest mean at each round and obtain an expected cumulative
reward of n� � . However, since the distributions of the arms are initially
unknown, he needs to pull each arm several times in order to acquire
information about the arms (this is called exploration) and while his
knowledge about the arms improves, he should pull increasingly often
the apparently best ones (this is calledexploitation). This illustrates
the so-calledexploration-exploitation trade-o� .

In order to assess the performance of any strategy, we compare its
performance to an oracle strategy that would know the distributions
in advance (and would thus play the optimal arm). For that purpose
we de�ne the notion of cumulative regret: at round n,

Rn
def= n� � �

nX

t=1

X t : (1.1)

6 The stochastic multi-armed bandit problem

This de�nes the loss, in terms of cumulative rewards, resulting from
not knowing from the beginning the reward distributions. We are thus
interested in designing strategies that have a low cumulative regret.
Notice that using the tower rule, the expected regret can be written:

ERn = n� � � E
h nX

t=1

� I t

i
= E

h KX

k=1

Tk (n)(� � � � k)
i

=
KX

k=1

E[Tk (n)]� k ;

(1.2)

where � k
def= � � � � k is the gap in terms of expected rewards, between

the optimal arm and arm k, and Tk (n) def=
P n

t=1 1f I t = kg is the number
of pulls of arm k up to time n.

Thus a good algorithm should not pull sub-optimal arms too of-
ten. Of course, in order to acquire information about the arms, one
needs to explore all the arms and thus pull sub-optimal arms. The
regret measures how fast one canlearn relevant quantities about
one's unknown environment while simultaneouslyoptimizing some cri-
terion. This combined learning-optimizing objective is central to the
exploration-exploitation trade-o�.

Proposed solutions: Since initially formulated by Robbins [1952], sev-
eral approaches have addressed this exploration-exploitation problem,
including:

� Bayesian exploration: A prior is assigned to the arm distribu-
tions and an arm is selected as a function of the posterior (such
as Thompson sampling [Thompson, 1933, 1935] which has been
analyzed recently in [Agrawal and Goyal, 2012, Kau�mann et al.,
2012, Agrawal and Goyal, 2013, Kaufmann et al., 2013], the Git-
tins indexes, see [Gittins., 1979, Gittins et al., 1989], and opti-
mistic Bayesian algorithms such as in [Srinivas et al., 2010, Kau�-
man et al., 2012]).

� � -greedy exploration: The empirical best arm is played with prob-
ability 1 � � and a random arm is chosen with probability � (see
e.g. Auer et al. [2002] for an analysis),

1.1. The K -armed bandit 7

� Soft-max exploration: An arm is selected with a probability that
depends on the (estimated) performance of this arm given pre-
vious reward samples (such as the EXP3 algorithm introduced
in Auer et al. [2003], see also thelearning-from-expert setting of
Cesa-Bianchi and Lugosi [2006]).

� Follow the perturbed leader: The empirical mean reward of each
arm is perturbed by a random quantity and the best perturbed
arm is selected (see e.g. Kalai and Vempala [2005], Kujala and
Elomaa [2007]).

� Optimistic exploration: Select the arm with the largest high-
probability upper-con�dence-bound (initiated by Lai and Rob-
bins [1985], Agrawal [1995b], Burnetas and Katehakis [1996a]),
an example of which is the UCB algorithm [Auer et al., 2002]
described in the next section.

1.1.2 The Upper Con�dence Bounds (UCB) algorithm

The Upper Con�dence Bounds (UCB) strategy by Auer et al. [2002]
consists of selecting at each time stept an arm with largest B-values:

I t 2 arg max
k2f 1;:::;K g

B t;T k (t � 1)(k);

where the B-value of an armk is de�ned as:

B t;s (k) def= �̂ k;s +

s
3 logt

2s
; (1.3)

where �̂ k;s
def= 1

s
P s

i =1 X k;i is the empirical mean of thes �rst rewards
received from armk, and X k;i denotes the reward received when pulling
arms k for the i -th time (i.e., by de�ning the random time � k;i to be the
instant when we pull arm k for the i -th time, we have X k;i = X � k;i). We
described here a slightly modi�ed version where the constant de�ning
the con�dence interval is 3=2 instead of2 for the original version UCB1
described in [Auer et al., 2002].

This strategy follows the so-calledoptimism in the face of uncer-
tainty principle since it selects the optimal arm in the most favor-
able environments that are (in high probability) compatible with the

8 The stochastic multi-armed bandit problem

observations. Indeed the B-valuesB t;s (k) are high-probability upper-
con�dence-bounds on the mean-value of the arms� k . More precisely
for any 1 � s � t, we haveP(B t;s (k) � � k) � 1� t � 3: This bound comes
from the Cherno�-Hoe�ding inequality which is described below. Let
Yi 2 [0; 1] be independent copies of a random variable of mean� . Then

P
� 1
s

sX

i =1

Yi � � � �
�

� e� 2s� 2
and P

� 1
s

sX

i =1

Yi � � � � �
�

� e� 2s� 2
:

(1.4)
Thus for any �xed 1 � s � t,

P
�
�̂ k;s +

s
3 logt

2s
� � k

�
� e� 3 log(t) = t � 3; (1.5)

and

P
�
�̂ k;s �

s
3 logt

2s
� � k

�
� e� 3 log(t) = t � 3: (1.6)

We now deduce a bound on the expected number of plays of sub-
optimal arms by noticing that with high probability, the sub-optimal
arms are not played whenever their UCB is below� � .

Proposition 1.1. Each sub-optimal arm k is played in expectation at
most

ETk (n) � 6
logn
� 2

k
+

� 2

3
+ 1

time. Thus the cumulative regret of UCB is bounded as

ERn =
X

k

� kETk (n) � 6
X

k:� k > 0

logn
� k

+ K
� � 2

3
+ 1

�
:

First notice that the dependence inn is logarithmic. This says that
out of n pulls, the sub-optimal arms are played onlyO(log n) times, and
thus the optimal arm (assuming there is only one) is playedn� O(log n)
times. Now, the constant factor in the logarithmic term is 6

P
k:� k > 0

1
� k

which deteriorates when some sub-optimal arms are very close to the
optimal one (i.e., when � k is small). This may seem counter-intuitive,
in the sense that for any �xed value of n, if all the arms have a very
small � k , then the regret should be small as well (and this is indeed

1.1. The K -armed bandit 9

true since the regret is trivially bounded by n maxk � k whatever the
algorithm). So this result should be understood (and is meaningful)
for a �xed problem (i.e., �xed � k) and for n su�ciently large (i.e.,
n > mink 1=� 2

k).

Proof. Assume that a sub-optimal armk is pulled at time t. This means
that its B-value is larger than the B-values of the other arms, in par-
ticular that of the optimal arm k� :

�̂ k;Tk (t � 1) +

s
3 logt

2Tk (t � 1)
� �̂ k � ;Tk � (t � 1) +

s
3 logt

2Tk � (t � 1)
: (1.7)

Now, either one of the two following inequalities hold:

� The empirical mean of the optimal arm is not within its
con�dence interval:

�̂ k � ;Tk � (t � 1) +

s
3 logt

2Tk � (t � 1)
< � � ; (1.8)

� The empirical mean of the armk is not within its con�dence
interval:

� k;Tk (t � 1) > � k +

s
3 logt

2Tk (t � 1)
; (1.9)

or (when both previous inequalities (1.8) and (1.9) do not hold), then
we deduce from (1.7) that

� k + 2

s
3 logt

2Tk (t � 1)
� � � ;

which implies Tk (t � 1) � 6 log t
� 2

k
.

This says that wheneverTk (t � 1) � 6 log t
� 2

k
+ 1 , either arm k is not

pulled at time t, or one of the two small probability events (1.8) or

(1.9) holds. Thus writing u def= 6 log t
� 2

k
+ 1 , we have:

Tk (n) � u +
nX

t= u+1

1f I t = k; Tk (t) > u g

� u +
nX

t= u+1

1f (1.8) or (1.9) holdsg: (1.10)

10 The stochastic multi-armed bandit problem

Now, the probability that (1.8) holds is bounded by

P
�
91 � s � t; �̂ k � ;s +

s
3 logt

2s
< � �

�
�

tX

s=1

1
t3 =

1
t2 ;

using Cherno�-Hoe�ding inequality (1.5). Similarly the probability
that (1.9) holds is bounded by 1=t2, thus by taking the expectation
in (1.10) we deduce that

E[Tk (n)] �
6 log(n)

� 2
k

+ 1 + 2
nX

t= u+1

1
t2

�
6 log(n)

� 2
k

+
� 2

3
+ 1 (1.11)

The previous bound depends on some properties of the distribu-
tions: the gaps � k . The next result states a problem-independent
bound.

Corollary 1.1. The expected regret of UCB is bounded as:

ERn �

s

Kn
�
6 logn +

� 2

3
+ 1

�
(1.12)

Proof. Using Cauchy-Schwarz inequality and the bound on the ex-
pected number of pulls of the arms (1.11),

ERn =
X

k

� k

q
ETk (n)

q
ETk (n)

�
s X

k

� 2
kETk (n)

X

k

ETk (n)

�

s

Kn
�
6 logn +

� 2

3
+ 1

�
:

1.1.3 Lower bounds

There are two types of lower bounds: (1) The problem-dependent
bounds [Lai and Robbins, 1985, Burnetas and Katehakis, 1996b] say

1.1. The K -armed bandit 11

that for any problem in a given class, an �admissible� algorithm will
su�er -asymptotically- a logarithmic regret with a constant factor that
depends on the arm distributions, (2) The problem-independent bounds
[Cesa-Bianchi and Lugosi, 2006, Bubeck, 2010] states that for any al-
gorithm and any time-horizon n, there exists an environment on which
this algorithm will su�er a regret lower-bounded by some quantity.

Problem-dependent lower bounds: Lai and Robbins [1985] consid-
ered a class of one-dimensional parametric distributions and showed
that any admissible strategy (i.e. such that the algorithm pulls each
sub-optimal arm k a sub-polynomial number of times: 8� > 0,
ETk (n) = o(n�)) will asymptotically pull in expectation any sub-
optimal arm k a number of times such that:

lim inf
n!1

ETk (n)
logn

�
1

K(� k ; � k �)
(1.13)

(which, from (1.2), enables the deduction of a lower bound on the re-
gret), whereK(� k ; � k �) is the Kullback-Leibler (KL) divergence between

� k and � k � (i.e., K(�; �) def=
R1

0
d�
d� log d�

d� d� if � is dominated by � , and
+ 1 otherwise).

Burnetas and Katehakis [1996b] extended this result to several
classesP of multi-dimensional parametric distributions. By writing

K inf (�; �) def= inf
� 2P :E (�)>�

K(�; �);

(where � is a real number such that E(�) < �), they showed the im-
proved lower bound on the number of pulls of sub-optimal arms:

lim inf
n!1

ETk (n)
logn

�
1

K inf (� k ; � �)
: (1.14)

Those bounds consider a �xed problem and show that any algorithm
that is reasonably good on a class of problems (i.e. what we called an
admissible strategy) cannot be extremely good on any speci�c instance,
and thus needs to su�er some incompressible regret. Note also that
these problem-independent lower-bounds are of an asymptotic nature
and do not say anything about the regret at any �nite time n.

12 The stochastic multi-armed bandit problem

A problem independent lower-bound: In contrast to the previous
bounds, we can also derive �nite-time bounds that do not depend on
the arm distributions: For any algorithm and any time horizon n, there
exists an environment (arm distributions) such that this algorithm will
su�er some incompressible regret on this environment [Cesa-Bianchi
and Lugosi, 2006, Bubeck, 2010]:

inf sup ERn �
1
20

p
nK;

where the inf is taken over all possible algorithms and thesup over all
possible (bounded) reward distributions of the arms.

1.1.4 Recent improvements

Notice that in the problem-dependent lower-bounds (1.13) and (1.14),
the rate is logarithmic, like for the upper bound of UCB, however the
constant factor is not the same. In the lower bound it uses KL diver-
gences whereas in the upper bounds the constant is expressed in terms
of the di�erence between the means. From Pinsker's inequality (see
e.g. [Cesa-Bianchi and Lugosi, 2006]) we have:K(�; �) � (E [�] � E [�])2

and the discrepancy betweenK(�; �) and (E [�] � E [�])2 can be very
large (e.g. for Bernoulli distributions with parameters close to 0 or 1).
It follows that there is a potentially large gap between the lower and
upper bounds, which motivated several recent attempts to reduce this
gap. The main line of research consisted in tightening the concentration
inequalities de�ning the upper con�dence bounds.

A �rst improvement was made by Audibert et al. [2009] who in-
troduced UCB-V (UCB with variance estimate) that uses a variant of
Bernstein's inequality to take into account the empirical variance of the
rewards (in addition to their empirical mean) to de�ne tighter UCB on
the mean reward of the arms:

B t;s (k) def= �̂ k;s +

s

2
Vk;s log(1:2t)

s
+

3 log(1:2t)
s

; (1.15)

where Vk;s is the empirical variance of the rewards received from arm

1.2. Extensions to many arms 13

k. They proved that the regret is bounded as follows:

ERn � 10
� X

k:� k > 0

� 2
k

� k
+ 2

�
log(n);

which scales with the actual variance� 2
k of the arms.

Then Honda and Takemura [2010, 2011] proposed the DMED (De-
terministic Minimum Empirical Divergence) algorithm and proved an
asymptotic bound that achieves the asymptotic lower-bound of Burne-
tas and Katehakis [1996b]. Notice that Lai and Robbins [1985] and Bur-
netas and Katehakis [1996b] also provided an algorithm with asymp-
totic guarantees (under more restrictive conditions). It is only in [Gariv-
ier and Cappé, 2011, Maillard et al., 2011, Cappé et al., 2013] that a
�nite-time analysis was derived for KL-based UCB algorithms, KL-
UCB and K inf -UCB, that achieve the asymptotic lower bounds of [Lai
and Robbins, 1985] and [Burnetas and Katehakis, 1996b] respectively.
Those algorithms make use of KL divergences in the de�nition of the
UCBs and use the full empirical reward distribution (and not only the
two �rst moments). In addition to their improved analysis in compar-
ison to regular UCB algorithms, several experimental studies showed
their improved numerical performance.

Finally let us also mention that the logarithmic gap between the
upper and lower problem-independent bounds (see (1.12) and (1.14))
has also been closed (up to a constant factor) by the MOSS algorithm
of Audibert and Bubeck [2009], which achieves a minimax regret bound
of order

p
Kn .

1.2 Extensions to many arms

The principle of optimism in the face of uncertainty has been success-
fully extended to several variants of the multi-armed stochastic bandit
problem, notably when the number of arms is large (possibly in�nite)
compared to the number of rounds. In those situations one cannot even
pull each arm once and thus in order to achieve meaningful results we
need to make some assumptions about the unobserved arms. There are
two possible situations:

14 The stochastic multi-armed bandit problem

� When the previously observed arms do not give us any informa-
tion about unobserved arms. This is the case when there is no
structure in the rewards. In those situations, we may rely on a
probabilistic assumption on the mean value of any unobserved
arm.

� When the previously observed arms can give us some information
about unobserved arms: this is the case of structured rewards, for
example when the mean reward function is a linear, convex, or
Lipschitz function of the arm position, or also when the rewards
depend on some tree, graph, or combinatorial structure.

1.2.1 Unstructured rewards

The so-calledmany-armed bandit problemconsiders a countably in�nite
number of arms where there is no structure among arms. Thus at any
round t the rewards obtained by pulling previously observed arms do
not give us information about the value of the unobserved arms.

To illustrate, think of the problem of selecting a restaurant for din-
ner in a big city like Paris. Each day you go to a restaurant and receive
a reward indicating how much you enjoyed the food you were served.
You may decide to go back to one of the restaurants you have already
visited either because the food there was good (exploitation) or be-
cause you have not been there many times and want to try another
dish (exploration). However you may also want to try a new restaurant
(discovery) chosen randomly (maybe according to some prior informa-
tion). Of course there are many other applications of this exploration-
exploitation-discovery trade-o�, such as in marketing (e.g. you want to
send catalogs to good customers, uncertain customers, or random peo-
ple), in mining for valuable resources (such as gold or oil) where you
want to exploit good wells, explore unknown wells, or start digging at
a new location.

A strong probabilistic assumption that has been made by Banks
and Sundaram [1992], Berry et al. [1997] to model such situations is
that the mean-value of any unobserved arm is a random variable that
follows some known distribution. More recently this assumption has

1.2. Extensions to many arms 15

K(t) played arms Arms not played yet

Figure 1.1: The UCB-AIR strategy: UCB-V algorithm is played on an increasing
number K (t) or arms

been weakened by Wang et al. [2008] with an assumption focusing on
this distribution upper tail only. More precisely, they assume that there
exists � > 0 such that the probability that the mean-reward � of a new
randomly chosen arm is� -optimal, is of order � � :

P(� (new arm) > � � � �) = �(� �); 1 (1.16)

where� � = supk� 1 � k is the supremum of the mean-reward of the arms.
Thus the parameter � characterizes the probability of selecting a

near-optimal arm. A large value of � indicates that there is a small
chance that a new random arm will be good, thus an algorithm trying
to achieve a low regret (de�ned like in (1.1) with respect to � �) would
have to pull many new arms. Conversely, if� is small, then there is a
reasonably large probability that a very good arm will be obtained by
pulling a small number of new arms.

The UCB-AIR (UCB with Arm Increasing Rule) strategy intro-
duced in Wang et al. [2008] consists of playing a UCB-V strategy [Au-
dibert et al., 2009] (see (1.15)) on a set of current arms, whose number
is increasing with time. At each round, either an arm already played
is chosen according to the UCB-V strategy, or a new random arm is
selected. Theorem 4 of [Wang et al., 2008] states that by selecting at
each roundt a number of active arms de�ned by

K (t) =

8
<

:
bt

�
2 c if � < 1 and � � < 1

bt
�

� +1 c if � � 1 or � � = 1

then the expected regret of UCB-AIR is upper-bounded as:

1We write f (�) = �(g(�)) if 9c1 ; c2 ; � 0 ; 8� � � 0 ; c1g(�) � f (�) � c2g(�).

16 The stochastic multi-armed bandit problem

ERn �

8
<

:
C

�
logn

� 2p
n if � < 1 and � � < 1

C
�

logn
� 2n

�
1+ � if � � = 1 or � � 1

;

where C is a (numerical) constant.
This setting illustrates the exploration-exploitation-discovery trade-

o� where exploitation means pulling an apparently good arm (based
on previous observations), exploration means pulling an uncertain arm
(already pulled), and discovery means trying a new (unknown) arm.

An important aspect of this model is that the coe�cient � charac-
terizes the probability of choosing randomly a near-optimal arm (thus
the proportion of near-optimal arms), and the UCB-AIR algorithm re-
quires the knowledge of this coe�cient (since � is used for the choice
of K (t)). An open question is whether it is possible to design anadap-
tive strategy that could show similar performance when� is initially
unknown.

Here we see an important characteristic of the performance of the
optimistic strategy in a stochastic bandit setting, that will appear sev-
eral times in di�erent settings in the next chapters: The performance
of a sequential decision making problem in a stochastic environment
depends on a measure of thequantity of near-optimal solutions,
as well as onour knowledge about this quantity.

1.2.2 Structured bandit problems

In structured bandit problems we assume that the mean-reward of an
arm is a function of some arm parameters, where the function belongs
to some known class. This includes situations where �arms� denote
paths in a tree or a graph (and the reward of a path being the sum
of rewards obtained along the edges), or points in some metric space
where the mean-reward function possesses a speci�c structure.

A well-studied case is thelinear bandit problem where the set of
arms X lies in a Euclidean spaceRd and the mean-reward function is
linear with respect to (w.r.t.) the arm position x 2 X : at time t, one

selects an armx t 2 X and receives a rewardr t
def= � (x t) + � t , where the

mean-reward is� (x) def= x � � with � 2 Rd is some (unknown) parameter,
and � t is a (centered, independent) observation noise. The cumulative

1.3. Conclusions 17

regret is de�ned w.r.t. the best possible armx � def= arg max x2X � (x):

Rn
def= n� (x �) �

nX

t=1

� (x t):

Several optimistic algorithms have been introduced and analyzed,
such as thecon�dence ball algorithms in [Dani et al., 2008], as well
as re�ned variants in [Rusmevichientong and Tsitsiklis, 2010, Abbasi-
Yadkori et al., 2011]. See also [Auer, 2003] for a pioneering work on this
topic. The main bounds on the regret are either problem-dependent,
of the order O

�
log n

�

�
(where � is the mean-reward di�erence between

the best and second best extremal points), or problem-independent
of the order2 eO(d

p
n). Several extensions to the linear setting have

been considered, such asGeneralized Linear models[Filippi et al., 2010]
and sparse linear bandits[Carpentier and Munos, 2012, Abbasi-Yadkori
et al., 2012].

Another popular setting is when the mean-reward function x 7!
� (x) is convex [Flaxman et al., 2005, Agarwal et al., 2011] in which
case regret bounds of orderO(poly(d)

p
n) can be achieved3. Other

weaker assumptions on the mean-reward function have been consid-
ered, such as Lipschitz condition [Kleinberg, 2004, Agrawal, 1995a,
Auer et al., 2007, Kleinberg et al., 2008b] or even weaker local as-
sumptions in [Bubeck et al., 2011a, Valko et al., 2013]. This setting of
bandits in metric spaces as well as more general spaces will be further
investigated in Chapters 3 and 4.

1.3 Conclusions

It is worth mentioning that there have been a huge development of
the �eld of Bandit Theory over the last few years which have produced
emerging �elds such ascontextual bandits(where the rewards depend on
some observed contextual information),adversarial bandits(where the
rewards are chosen by an adversary instead of being stochastic), and
has drawn strong links with other �elds such asonline-learning (where a

2where eO stands for a O notation up to a polylogarithmic factor
3where poly(d) refers to a polynomial in d

18 The stochastic multi-armed bandit problem

statistical learning task is performed online given limited feedback) and
learning from experts (where one uses a set of recommendations given
by experts). The interested reader may �nd additional references and
developments in the following books and PhD theses [Cesa-Bianchi and
Lugosi, 2006, Bubeck, 2010, Maillard, 2011, Bubeck and Cesa-Bianchi,
2012].

This chapter presented a brief overview of the multi-armed bandit
problem which can be seen as a tool for rapidly selecting the best
action among a set of possible ones, under the assumption that each
reward sample provides information about the value (mean-reward) of
the selected action. In the next chapters we will use this tool as a
building block for solving more complicated problems where the action
space is structured (for example when it is a sequence of actions, or
a path in a tree) with a particular interest for combining bandits in
a hierarchy. The next chapter introduces the historical motivation for
our interest in this problem while the later chapters provide algorithmic
and theoretical contributions.

2
Monte-Carlo Tree Search

This chapter presents the historical motivation for our involvement
in the topic of hierarchical bandits. It starts with an experimental
success: UCB-based bandits (see the previous chapter) used in a hier-
archy demonstrated impressive performance for performing tree search
in the �eld of Computer Go, such as in the Go programs Crazy-Stone
[Coulom, 2006] and MoGo [Wang and Gelly, 2007, Gelly et al., 2006].
This impacted the �eld of Monte-Carlo-Tree-Search (MCTS) [Chaslot,
2010, Browne et al., 2012] which provided a simulation-based approach
to game programming and has also been used in other sequential de-
cision making problems. However, the analysis of the popular UCT
(Upper Con�dence Bounds applied to Trees) algorithm [Kocsis and
Szepesvári, 2006] have been atheoretical failure : the algorithm may
perform very poorly (much worse than a uniform search) on toy prob-
lems and does not possess nice �nite-time performance guarantees (see
[Coquelin and Munos, 2007]).

In this chapter we brie�y review the initial idea of performing e�-
cient tree search by assigning a bandit algorithm to each node of the
search tree and following an optimistic search strategy that explores
in priority the most promising branches (according to previous reward

19

20 Monte-Carlo Tree Search

samples). We then mention the theoretical di�culties and illustrate
the possible failure of such approaches. This was the starting point for
designing alternative algorithms (described in later chapters) with the-
oretical performance guarantees which will be analyzed in terms of a
new measure of complexity.

2.1 Historical motivation: Computer-Go

The use of Monte-Carlo simulations in Computer Go started with the
pioneering work of Brügmann [1993] followed by Bouzy and Cazenave
[2001], Bouzy and Helmstetter [2003]. Note that a similar idea was
introduced by Abramson [1990] for other games such as Othello. A
position is evaluated by running many �playouts� (simulations of a se-
quence of random moves generated alternatively from the player and
the adversary) starting from this position until a terminal con�gura-
tion is reached. This enables to score each playout (where the winner
is decided from a single count of the respective territories), and the
empirical average of the scores provides an estimation of the position
value. See the illustration in Figure 2.1. This method approximates
the value of a Go position (which is actually the solution of a max-min
problem) by an average. Notice that even when the number of runs goes
to in�nity, this average does not necessarily converge to the max-min
value.

An important step was achieved by Coulom [2006] in his Crazy-
Stone program. In this program, instead of selecting the moves accord-
ing to a uniform distribution, the probability distribution over possible
moves is updated after each simulation so that more weight is assigned
to moves that achieved better scores in previous runs (see Figure 2.1,
right). In addition, an incremental tree representation adding a leaf to
the current tree representation at each playout enables the construction
of an asymmetric tree where the most promising branches (according
to the previously observed rewards) are explored to a greater depth.

This was the starting point of the so-calledMonte-Carlo tree search
(MCTS) method (see e.g. [Chaslot, 2010, Browne et al., 2012]) that
aims at approximating the solution of a max-min problem by a weighted

2.1. Historical motivation: Computer-Go 21

Figure 2.1: Illustration of the Monte-Carlo Tree Search approach (Courtesy of
Rémi Coulom from his talk The Monte-Carlo revolution in Go). Left: Monte-Carlo
evaluation of a position in Computer Go. Middle: each initial move is sampled
several times. Right: The apparently best moves are sampled more often and the
tree structure grows.

average.
This idea of starting with a uniform sampling over a set of avail-

able moves (or actions) and progressively focusing on the best actions
according to previously observed rewards is reminiscent of the bandit
strategy discussed in the previous chapter. The MoGo program initi-
ated by Wang, Gelly, Teytaud, Coquelin and myself [Gelly et al., 2006]
started from this simple observation and the idea of performing a tree
search by assigning a bandit algorithm to each node of the tree. We
started with the UCB algorithm and this lead to the so-called UCT
(Upper Con�dence Bounds applied to Trees) algorithm, which was in-
dependently developed and analyzed by Kocsis and Szepesvári [2006].
Several major improvements (such as the use of features in the random
playouts, the Rapid Action Value Estimation (RAVE), the paralleliza-
tion of the algorithm, and the introduction of opening books) [Gelly
and Silver, 2007, Rimmel et al., 2010, Bourki et al., 2012, Silver, 2009,
Chaslot, 2010, Gelly and Silver, 2011] enabled the MoGo program to
rank among the best Computer Go programs (see e.g. [Lee et al., 2009]
and the URL http://www.lri.fr/ � teytaud/mogo.html) until 2012.

22 Monte-Carlo Tree Search

2.2 Upper Con�dence Bounds in Trees

In order to illustrate the UCT algorithm [Kocsis and Szepesvári, 2006],
consider a tree search optimization problem on a uniform tree of depth
D where each node hasK children. A reward distribution � i is assigned
to each leaf i (there are K D such leaves) and the goal is to �nd the
path (sequence of nodes from the root) to a leaf with highest mean-value

� i
def= E[� i]. De�ne the value of any nodek as� k

def= max i 2L (k) � i , where
L (k) denotes the set of leaves that belong to the branch originating from
k.

At any round t, the UCT algorithm selects a leaf I t of the tree and
receives a rewardr t � � I t which enables it to update the B-values of
all nodes in the tree. The way the leaf is selected is by following a
path starting from the root and such that from each node j along the
path, the next selected node is the one with highest B-value among the
children nodes, where the B-value of any childk of node j is de�ned
as:

B t (k) def= �̂ k;t + c

s
logTj (t)

Tk (t)
; (2.1)

where c is a numerical constant, Tk (t) def=
P t

s=1 1f I s 2 L (k)g is the
number of paths that went through node k up to time t (and similarly
for Tj (t)), and �̂ k;t is the empirical average of rewards obtained from
leaves originating from nodek, i.e.,

�̂ k;t
def=

1
Tk (t)

tX

s=1

r s1f I s 2 L (k)g:

The intuition for the UCT algorithm is that at the level of a given
node j , there are K possible choices, i.e. arms, corresponding to the
children nodes, and the use of a UCB-type of bandit algorithm should
enable the selection of the best arm given noisy rewards samples.

Now, when the number of simulations goes to in�nity, since UCB
selects all arms in�nitely often (indeed, thanks to the log term in the
de�nition of the B-values (2.1), when a children node k is not chosen,
its B-value increases and thus it will eventually be selected, as long as
its parent j is), we deduce that UCT selects all leaves in�nitely often.

2.3. Poor �nite-time performance 23

Thus from an immediate backward induction from the leaves to the
root of the tree we deduce that UCT is consistent, i.e. for any nodek,
lim t !1 �̂ t (k) = � (k), almost surely.

The main reason why this algorithm demonstrated very interest-
ing experimental performance in several large tree search problems is
that it explores in priority the most promising branches according to
previously observed sample rewards. This is very useful in situations
where the reward function possesses some smoothness property (so
that initial random reward samples provide information about where
the search should focus) or when no other technique can be applied
(e.g. in Computer Go where the branching factor is so large that reg-
ular minimax or alpha-beta methods fail). See [Chang et al., 2007,
Silver, 2009, Chaslot, 2010, Browne et al., 2012] and the references
therein for di�erent variants of MCTS and applications to games and
other search, optimization, and control problems. These types of algo-
rithms appear as possible alternatives to usual depth-�rst or breadth-
�rst search techniques and apparently implement an optimistic explo-
ration of the search space. Unfortunately in the next section we show
that this algorithm does not enjoy tight �nite-time performance guar-
antee and may perform very poorly even on some toy problems.

2.3 Poor �nite-time performance

The main problem comes from the fact that the reward samplesr t ob-
tained from any nodek are not independent and identically distributed
(i.i.d.). Indeed, such a reward r t � � I t depends on the selected leaf
I t 2 L (k), which itself depends on the arm selection process along the
path from node k to the leaf I t , thus potentially on all previously ob-
served rewards. Thus the B-valuesB t (k) de�ned by (2.1) do not de�ne
high-probability upper-con�dence-bounds on the value � k of the arm
(i.e. we cannot apply Cherno�-Hoe�ding inequality). Thus the analysis
of the UCB algorithm seen in Section 1.1.2 does not apply.

The potential risk of UCT is to stop exploring the optimal branch
too early because the current B-value of that branch is under-estimated.
It is true that the algorithm is consistent (as discussed previously) and

24 Monte-Carlo Tree Search

the optimal path will eventually be discovered but the time it takes for
the algorithm to do so can be desperately long.

This point is described in [Coquelin and Munos, 2007] with an illus-
trative example reproduced in Figure 2.2. This is a binary tree of depth
D . The rewards are deterministic and de�ned as follows: For any node
of depth d < D in the optimal branch (rightmost one), if Left action
is chosen, then a reward ofD � d

D is received (all leaves in this branch
have the same reward). If Right action is chosen, then this moves to
the next node in the optimal branch. At depth D � 1, Left action yields
reward 0 and Right action reward 1.

For this problem, as long as the optimal reward has not been ob-
served, from any node along the optimal path, the left branches seem
better than the right ones and are thus explored exponentially more of-
ten (since out ofn samples, UCB pulls onlyO(log n) times sub-optimal
arms, as seen in previous chapter). Therefore, the time required before
the optimal leaf is eventually reached is huge and we can deduce the
following lower-bound on the regret of UCT:

Rn = cexp(exp(: : : exp(
| {z }

D times

1) : : :)) +
(log(n)) ;

for some constantc. The �rst term of this bound is a constant inde-
pendent of n (thus the regret is asymptotically of order logn as proven
in [Kocsis and Szepesvári, 2006]) but this constant is �D -uply� expo-
nential. In particular this is much worse than a uniform sampling of all
the leaves which will be �only� exponential in D .

The reason why this is a particularly hard problem for UCT is that,
as long as the optimal reward has not been discovered, the previous
rewards collected by the algorithm are very misleading, at any level
of the tree, since they force the algorithm to explore for a very long
time the left (sub-optimal) branches of the tree before going deeper
along the optimal branch. But more deeply, the main reason for this
failure is that the B-values computed by UCT do not represent high-
probability upper-con�dence-bounds on the true value of the nodes
(since the rewards collected at any node are not i.i.d.), thusUCT
does not implement the optimism in the face of uncertainty
principle .

2.4. Conclusion 25

1

D

D-1

D

D-2

D

D-3

D
10

depth D

Figure 2.2: An example of tree for which UCT performs very poorly.

2.4 Conclusion

The previous observation represents our initial motivation for the re-
search described in the following chapters. We have seen that UCT
is very e�cient in some well-structured problems and very ine�cient
in other, tricky problems (the vast majority...). Our objective is now
to recover the optimism in the face of uncertainty principle and for
that purpose we want to de�ne a problem-dependent measure charac-
terizing the complexity of optimization. We will do so by de�ning a
notion of local smoothness property of the mean-reward function. This
will be used to derive optimistic algorithms, which build correct high-
probability UCBs, and enjoy tight �nite-time performance guarantees
that can be expressed in terms of this complexity measure in situations
where this measure is known, and when it is not.

3
Optimistic optimization with known smoothness

In this chapter we consider the optimism in the face of uncertainty
principle applied to the problem of black-box optimization of a function
f given (deterministic or stochastic) evaluations of the function.

We search for a good approximation of the maximum of a func-
tion f : X ! R using a �nite number n (i.e. the numerical budget) of
function evaluations. More precisely, we want to design a sequential ex-
ploration strategy A of the search spaceX , i.e. a sequencex1; x2; : : : ; xn

of states ofX , where eachx t may depend on previously observed val-
uesf (x1); : : : ; f (x t � 1), such that at round n (which may or may not be
known in advance), the algorithm A recommends a statex(n) with the
highest possible value. The performance of the algorithm is assessed by
the loss (or simple regret):

rn = sup
x2X

f (x) � f (x(n)) : (3.1)

Here the performance criterion is the closeness to optimality of the
recommendation made aftern evaluations to the function. This crite-
rion is di�erent from the cumulative regret previously de�ned in the

26

27

multi-armed bandit setting (see Chapter 1):

Rn
def= n sup

x2X
f (x) �

nX

t=1

f (x t); (3.2)

which measures how well the algorithm succeeds in selecting states
with good values while exploring the search space (notice that we write
x1; : : : ; xn as the states selected for evaluation, whereasx(n) refers to
the recommendation made by the algorithm aftern observations, and
may di�er from xn). The two settings provide di�erent exploration-
exploitation tradeo�s in the multi-armed bandit setting (see [Bubeck
et al., 2009, Audibert et al., 2010] for a thorough comparison between
the settings).

In this chapter we prefer to consider the loss criterion (3.1), which
induces a so-callednumerical exploration-exploitation trade-o� ,
since it more naturally relates to the problem of function optimization
given a �nite numerical budget (whereas the cumulative regret (3.2)
mainly applies to the problem of optimizing while learning an unknown
environment).

Since the literature on global optimization is very important, we
only mention the works that are closely related to the optimistic strat-
egy described here. A large body of algorithmic work has been de-
veloped using branch-and-bound techniques [Neumaier, 1990, Hansen,
1992, Kearfott, 1996, Horst and Tuy, 1996, Pintér, 1996, Floudas, 1999,
Strongin and Sergeyev, 2000] such as Lipschitz optimization where the
function is assumed to be globally Lipschitz. For illustration purpose,
Section 3.1 provides an intuitive introduction to the optimistic op-
timization strategy in the case where the function is assumed to be
Lipschitz. The next sample is chosen to be the maximum of an upper-
bounding function which is built from previously observed values and
knowledge of the function smoothness. This enables the algorithm to
achieve a good numerical exploration-exploitation trade-o� that makes
an e�cient use of the available numerical resources in order to rapidly
estimate the maximum of f .

However the main contribution of this chapter (starting from Sec-
tion 3.2 where the general setting is introduced) is to considerably
weaken the assumptions made in most of the previous literature since

28 Optimistic optimization with known smoothness

we do not require the spaceX to be a metric space but only to be
equipped with a semi-metric `, and we relax the assumption that f
is globally Lipschitz in order to consider the much weaker assumption
that f is locally smooth w.r.t. ` (this de�nition is made precise in Sec-
tion 3.2.2). In this chapter we assume thatthe semi-metric ` (under
which f is smooth) is known . The next chapter will consider the
case when it is not.

The case of deterministic evaluations is presented in Section 3.3
where a �rst algorithm, Deterministic Optimistic Optimization (DOO)
is introduced and analyzed. In Section 3.4, the same ideas are extended
to the case of stochastic evaluations of the function, which corresponds
to the so-called X -armed bandit, and two algorithms, Stochastic Op-
timistic Optimization (StoOO) and Hierarchical Optimistic Optimiza-
tion (HOO) are described and analyzed.

The main contribution of this chapter is a characterization of the
complexity of these optimistic optimization algorithms by means of a
measure of the quantity of near-optimal states of the mean-rewards
function f measured by some semi-metric̀, which is called the near-
optimality dimension of f w.r.t. `. We show that if the behav-
ior, or local smoothness, of the function around its (global) maxima is
known, then one can select the semi-metric̀ such that the correspond-
ing near-optimality dimension is 0, implying very e�cient optimization
algorithms (whose loss rate does not depend on the space dimension).
However their performance deteriorates when this smoothness is not
known or incorrectly estimated.

3.1 Illustrative example

In order to illustrate the approach, we consider the simple case where
the spaceX is metric (let ` denote the metric) and the function f :
X ! R is assumed to be Lipschitz continuous under̀ , i.e., for all
x; y 2 X ,

jf (x) � f (y)j � `(x; y): (3.3)

De�ne the numerical budget n as the total number of calls to the
function. At each round for t = 1 to n, the algorithm selects a state

3.1. Illustrative example 29

x t 2 X , then either (in the deterministic case) observes the exact
value of the function f (x t), or (in the stochastic case) observes a
noisy estimate r t of f (x t), such that E[r t jx t] = f (x t).

This chapter is informal and all theoretical results are deferred to
the next chapters. The only purpose of this chapter is to provide some
intuition about the optimistic approach for the optimization problem.

3.1.1 Deterministic setting

In this setting, the evaluations are deterministic, thus exploration does
not refer to improving our knowledge about some stochastic environ-
ment but consists of evaluating the function at unknown but possibly
important areas of the search space, in order to estimate the global
maximum of the function.

Given that the function is Lipschitz continuous and that we know
`, an evaluation of the function f (x t) at any point x t enables to de-
�ne an upper bounding function for f , since for all x 2 X , f (x) �
f (x t)+ l(x; x t). This upper bounding function can be re�ned after each
evaluation of f by taking the minimum of the previous upper-bounds
(see illustration on Figure 3.1): for all x 2 X ,

f (x) � B t (x) def= min
1� s� t

[f (xs) + l(x; x s)] : (3.4)

Now, the optimistic approach consists of selecting the next state
x t+1 as the point with highest upper bound:

x t+1 = arg max
x2X

B t (x): (3.5)

We can say that this strategy follows an �optimism in the face of
computational uncertainty� principle. The uncertainty does not come
from the stochasticity of some unknown environment (as it was the
case in the stochastic bandit setting), but from the uncertainty about
the function given that the search space may be in�nite and we possess
a �nite computational budget only.

Remark 3.1. Notice that we only need the property that B t (x) is an
upper-bound on f (x) at the (global) maxima x � of f . Indeed, the algo-
rithm selecting at each round a statearg maxx2X B t (x) will not be af-
fected by having aB t (x) function under-evaluating f (x) at sub-optimal

30 Optimistic optimization with known smoothness

f(x)t

xt

f

f *

Figure 3.1: Left: The function f (dotted line) is evaluated at a point x t , which
provides a �rst upper bound on f (given the Lipschitz assumption). Right: several
evaluations of f enable the re�nement of its upper-bound. The optimistic strategy
samples the function at the point with highest upper-bound.

points x 6= x � . Thus in order to apply this optimistic sampling strat-
egy, one really needs (3.4) to hold forx � only (instead of requiring it
for all x 2 X). Thus we see that the global Lipschitz assumption (3.3)
may be replaced by the much weaker assumption that for allx 2 X ,
f (x �) � f (x) � `(x; x �). This important extension will be further de-
tailed in Section 3.2.

Several issues remain to be addressed: (1) How do we generalize
this approach to the case of stochastic rewards? (2) How do we deal
with the computational problem of computing the maximum of the
upper-bounding function in (3.5)? Question 1 is the object of the next
subsection, and Question 2 will be addressed by considering a hierar-
chical partitioning of the space that will be discussed in Section 3.2.

3.1.2 Stochastic setting

Now consider the stochastic case, where the evaluations to the function
are perturbed by noise (see Figure 3.2). More precisely, an evaluation
of f at x t returns a noisy estimate r t of f (x t) where we assume that
E[r t jx t] = f (x t).

In order to follow the optimism in the face of uncertainty principle,
one would like to de�ne a high probability upper bounding function
B t (x) on f (x) at all states x 2 X and select the point with highest

3.1. Illustrative example 31

xt

f (xt)

r t

x

Figure 3.2: The evaluation of the function is perturbed by a centered noise:
E[r t jx t] = f (x t). How should we de�ne a high-probability upper-con�dence-bound
on f at any state x in order to implement the optimism in the face of uncertainty
principle?

bound arg maxx2X B t (x). So the question is how to de�ne this UCB
function.

A possible answer to this question is to consider a given subset
X i � X containing x and de�ne a UCB on f over X i . This can be done
by averaging the rewards observed by points sampled inX i and using
the Lipschitz assumption on f .

More precisely, let Ti (t)
def=

P t
u=1 1f xu 2 X i g be the number of

points sampled in X i at time t and let � s be the absolute time instant
when a point in X i was sampled for thes-th time, i.e. � s = min f u :
Ti (u) = sg. Notice that

P t
u=1 (ru � f (xu))1f xu 2 X i g =

P Ti (t)
s=1 (r � s �

f (x � s)) is a Martingale (w.r.t. the �ltration generated by the sequence
f (r � s ; x � s)gs) and we have

P
� 1

Ti (t)

Ti (t)X

s=1

�
r � s � f (x � s)

�
� � � t;T i (t)

�

� P
�
91 � u � t;

1
u

uX

s=1

�
r � s � f (x � s)

�
� � � t;u

�

�
tX

u=1

P
� 1

u

uX

s=1

�
r � s � f (x � s)

�
� � � t;u

�

�
tX

u=1

e� 2u� 2
t;u ;

32 Optimistic optimization with known smoothness

x x � s

r � s

f (x � s)

diam(X i)

Upper-bound

x

q
log t=�
2Ti (t)

1
Ti (t)

P Ti (t)
s=1 r � s

Figure 3.3: A possible way to de�ne a high-probability bound on f at any x 2 X
is to consider a subsetX i 3 x and average theTi (t) rewards obtained in this subset
P T i (t)

s=1 r � s , then add a con�dence interval term
q

log(t=�)
2T i (t) , and add the diameter

diam(X i). This de�nes an UCB (with probability 1 � �) on f at any x 2 X i .

where we used a union bound in the third line and Hoe�ding-Azuma
inequality [Azuma, 1967] in the last derivation. For any � > 0, setting

� t;u
def=

q
log(t=�)

2u we deduce that with probability 1 � � , we have

1
Ti (t)

Ti (t)X

s=1

r � s +

s
log(t=�)
2Ti (t)

�
1

Ti (t)

Ti (t)X

s=1

f (x � s): (3.6)

Now we can use the Lipschitz property off to de�ne a high prob-
ability UCB on supx2 X i

f (x). Indeed each element of the sum in the
r.h.s. of (3.6) is bounded asf (x � s) � maxx2 X i f (x) � diam(X i), where

the diameter of X i is de�ned as diam(X i)
def= max x;y 2 X i `(x; y). We

deduce that with probability 1 � � , we have

B t;T i (t) (X i)
def=

1
Ti (t)

Ti (t)X

s=1

r � s +

s
log t=�
2Ti (t)

+ diam(X i) � max
x2 X i

f (x): (3.7)

The UCB B t;T i (t) (X i) is illustrated in Figure 3.3.

Remark 3.2. We see a trade-o� in the choice of the size ofX i : The
bound (3.7) is poor either (1) when diam(X i) is large, or (2) whenX i

contains so few samples (i.e.Ti (t) is small) that the con�dence interval
width is large. Ideally we would like to consider several possible subsets
X i (of di�erent size) containing a given x 2 X and de�ne several UCBs

on f (x) and select the tightest one:B t (x) def= min i ;x2 X i B t;T i (t) (X i).

3.2. General setting 33

Now, an optimistic strategy would simply compute the tightest
UCB at each state x 2 X according to the rewards already observed,
and choose the next state to sample as the one with highest UCB,
like in (3.5). However this poses several problems: (1) One cannot con-
sider concentration inequalities on an arbitrarily large number of sub-
sets (since we would need a union bound over a too large number of
events), (2) From a computational point of view, it may not be easy to
compute the maximum point of the bounds if the shapes of the subsets
are arbitrary.

In order to provide a simple answer to those two issues we consider
a hierarchical partitioning of the space . This is the approach fol-
lowed in the next section, which introduces the general setting.

3.2 General setting

3.2.1 Hierarchical partitioning

In order to address the computational problem of computing the op-
timum of the upper-bound (3.5) described above, our algorithms will
make use of a hierarchical partitioning of the spaceX .

More precisely, we consider a set of partitions ofX at all scales
h � 0: For any integer h, X is partitioned into a set of K h subsets
X h;i (called cells), where0 � i � K h � 1. This partitioning may be
represented by aK -ary tree where the root corresponds to the whole
domain X (cell X 0;0) and each cellX h;i corresponds to a node(h; i)
of the tree (indexed by its depth h and index i), and each node(h; i)
possessesK children nodesf (h +1 ; i k)g1� k� K such that the associated
cells f X h+1 ;i k ; 1 � k � K g form a partition of the parent's cell X h;i .
See Figure 3.4.

In addition, to each cell X h;i is assigned a speci�c statexh;i 2 X h;i ,
that we call the center of X h;i where f may be evaluated.

3.2.2 Assumptions

We now make 4 assumptions: Assumption 1 is about the semi-metric̀,
Assumption 2 is about the smoothness of the function w.r.t.̀ , and As-
sumptions 3 and 4 are about the shape of the hierarchical partitioning

34 Optimistic optimization with known smoothness

h=0

h=2

h=1

h=3

Partition:

Figure 3.4: Hierarchical partitioning of the space X equivalently represented by a
K -ary tree (here K = 3). The set of leaves of any subtree corresponds to a partition
of X .

w.r.t. `.

Assumption 1 (Semi-metric). We assume that X is equipped with a
semi-metric ` : X � X ! R+ . We recall that this means that for all
x; y 2 X , we have`(x; y) = `(y; x) and `(x; y) = 0 if and only if x = y.

Note that we do not require that ` satis�es the triangle inequality
(in which case, ` would be a metric). An example of a metric space is
the Euclidean spaceRd with the metric `(x; y) = kx � yk (Euclidean
norm). Now considerRd with `(x; y) = kx � yk� , for some� > 0. When
� � 1, then ` is also a metric, but whenever� > 1 then ` does not
satisfy the triangle inequality anymore, and is thus a semi-metric only.

Now we state our assumption about the functionf .

Assumption 2 (Local smoothness off). There exists at least one global
optimizer x � 2 X of f (i.e., f (x �) = sup x2X f (x)) and for all x 2 X ,

f (x �) � f (x) � `(x; x �): (3.8)

This condition guarantees that f does not decrease too fast around
(at least) one global optimum x � (this is a sort of a locally one-
sided Lipschitz assumption). Note that although it is required that
(3.8) be satis�ed for all x 2 X , this assumption essentially sets con-
straints to the function f locally around x � (since at x such that

`(x; x �) > range(f) def= sup f � inf f the assumption is void). When this

3.3. Deterministic Optimistic Optimization 35

x � X

f (x �) f

f (x �) � `(x; x �)

Figure 3.5: Illustration of the local smoothness property of f around x � w.r.t. the
semi-metric `: the function f (x) is lower-bounded by f (x �) � `(x; x �). This essentially
constrains f around x � since for x away from x � the function can be arbitrarily non-
smooth (e.g., discontinuous).

property holds, we say that f is locally smooth w.r.t. ` around its
maximum . See an illustration in Figure 3.5.

Now we state the assumptions about the hierarchical partitioning.

Assumption 3 (Decreasing diameters). There exists a decreasing se-
quence� (h) > 0, such that for any depth h � 0 and for any cell X h;i

of depth h, we havesupx2 X h;i
`(xh;i ; x) � � (h):

Assumption 4 (Well-shaped cells). There exists� > 0 such that for any
depth h � 0, any cell X h;i contains a `-ball of radius �� (h) centered in
xh;i .

In this chapter, we consider the setting where Assumptions 1-4 hold
for a speci�c semi-metric `, and that the semi-metric ` is known to
the algorithm .

3.3 Deterministic Optimistic Optimization

The Deterministic Optimistic Optimization (DOO) algorithm de-
scribed in Figure 3.6 uses the knowledge of̀ through the use of � (h).

DOO builds incrementally a tree Tt for t = 1 : : : n, starting with
the root node T1 = f (0; 0)g, and by selecting at each roundt a leaf
of the current tree Tt to expand. Expanding a leaf means adding its

36 Optimistic optimization with known smoothness

Initialization: T1 = f (0; 0)g (root node)
for t = 1 to n do

Select the leaf(h; j) 2 L t with maximum bh;j
def
= f (xh;j)+ � (h) value.

Expand this node: add to Tt the K children of (h; j) and evaluate
the function at the points f xh+1 ;j 1 ; : : : ; xh+1 ;j K g

end for
Return x(n) = arg max (h;i)2T n f (xh;i)

Figure 3.6: Deterministic Optimistic Optimization (DOO) algorithm.

K children to the current tree (this corresponds to splitting the cell
X h;j into K children-cells f X h+1 ;j 1 ; : : : ; X h+1 ;j K g) and evaluating the
function at the centers f xh+1 ;j 1 ; : : : ; xh+1 ;j K g of the children cells. We
write L t the leaves ofTt (set of nodes whose children are not inTt),
which are the set of nodes that can be expanded at roundt.

The algorithm computes a b-value bh;j
def= f (xh;j) + � (h) for each

leaf (h; j) 2 L t of the current tree Tt and selects the leaf with highest b-
value to expand next. Once the numerical budget is over (here,n node
expansions corresponds tonK function evaluations), DOO returns the
evaluated state x(n) 2 f xh;i ; (h; i) 2 Tng with highest value.

This algorithm follows an optimistic principle because it expands
at each round a cell that may contain the optimum of f , based on the
information about (i) the previously observed evaluations off , and (ii)
the knowledge of the local smoothness property (3.8) off (since ` is
known).

Thus the use of the hierarchical partitioning provides a computa-
tionally e�cient implementation of the optimistic sampling strategy
described in Section 3.1 and illustrated in Figure 3.1, where the (pos-
sibly complicated) problem of selecting the state with highest upper-
bound (3.5) is replaced by the (easy) selection process of the leaf with
highest b-value.

3.3. Deterministic Optimistic Optimization 37

3.3.1 Analysis of DOO

Notice that Assumption 2 implies that the b-value of any cell containing
x � upper boundsf � , i.e., for any cell X h;i such that x � 2 X h;i ,

bh;i = f (xh;i) + � (h) � f (xh;i) + `(xh;i ; x �) � f � :

As a consequence, a leaf(h; i) such that f (xh;i) + � (h) < f � will
never be expanded (since at any timet, the b-value of such a leaf will
be dominated by the b-value of the leaf containingx �). We deduce that

DOO only expands nodes in the setI def= [h� 0I h , where

I h
def= f nodes(h; i) such that f (xh;i) + � (h) � f � g:

In order to derive a loss bound we now de�ne a measure of the
quantity of near-optimal states, called near-optimality dimension. This
measure is closely related to similar measures introduced in [Kleinberg
et al., 2008b, Bubeck et al., 2008]. For any� > 0, let us write

X�
def= f x 2 X ; f (x) � f � � � g

the set of � -optimal states.

De�nition 3.1. The � -near-optimality dimension is the smallest
d � 0 such that there exists C > 0, for all � > 0, the maximal number
of disjoint `-balls of radius �� with center in X� is less thanC� � d.

Note that d is not an intrinsic property of f : it characterizes both f
and ` (since we usè -balls in the packing of near-optimal states), and
also depends on the constant� . However it does not depend on the
hierarchical partitioning of the space. Thus it is a measure of the func-
tion and the semi-metric space only, but not of any speci�c algorithm.
Now, in order to relate this measure to the speci�cities of the algorithm
(in order to bound the cardinality of the sets I h , see Lemma 3.1), we
need to relate it to the properties of the partitioning, in particular the
shape of the cells, which is the reason whyd depends on the constant
� , which will be chosen according to� , as de�ned in Assumption 4.

Remark 3.3. Notice that in the de�nition of the near-optimality di-
mension, we require the packing property to hold for all � > 0. We

38 Optimistic optimization with known smoothness

can relax this assumption and de�ne a local near-optimality dimen-
sion by requiring this packing property to hold for all � � � 0 only, for
some� 0 � 0. If the spaceX is bounded and has �nite packing dimen-
sion (i.e. X can be packed byC0� � D `-balls of size� , for any � > 0),
then the near-optimality and local near-optimality dimensions coincide.
Only the constant C in their de�nition may change.

Indeed, let d be the near-optimality dimension and C the corre-
sponding constant where the packing property is required for all� > 0
(as de�ned in Assumption 3.1). Thus by setting C0 = max(C; C0� � D

0)
we have that the local near-optimality dimension (where the packing
property is required to hold for � � � 0 only) is the same d with C0

being the corresponding constant.
Thus we see that the near-optimality dimension d captures a lo-

cal property of f near x � whereas the corresponding constantC may
depend on the global shape off .

We now bound the number of nodes inI h using the near-optimality
dimension.

Lemma 3.1. Let d be the � -near-optimality dimension (where � is
de�ned in Assumption 4), and C the corresponding constant. Then

jI h j � C� (h) � d:

Proof. From Assumption 4, each cell (h; i) contains a ball of radius
�� (h) centered inxh;i , thus if jI h j = jf xh;i 2 X � (h)gj exceededC� (h) � d,
this would mean that there exists more thanC� (h) � d disjoint `-balls of
radius �� (h) with center in X� (h) , which would contradict the de�nition
of d.

We now provide our loss bound for DOO.

Theorem 3.2. Let us write h(n) the smallest integer h such that
C

P h
l=0 � (l) � d � n: Then the loss of DOO is bounded as

rn � � (h(n)) :

Proof. Let (hmax ; j max) be the deepest node that has been expanded
by the algorithm up to round n. We known that DOO only expands

3.3. Deterministic Optimistic Optimization 39

nodes in the setI . Thus the number of expanded nodesn is such that

n =
hmaxX

l=0

K l � 1X

j =0

1f (h; j) has been expandedg

�
hmaxX

l=0

jI l j � C
hmaxX

l=0

� (l) � d;

from Lemma 3.1. Now from the de�nition of h(n) we have hmax �
h(n). Finally, since node(hmax ; j max) has been expanded, we have that
(hmax ; j max) 2 I , thus

f (x(n)) � f (xhmax ;j max) � f � � � (hmax) � f � � � (h(n)) :

Now, let us make the bound more explicit when the diameter� (h)
of the cells decreases exponentially fast with their depth (this case is
rather general as illustrated in the examples described next, as well as
in the discussion in [Bubeck et al., 2011a]).

Corollary 3.3. Assume that � (h) = c h for some constantsc > 0 and
 < 1.

� If d > 0, then the loss decreases polynomially fast:

rn �
� C

1 � d

� 1=d
n� 1=d:

� If d = 0 , then the loss decreases exponentially fast:

rn � c (n=C)� 1:

Proof. From Theorem 3.2, wheneverd > 0 we have

n � C
h(n)X

l=0

� (l) � d = Cc� d � d(h(n)+1) � 1
 � d � 1

;

thus � dh(n) � n
Cc� d

�
1 � d�

, from which we deduce that

rn � � (h(n)) � c h(n) �
� C
1 � d

� 1=dn� 1=d:

Now, if d = 0 then n � C
P h(n)

l=0 � (l) � d = C(h(n) + 1) ; and we
deduce that the loss is bounded asrn � � (h(n)) = c (n=C)� 1:

40 Optimistic optimization with known smoothness

Remark 3.4. Notice that in Theorem 3.2 and Corollary 3.3 the loss
bound is expressed in terms of the number of node expansionsn. The
corresponding number of function evaluations isKn (since each node
expansion generatesK children where the function is evaluated).

3.3.2 Examples

Example 1: Let X = [� 1; 1]D and f be the function f (x) = 1 �k xk�
1 ,

for some� � 0. Consider aK = 2 D -ary tree of partitions with (hyper)-
squares. Expanding a node means splitting the corresponding square
in 2D squares of half length. Letxh;i be the center of any cellX h;i .

Consider the following choice of the semi metric:̀ (x; y) = kx � yk�
1 ,

with � � � . We have � (h) = 2 � h� (recall that � (h) is de�ned in terms
of `), and � = 1 . The optimum of f is x � = 0 and f satis�es the
local smoothness property (3.8). Now let us compute its near-optimality
dimension. For any � > 0, X� is the L 1 -ball of radius � 1=� centered in
0, which can be packed by

� � 1=�

� 1=�

� D L 1 -balls of diameter � (since a
L 1 -balls of diameter � is a `-ball of diameter � 1=�). Thus the near-
optimality dimension is d = D(1=� � 1=�) (and the constant C = 1).
From Corollary 3.3 we deduce that (i) when � > � , then d > 0 and in

this case,rn = O
�
n� 1

D
��

� � �
�
, and (ii) when � = � , then d = 0 and the

loss decreases exponentially fast:rn � 21� n :
It is interesting to compare this result to a uniform sampling strat-

egy (i.e., the function is evaluated at the set of points on a uniform grid),
which would provide a loss of ordern� �=D . We observe that DOO is
better than uniform whenever � < 2� and worse when� > 2� .

This result provides some indication on how to choose the semi-
metric ` (thus �), which is a key ingredient of the DOO algorithm
(since � (h) = 2 � h� appears in the b-values):� should be as close as
possible to the true � (which can be seen as a local smoothness order
of f around its maximum), but never larger than � (otherwise f does
not satisfy the local smoothness property (3.8) any more).

Example 2: The previous analysis generalizes to any function that
is locally equivalent to �k x � x � k� , for some � > 0 (where k � k is
any norm, e.g., Euclidean,L 1 , or L 1), around a global maximum x �

3.3. Deterministic Optimistic Optimization 41

(among a set of global optima assumed to be �nite). More precisely,
we assume that there exists constantsc1 > 0, c2 > 0, c > 0, such that

f (x �) � f (x) � c1kx � x � k� ; for all x 2 X ;

f (x �) � f (x) � c2 min(c;kx � x � k) � ; for all x 2 X :

Let X = [0 ; 1]D . Again, consider aK = 2 D -ary tree of partitions with
(hyper)-squares. Let `(x; y) = ckx � yk� with c1 � c and � � � (so
that f satis�es (3.8)). For simplicity we do not make explicit all the
constants using theO notation for convenience (the actual constants
depend on the choice of the normk � k). We have � (h) = O(2� h�).
Now, let us compute the local near-optimality dimension. For any small
enough � > 0, X� is included in a ball of radius (�=c2)1=� centered in
x � , which can be packed byO

� � 1=�

� 1=�

� D `-balls of diameter � . Thus the
local near-optimality dimension (thus the near-optimality dimension
in light of Remark 3.3) is d = D(1=� � 1=�), and the results of the
previous example apply (up to constants), i.e. for� > � , then d > 0

and rn = O
�
n� 1

D
��

� � �
�
. And when � = � , then d = 0 and one obtains

the exponential rate rn = O(2� � (n=C � 1)).
Thus we see that the behavior of the algorithm depends on our

knowledge of the local smoothness (i.e.� and c1) of the function
around its maximum. Indeed, if this smoothness information is avail-
able, then one should de�ne the semi-metric̀ (which impacts the algo-
rithm through the de�nition of � (h)) to match this smoothness (i.e. set
� = �) and derive an exponential loss rate. Now if this information is
unknown, then one should underestimate the true smoothness (i.e. by

choosing� � �) and su�er a loss rn = O
�
n� 1

D
��

� � �
�
, rather than over-

estimating it (� > �) since in this case, (3.8) may not hold anymore
and there is a risk that the algorithm converges to a local optimum
(thus su�ering a constant loss).

3.3.3 Illustration

We consider the optimization of the function f (x) =
�
sin(13x) sin(27x) + 1

�
=2 in the interval X = [0 ; 1] (plotted in

Figure 3.7). The global optimum is x � � 0:86442and f � � 0:975599.
Figure 3.7 shows two simulations of DOO, both using a numerical

42 Optimistic optimization with known smoothness

budget of n = 150 evaluations to the function, but using two di�erent
semi-metrics `.

Figure 3.7: The trees Tn built by DOO after n = 150 rounds with the choice of
`(x; y) = 14 jx � yj (left) and `(x; y) = 222 jx � yj2 (right). The upper parts of the
�gure shows the binary trees built by DOO. Note that both trees are extensively
re�ned where the function is near-optimal, while it is much less developed in other
regions. Using a metric that re�ects the quadratic local regularity of f around its
maximum (right �gure) enables a much more precise re�nement to the discretization
around x � than using the metric under which the function is globally Lipschitz (left).

In the �rst case (left �gure), we used the property that f is globally
Lipschitz and its maximum derivative is maxx2 [0;1] jf 0(x)j � 13:407.

Thus with the metric `1(x; y) def= 14jx � yj, f is Lipschitz w.r.t. `1 and
(3.8) holds. We remind that DOO algorithm requires the knowledge of
the metric since the diameters� (h) are de�ned in terms of this metric.
Thus since we considered a dyadic partitioning of the space (i.e.K = 2),
we used� (h) = 14 � 2� h in the algorithm.

In the second case (right �gure), we used the property thatf 0(x �) =
0, thus f is locally quadratic around x � . Since f 00(x �) � 443:7, us-
ing a Taylor expansion of order 2 we deduce thatf is locally smooth
(i.e. satis�es (3.8)) w.r.t. `2(x; y) def= 222jx � yj2. Thus here we de�ned
� (h) = 222 � 2� 2h .

Table 3.8 reports the numerical loss of DOO with these two metrics.

3.3. Deterministic Optimistic Optimization 43

As mentioned in previous subsection, the behavior of the algorithm
heavily depends on the choice of metric. Althoughf is locally smooth
(i.e. satis�es (3.8)) w.r.t. both metrics, the near-optimality of f w.r.t. `1

is d = 1=2 (as discussed in Example 2 above) whereas it isd = 0
w.r.t. `2. Thus `2 is better suited for optimizing this function since
in that case, the loss decreases exponentially fast with the number
of evaluations (instead of polynomially when using`1). The choice of
the constants in the de�nition of the metric is also important. If we
were to use a larger constant in the de�nition of the metric, the e�ect
would be a more uniform exploration of the space at the beginning.
This will impact the constant factor in the loss bound but not the rate
(since the rate only depends on the near-optimality dimensiond which
characterizes a local behavior off around x � whereas the corresponding
constant C depends on the global shape off).

Now, we should be careful of not selecting a metric (such as

`3(x; y) def= jx � yj3) which would overestimate the true smoothness
of f around its optimum since in this case (3.8) would not hold any-
more and the algorithm might not converge to the global optimum at
all (it can be stuck in a local maximum).

Thus we see that the main technical di�culty when applying this
optimistic optimization methods is the possible lack of knowledge about
the smoothness of the function around its maximum (or equivalently
the metric under which the function is locally smooth). In Chapter 4 we
will consider adaptive techniques that apply even when this smoothness
is unknown. But before this, let us discuss the stochastic case in the
next section.

n uniform grid DOO with `1 DOO with `2

50 1:25� 10� 2 2:53� 10� 5 1:20� 10� 2

100 8:31� 10� 3 2:53� 10� 5 1:67� 10� 7

150 9:72� 10� 3 4:93� 10� 6 4:44� 10� 16

Figure 3.8: Loss r n for di�erent values of n for a uniform grid and DOO with the
two semi-metric `1 and `2 .

44 Optimistic optimization with known smoothness

3.4 X -armed bandits

We now consider the case of noisy evaluations of the function, as in
Subsection 3.1.2: At roundt, the observed value (reward) isr t = f (x t)+
� t , where � t is an independent sample of a random variable (whose law
may depend onx t) such that E[� t jx t] = 0 . We also assume that the
rewards r t are bounded in[0; 1]. Thus the setting is a stochastic multi-
armed bandit with the set of arms being X . There are several ways to
extend the deterministic case described in the previous section to this
stochastic setting.

The simplest way consists of sampling several times each point in
order to build an accurate estimate of the value at that point, be-
fore deciding to expand the corresponding node. This leads to a direct
extension of DOO where an additional term in the de�nition of the
b-values accounts for a high-probability estimation interval. The corre-
sponding algorithm is called Stochastic DOO (StoOO) and is close in
spirit to the Zooming algorithm of Kleinberg et al. [2008b]. The anal-
ysis is simple but the time horizon n needs to be known in advance
(thus this is not an anytime algorithm). This algorithm is described in
Subsection 3.4.1.

Now, another way consists of expanding the selected node each time
we collect a sample. Thus the sampled points may always be di�erent.
In that case we can use the approach illustrated in Subsection 3.1.2 to
generate high-probability upper bounds on the function in each cell of
the tree in order to de�ne a procedure to select in an optimistic way a
leaf to expand at each round. The corresponding algorithm, Hierarchi-
cal Optimistic Optimization (HOO), is described in Subsection 3.4.2.
The bene�t is that HOO does not require the knowledge of the time
horizon n (thus is anytime) and is more e�cient in practice than StoOO
(although this improvement is not re�ected in the loss bounds). How-
ever it requires a slightly stronger assumption on the smoothness of the
function.

3.4.1 Stochastic Optimistic Optimization (StoOO)

In the stochastic version of DOO the algorithm computes the b-

3.4. X -armed bandits 45

Parameters: error probability � > 0, time horizon n
Initialization: T1 = f (0; 0)g (root node)
for t = 1 to n do

For each leaf (h; j) 2 L t , compute the b-valuesbh;j (t) according to
(3.9).
Select (ht ; j t) = arg max (h;j)2L t bh;j (t)

Sample statex t
def
= xh t ;j t and collect reward r t = f (x t) + � t .

If Th;j (t) � log(n 2 =�)
2� (h)2 , expand this node: add toTt the K children of

(h; j)
end for
Return the deepest node among those that have been expanded:

x(n) = arg max
x h;j :(h;j)2T n nL n

h:

Figure 3.9: Stochastic Optimistic Optimization (StoOO) algorithm

values of all the leaves(h; j) 2 L t of the current tree as

bh;j (t) def= �̂ h;j (t) +

s
log(n2=�)
2Th;j (t)

+ � (h); (3.9)

where �̂ h;j (t) def= 1
Th;j (t)

P t
s=1 r s1f xs 2 X h;j g is the empirical average

of the rewards received inX h;j , and Th;j (t) def=
P t

s=1 1f xs 2 X h;j g is
the number of times (h; j) has been selected up to timet. We use the
convention that if a node (h; j) has not been sampled at timet then
Th;j (t) = 0 and its b-value is + 1 .

The algorithm is similar to DOO, see Figure 3.9, except that a
node (h; j) is expanded only ifxh;j has been sampled at least a certain
number of times. Another noticeable di�erence is that the algorithm
returns a state x(n) which is the deepest among all nodes that have
been expanded up to roundn.

46 Optimistic optimization with known smoothness

Analysis of StoOO: For any � > 0, de�ne the following event

� def=
n

8h � 0; 80 � i < K h ; 81 � t � n;

�
� �̂ h;j (t) � f (xh;j)

�
� �

s
log(n2=�)

Th;j (t)

o
: (3.10)

We now prove that this event holds with high probability:

Lemma 3.4. We have P(�) � 1 � � .

Proof. Let m � n be the (random) number of nodes expanded through-
out the algorithm. For 1 � i � m, write t i as the time when the i -th
node is expanded, and(~hi ; ~j i) = (ht i ; j t i) the corresponding node. Us-
ing �local clocks�, denote by � s

i the time when the node (~hi ; ~j i) has
been selected for thes-th time and write ~r s

i = r � s
i

the reward obtained
at that time. Note that (h� s

i
; j � s

i
) = (~hi ; ~j i). Using these notations, the

event � can be rede�ned as

� =
n

81 � i � m; 81 � u � T~h i ;~j i
(n);

�
�
�
�
�
1
u

uX

s=1

~r s
i � f (x~h i ;~j i

)

�
�
�
�
�

�

s
log(n2=�)

u

o
:

Since we haveE[r s
i jx~h i ;~j i

] = f (x~h i ;~j i
), then

P t
s=1 ~r s

i � f (x~h i ;~j i
) is a

Martingale (w.r.t. the �ltration generated by the samples collected at
x~h i ;~j i

), and Azuma's inequality [Azuma, 1967] applies. Taking a union
bound over the number of samplesu � n and the number m � n of
expanded nodes, we deduce the result.

We now show that in this event of high probability StoOO only
expands nodes that are near-optimal. Indeed, similarly to the analysis
of DOO, de�ne the sets

I h
def= f nodes(h; i) such that f (xh;i) + 3 � (h) � f � g:

Lemma 3.5. In the event � , StoOO only expands nodes that belong to
the set I def= [h� 0I h .

3.4. X -armed bandits 47

Proof. Let (ht ; j t) be the node expanded at timet. From the de�nition
of the algorithm, since this node is selected we have that its b-value is
larger than the b-value of the cell (h�

t ; j �
t) containing x � . And since this

node is expanded, we have
r

log(n2=�)
2Th t ;j t (t) � � (ht). Thus,

f (xht ;j t) � �̂ ht ;j t (t) � � (ht) under �
� bht ;j t (t) � 3� (ht) since the node is expanded
� bh �

t ;j �
t
(t) � 3� (ht) since the node is selected

� f (xh �
t ;j �

t
) + � (h�

t) � 3� (ht) under �
� f � � 3� (ht) from Assumption (2)

which ends the proof.

We now relate the number of nodes inI h to the near-optimality
dimension.

Lemma 3.6. Let d be the �
3 -near-optimality dimension, and C the

corresponding constant. Then

jI h j � C[3� (h)] � d:

Proof. From Assumption 4, each cell (h; i) contains a ball of radius
�� (h) centered in xh;i , thus if jI h j = jf xh;i 2 X 3� (h)gj exceeded
C[3� (h)] � d, this would mean that there exists more than C[3� (h)] � d

disjoint `-balls of radius �� (h) with center in X3� (h) , which contradicts
the de�nition of d (by taking � = 3 � (h)).

We now provide a loss bound for StoOO.

Theorem 3.7. Let � > 0. Let us de�ne h(n) to be the smallest integer
h such that

2CK 3� d
hX

l=0

� (l) � (d+2) �
n

log(n2=�)
:

Then with probability 1 � � , the loss of StoOO is bounded as

rn � � (h(n)) :

Proof. Let (hmax ; j max) be the deepest node that has been expanded by
the algorithm up to round n. At round n there are two types of nodes:

48 Optimistic optimization with known smoothness

the leavesL n (nodes that have not been expanded) and the nodes that
have been expandedTn nLn , which from Lemma 3.5, belong toI in the
event � . Each leaf j 2 L n of depth h has been pulled at most log(n2=�)

2� (h)
times (since it has not been expanded) and its parent (denoted by
(h � 1; j 0) below) belongs toI h� 1. Thus the total number of expanded
nodesn is such that

n =
hmaxX

l=0

K l � 1X

j =0

Tl;j (n)1f (h; j) 2 I hg

+
hmax +1X

l=1

K l � 1X

j =0

Tl;j (n)1f (h � 1; j 0) 2 I h� 1g

�
hmaxX

l=0

jI l j
log(n2=�)

2� (l)
+ (K � 1)

hmax +1X

l=1

jI l � 1j
log(n2=�)
2� (l � 1)

= K
hmaxX

l=0

C[3� (l)] � d log(n2=�)
2� (l)

where we used Lemma 3.6 to bound the number of nodes inI l . Now
from the de�nition of h(n) we have hmax � h(n). And since node
(hmax ; j max) has been expanded, we have that(hmax ; j max) 2 I in �
and

f (x(n)) = f (xhmax ;j max) � f � � 3� (hmax) � f � � 3� (h(n))

happens with probability 1 � � from Lemma 3.4.

Now, in the case of exponential diameters we have the following
corollary.

Corollary 3.8. Assume that � (h) = c h for some constantsc > 0 and
 < 1. For any � > 0 the loss of StoOO run with parameter � is
bounded with probability 1 � � as

rn � c1

hlog(n2=�)
n

i 1
d+2 :

with c1
def=

h
2CK 3� d

1� d+2

i 1
d+2 . Now, setting the parameter � as a function of

the time horizon n enables the derivation of the expected loss bound.

For example with the choice � = 1=n we haveErn = O
� � log n

n

� 1
d+2

�
:

3.4. X -armed bandits 49

Proof. From the de�nition of h(n) in Theorem 3.7, we have

n
log(n2=�)

� 2CK 3� d
h(n)X

l=0

[c l]� (d+2)

� 2CK 3� dc� (d+2) � (h(n)+1)(d+2) � 1
 � (d+2) � 1

� cd+2
1 � (h(n)) � (d+2) :

Now from Theorem 3.7,rn � � (h(n)) with probability 1� � from which
we deduce the result in high probability. The result in expectation
immediately follows from

Ern � (1 � �)� (h(n)) + � = O
� � logn

n

� 1
d+2

�
;

for the choice � = 1=n as the loss is trivially bounded by 1 (since the
rewards are in [0; 1]).

Notice that this algorithm is not an anytime algorithm, in contrary
to the DOO algorithm. StoOO is close in spirit to the Zooming algo-
rithm [Kleinberg et al., 2008b], and both algorithm can be made any-
time in a somehow arti�cial way by resorting to the so-called doubling-
trick technique, which consists of running the algorithm for a given
time horizon n0, and once �nished (if n > n 0), starting it again with
a double time horizon n1 = 2n0 and repeating this process until the
(unknown) horizon n is reached. One can show that the performance of
the resulting algorithm is bounded by a quantity similar to the perfor-
mance of the algorithm that would know n, up to a constant factor. The
main di�erence between StoOO and Zooming algorithm is that StoOO
is given a hierarchical partitioning which constrains the computation
of the upper-con�dence bounds but as a consequence simpli�es the
complexity of the sampling strategy, whereas Zooming requires a sam-
pling oracle that can identify states that do not belong to the current
covering centered at the set of active states.

In the next subsection we present a modi�cation of the StoOO
algorithm, called HOO -which is anytime- but which requires a slightly
stronger assumption onf , called weak Lipschitz assumption.

50 Optimistic optimization with known smoothness

3.4.2 Hierarchical Optimistic Optimization (HOO)

We make the following assumption on the functionf :

Assumption 5 (weak Lipschitz). The function f is such that for all
x; y 2 X ,

f � � f (y) � f � � f (x) + max
�
f � � f (x); `(x; y)

	
: (3.11)

Intuitively, this says that around an optimum x � the values f (y)
should be abovef � � `(x � ; y), like the local smoothness property (3.8).
But in addition, in the vicinity of other arms x, the constraint is milder
as the arm x gets worse: around any� �optimal point x the valuesf (y)
should be larger thanf � � 2� for `(x; y) � � and larger than f (x)� `(x; y)
elsewhere. In other words, there is no sudden and large drop in the
mean-payo� function around states with values close to the optimum
(note that this property can be satis�ed even for discontinuous func-
tions).

The HOO algorithm is described in Figure 3.10. The notationC(h; i)
refers to the set of children of(h; i).

At each round t, the algorithm assigns b-values to all nodes of the
current tree Tt , de�ned as bh;j = + 1 for any leaf (h; j) 2 L t (from
which no sample has been observed yet), and for any node(h; i) 2
Tt n L t ,

bh;i (t)
def= min

n
�̂ h;i (t)+

s
2 logt
Th;i (t)

+ � (h); max
(h+1 ;j)2C(h;i)

bh+1 ;j (t)
o

: (3.12)

Their computation can be done by backward induction, starting from
the leaves, up to the root node.

The algorithm works as follows: At each roundt a leaf (ht ; j t) 2 L t

of the current tree is selected. The way this leaf is chosen is by following
an �optimistic path� from the root to a leaf where at each node along
this path, the child node is the one with the highest b-value (Figure 3.11
illustrates the leaf selection procedure). Then a pointx t is selected
arbitrarily in the corresponding domain X ht ;j t (for example xht ;j t but
it can be any other point, possibly chosen randomly) and the random
reward r t = f (x t) + � t is observed. Then the b-values of all nodes are
updated and the process repeats.

3.4. X -armed bandits 51

Initialization: T1 = f (0; 0)g (root node)
for t = 1 to n do

Compute the b-values of all nodes in Tt according to (3.12),
Select a leaf (ht ; j t) 2 L t by following an �optimistic path�:
Let (h; i) (0; 0) (start from the root)
While (h; i) 2 Tt n L t do

(h; i) arg max
(h+1 ;j)2C (h;i)

bh+1 ;j (t) (Ties broken arbitrarily)

The selected leaf is(ht ; j t) = (h; i)
Sample a state x t arbitrarily in X h t ;j t (for example x t = xh t ;j t)
and collect the reward r t = f (x t) + � t .
Expand node (ht ; j t): Tt +1 T t [C (ht ; j t) (add the K children of
(ht ; j t))

end for
Return x(n)

def
= xT , where T � U (f 1; 2; : : : ; ng).

Figure 3.10: Hierarchical Optimistic Optimization (HOO) applied to the problem
of minimizing the loss r n .

Finally, at round n, the algorithm returns one of the previously
sampled states chosen (uniformly) randomly.

An optimistic sampling strategy: By de�ning the bmin -value of any
leaf (h; j) 2 L t as the minimum of the b-values of all its ancestor nodes,
i.e.,

bmin
h;j (t) def= min

(l;i) ancestor of (h;j)
�̂ l;i (t) +

s
2 logt
Tl;i (t)

+ � (l);

we have that bmin
h;j (t) is a re�ned high-probability upper-con�dence

bound on supx2 X h;j
f (x) (since each term of the min is). This is a

way to implement the idea of improving the UCB using a hierarchy of
domains mentioned in Remark 3.2.

Actually from the de�nition of the optimistic path chosen by the
HOO algorithm, we have the property that the selected leaf(ht ; j t) is
a leaf with highest bmin value among all leaves inL t :

(ht ; j t) 2 arg max
(h;j)2L t

bmin
h;j (t):

52 Optimistic optimization with known smoothness

Optimistic path

h,i
b

b b
h+1,i1 h+1,i2

Sampled pointxt

Selected leaf

Figure 3.11: Illustration of the leaf selection procedure in round t. The tree rep-
resents Tt . In the illustration, Bh +1 ;i 1 (t) > B h +1 ;i 2 (t), therefore, the selected path
traverses the node (h + 1 ; i 1). The point x t is chosen in the selected leaf(ht ; j t).

This is exactly the optimistic methodology introduced in Sec-
tion 3.1.2, especially described in Remark 3.2.

Analysis of HOO The bound reported in [Bubeck et al., 2011a] is in

terms of the cumulative regret Rn
def= nf � �

P n
t=1 r t , i.e. the di�erence

between the sum of rewards collected by the algorithm up to timen
compared to n times the best possible expected rewardf � .

However, from an algorithm achieving a cumulative regretRn one
can design an algorithm that achieves a lossrn in expectation of Ern =
ERn=n. This loss bound is not optimal for �nitely many armed bandits
(since there exists strategies that achieve exponential loss bounds as
discussed in [Bubeck et al., 2009, Audibert et al., 2010]), but in the
case ofX -armed bandits (where the set of arms is larger than the
number of roundsn), the problem of designing better strategies for the
loss is an open problem. The version presented in Figure 3.10 is an

3.4. X -armed bandits 53

adaptation of the HOO algorithm where the state x(n) returned at the
end of the algorithm is chosen uniformly randomly among the states
f x t g1� t � n sampled by the algorithm up to round n:

x(n) def= xT ; where T � U (f 1; 2; : : : ; ng): (3.13)

Thus we immediately deduce that

ET rn = ET [f � � f (xT)] =
1
n

nX

t=1

[f � � f (x t)] =
1
n

Rn : (3.14)

Theorem 3.9 (Regret bound for HOO [Bubeck et al., 2011a]). Under
Assumption 5 on f . Let d be the �

3 -near-optimality dimension of f
w.r.t. `. Then the loss of HOO is upper-bounded as

Ern = O
� �

n
logn

� � 1
d+2 �

:

Proof. From [Bubeck et al., 2011a] (proof not reproduced here) we have

that the expected cumulative regret of HOO is O
� �

logn
� 1

d+2 n
d+1
d+2

�
.

Using (3.14) we deduce the result for the expected loss.

Remark 3.5. Since the state x(n) returned by the algorithm follows
(3.13), the lossrn of HOO is directly related to the cumulative regret
Rn via (3.14). However for the problem of minimizing the lossrn (that
we consider in this paper), it may be possible to de�ne other choices for
the recommended statex(n) such that the loss rn may not be related
to the cumulative regret Rn . Such a possible choice would be to return
any point in the deepest leafarg max(h;j)2L n h of the �nal tree Tn built
from HOO. Actually, numerical experiments indicate that this strategy
provides better performance than the one de�ned by (3.13). However,
there is currently no theoretical guarantee for it.

Remark 3.6. HOO requires that f satis�es (3.11) which is slightly
stronger than (3.8). The reason is that since HOO expands a leaf at
each round, it builds a high-probability UCB on supx2 X h;i

f (x) at a
given node(h; i) based on di�erent points in the cell X h;i (in contrary
to StoOO that samples several times the same point in order to build

54 Optimistic optimization with known smoothness

an accurate estimate of the value before expanding the node). As a con-
sequence, the rewards collected in sub-optimal cells may signi�cantly
impact the cumulative regret. Indeed, consider a sub-optimal cellX h;i

(thus x � =2 X h;i) such that f (xh;i) � f � � � (h). Assuming that f satis-
�es (3.8) only, then sampling arbitrarily at x 2 X h;i may cause a large
cumulative regret (since the function may be arbitrarily low at points
x 6= xh;i). In contrast, assuming that f satis�es (3.11), one deduce that
any samplex in the cell X h;i contributes to the cumulative regret by

f � � f (x) � f � � f (xh;i) + max f f � � f (xh;i); `(xh;i ; x)g � 2� (h)

only.

The loss bounds of HOO and StoOO are of the same order. The
bene�t of HOO over StoOO is that it is anytime (i.e. n does not need
to be known in advance) and it is usually numerically more e�cient
since it does not wait until a cell has been sampled enough times to
start re�ning the corresponding node. Thus inside a given cellX h;i the
sampling is adaptive even when the number of samples is small, which
enables HOO to localize more rapidly the maximum off within the
cell (contrary to StoOO which samples the same stateO(log(n)=� (h)2)
times before re�ning it). Those improvements come at the cost of a
slightly more constraining assumption on the function f as explained
in the previous remark.

Finally, we provide some numerical experiments on the same one-
dimensional problem as described in Subsection 3.3.3. The mean-
reward function is f (x) def=

�
sin(13x) sin(27x)+1

�
=2 and the reward col-

lected at a statex t follows a Bernoulli distribution with parameter f (x t)
(i.e. r t = 1 with probability f (x t) and r t = 0 with probability 1� f (x t)).
Figure 3.12 shows the trees built by HOO aftern = 102; 103; 104, and
n = 105 calls to the function using the `2-metric. Here the hierarchical
partitioning is formed by dyadic intervals, � (h) = 2 � h , and the points
x t are uniformly randomly chosen in the selected cellsX ht ;j t .

A �rst observation is that the tree is more uniformly balanced here
than in the deterministic case since the noise in the rewards makes
it harder to distinguish between the relative values of the function.
This is re�ected in the performance bounds since the loss obtained in

3.4. X -armed bandits 55

this stochastic case (both for StoOO and HOO) is of the ordern� 1
d+2 ,

where d is the near-optimality dimension, whereas in the deterministic
setting, DOO achieves the improved raten� 1=d when d > 0, and even
an exponential rate whend = 0 (see Corollary 3.3).

A second remark is that, similarly to the deterministic case, the tree
is more deeply re�ned where the mean-payo� function is near-optimal,
and the heterogeneous aspect of the tree increases withn: The algo-
rithm starts with a quasi-uniform initial exploration, then rapidly focus
on the main peaks, and eventually performs a local search around the
global optimum. We can intuitively grasp the advantages of such hier-
archical optimistic optimization methods in the fact that they perform
an e�cient exploration of the search space for any possible numerical
budget n (using the knowledge of the smoothness off).

Comparison with UCB-AIR algorithm: One can think of applying the
UCB-AIR algorithm [Wang et al., 2008] introduced in Subsection 1.2.1
in this X -armed bandit setting, where new arms would be chosen uni-
formly at random over the spaceX .

For illustration, let us compare UCB-AIR with StoOO/HOO on
Example 2 described in Section 3.3.2 whereX = [0 ; 1]D and the mean-
reward function f is locally equivalent to �k x � x � k� , for some� > 0,
around a global maximum x � .

UCB-AIR would pull randomly a new arm X according to the
Lebesgue measure on[0; 1]D . We have P(� (X) > � � � ") = �(P(jjX �
x � jj � < ")) = �("D=�), for " ! 0.

Thus Assumption (1.16) holds with � = D=� , and UCB-AIR pro-
vides an expected cumulative regret bounded as (in the casef � < 1)
ERn = ~O(

p
n) when D < � , and ERn = ~O(nD=(� + D)) when D � � .

Using the recommendation strategy ofx(n) de�ned as in (3.13), the
expected loss of UCB-AIR is thus:

Ern =

(
~O

�
n� 1=2�

for D < �
~O

�
n� �

� + D
�

for D � �

Thus the loss is small when the smoothness order� is large, since
there is a reasonable chance to �nd a near-optimal point among a small

56 Optimistic optimization with known smoothness

number of samples chosen uniformly a random. Notice that in order to
apply UCB-AIR, the coe�cient � should be known.

Now using StoOO or HOO with the semi-metric `(x; y) = kx � yk�

with � � � implies that the near-optimality dimension is d = D(1=� �
1=�) (see Subsection 1.2.1), thus the expected loss of StoOO or HOO
is

Ern =

(~O
�
n� 1=2�

for � = �
~O

�
n� 1

D (1 =� � 1=�)+2
�

for � > �
; (3.15)

So the important measure of the quality of this strategy is the
discrepancy between the actual smoothness order� of f and the �be-
lieved� smoothness order� which is used in the algorithm. The closer
� is from � , the better (since the near-optimality dimension depends
on this discrepancy).

Thus if the local smoothness order� is known, then it is always
better to apply StoOO or HOO with � = � than UCB-AIR since
the loss is then ~O(n� 1=2). If � is not known, then both UCB-AIR
and StoOO/HOO would have to guess (or estimate) the smoothness
order, resulting in poorer performance. For StoOO/HOO the guessed
value � should be as close to� as possible while satisfying� � � ,
since otherwise the smoothness property (3.8) or (3.11) would not hold,
and the algorithms StoOO and HOO may not converge to the global
optimum (i.e. the loss may not converge to0).

Comparison with UCT: Actually, one can see the UCT algorithm
[Kocsis and Szepesvári, 2006] exposed in Section 2.2 as a version of
HOO where � (h) is set to 0 in the de�nition of the upper-con�dence-
bounds (3.12) (since when� (h) = 0 the minimum of the two terms
de�ning the bound is always the �rst one), which reduces to the UCT
bound (2.1). Thus UCT can be seen as a version of HOO where the
smoothness of the function is assumed to be in�nite (i.e.� is set to
1), and the local smoothness property (3.8) does not hold for such a
metric. Thus in light of the previous comment, this algorithm may be
stuck in local optima for a very long period of time (as illustrated in
Chapter 2).

3.5. Conclusions 57

Monte-Carlo Tree Search: HOO can be seen as a Monte-Carlo Tree
Search (MCTS) algorithm as illustrated in Figure 2.1. If we consider
choosing the point x t uniformly at random over the selected cellX ht ;j t

then this is equivalent to performing an (in�nite) rollout where uni-
formly random moves are chosen from nodeX ht ;j t . Thus the results pre-
sented in this chapter can be seen as preliminary foundations for MCTS
in the sense that �nite-time performance guarantees are obtained for
the problem of function optimization in general spaces (i.e. semi-metric)
under the assumption that the mean-reward function satis�es a local
smoothness property w.r.t. a known semi-metric.

3.5 Conclusions

The performance of the algorithms DOO, StoOO, HOO described in
this chapter depends on the near-optimality dimensiond, which charac-
terizes the quantity of near-optimal states of f measured with the semi-
metric `. Actually d can be seen as a discrepancy between the actual
smoothness order of the function around its maximum and the believed
smoothness order that is used in the algorithm (through the choice of
`), as illustrated in the previous example whered = D(1=� � 1=�).
Thus when the local smoothness off around x � is known, it can be
used for de�ning ` such that the near-optimality dimension is d = 0 ,
which leads to a loss boundrn = ~O(n� 1=2) in the stochastic case. Thus
we obtain the nice property that the rate n� 1=2 is independent of
the space dimension , thus those techniques do not su�er from the
�curse of dimensionality�.

However it is important to notice that the constant factor hidden
in the O notation may be exponential in the dimension of the space.
This is of course unavoidable when we consider a global optimization
problem under such a weak and local assumption on the possible func-
tions. The performance is somehow similar to a Monte-Carlo integra-
tion method where in order to estimate

R
X fd� one may use a Monte-

Carlo estimate 1
n

P n
i =1 X i using n samples X i

i:i:d:� � . The standard
deviation of this estimate is � (f)n� 1=2, where � (f) is the standard de-
viation of f (X) when X � � . The rate n� 1=2 is independent of the

58 Optimistic optimization with known smoothness

space dimension, but the constant factor� (f) is usually exponential
in the dimension. Thus, in terms of convergence rate, when the local
smoothness of the function around its global optima is known, optimiz-
ing a function is not more di�cult than estimating its integral!

Now, when the local smoothness off is not known, or when there
is no semi-metric such thatd = 0 then the loss bound deteriorates and
the dimension of the space appears in the rate.

Thus, like in Chapter 1, we see that the performance of the opti-
mistic strategy depends onthe smoothness of f around the global
optimum (expressed in terms of a measure of the quantity of near-
optimal states) and on our knowledge about this smoothness.

The next chapter presents adaptive techniques that may apply when
the smoothness of the function is unknown.

3.5. Conclusions 59

Figure 3.12: The trees Tn built by HOO after n = 10 2 , 103 , 104 and 105 noisy
function evaluations. The mean-payo� function (shown in the bottom part of the
�gures) is x 2 [0; 1] 7�! f (x) =

�
sin(13x) sin(27x) + 1

�
=2 and the corresponding

rewards are Bernoulli-distributed.

4
Optimistic Optimization with unknown

smoothness

We now consider the setting where previous Assumptions 1, 2, 3, 4 hold
for some semi-metric`, but the semi-metric ` is unknown from
the algorithm .

The hierarchical partitioning of the space is still given to the algo-
rithm, but since ` is unknown, one cannot use the diameter� (h) of the
cells to design upper-bounds, like in DOO, StoOO, or HOO.

Alternatively, we can think of this setting as a lack of knowledge
about the local smoothness off around its maximum. For example,
in the Examples 1 and 2 described in Section 3.3.2 the choice of�
(de�ning the semi-metric `) is di�cult when the smoothness order � of
f is unknown, but this choice is critical since � should always be less
than � (in order to guarantee the convergence of the algorithm) while
as close to� as possible in order to optimize the performance.

The question we wish to address here is: If̀ is unknown, is it possi-
ble to implement an optimistic optimization strategy with performance
guarantees?

We provide a positive answer to this question and in addition we
show that we can doalmost as well as if ` were known, for the
best possible valid ` (i.e., satisfying Assumptions 1, 2, 3, 4).

60

4.1. Simultaneous Optimistic Optimization 61

Section 4.1 considers the deterministic case while Section 4.2 deals
with the stochastic case.

4.1 Simultaneous Optimistic Optimization

In this section we consider the deterministic setting and use the same
notations as in Section 3.3.

The idea introduced in [Munos, 2011] is to expand at each round
simultaneously all the leaves (h; j) of the current tree for which
there exists a semi-metric` such that the corresponding upper-bound
f (xh;j) + sup x2 X h;j

`(xh;j ; x) of the leaf (h; j) could be the highest. In
other words, we select all cells that are potentially optimal for any
valid metric. This is implemented by expanding at each round at most
a leaf per depth, and a leaf is expanded only if it has the highest value
among all leaves of same or lower depths. The Simultaneous Optimistic
Optimization (SOO) algorithm is described in Figure 4.1.

The SOO algorithm takes as input parameter a function t !
hmax (t) which limits the tree to a maximal depth of hmax (t) after t
node expansions. Again,L t refers to the set of leaves ofTt .

4.1.1 Analysis of SOO

All previously de�ned quantities such as the diameters� (h) of the cells,
the setsI h , and the � -near-optimality dimension d depend on the (un-
known) semi-metric ` (which is such that Assumptions 1, 2, 3, 4 are
satis�ed) and are de�ned as in Section 3.3.

At time t, let us de�ne h�
t to be the depth of the deepest expanded

node in the branch containing x � (an optimal branch).
The next lemma provides a lower bound ont 7! h�

t as a function
of the size of the setsI h . The intuition for this result is that from
the time when the optimal node of depth h is expanded, any node of
depth h + 1 that is expanded before the optimal node of depthh + 1
is expanded, must be inI h . We deduce that once an optimal node of
depth h is expanded, it takes at mostjI h+1 j node expansions at depth
h + 1 before the optimal node of depthh + 1 is expanded. From this
we deduce a lower bound onh�

t .

62 Optimistic Optimization with unknown smoothness

The maximum depth function t 7! hmax (t) is a parameter of the algo-
rithm.
Initialization: T1 = f (0; 0)g (root node). Set t = 1 .
while True do

Set vmax = �1 .
for h = 0 to min(depth(Tt); hmax (t)) do

Among all leaves(h; j) 2 L t of depth h, select

(h; i) 2 arg max
(h;j)2L t

f (xh;j)

if f (xh;i) � vmax then
Expand this node: add to Tt the K children f (h+1 ; i 1); : : : ; (h+
1; i K)g and evaluate the function at the corresponding centers
f xh+1 ;i 1 ; : : : ; xh+1 ;i K g
Set vmax = f (xh;i), Set t = t + 1
if t = n then Return

x(n)
def
= arg max

(h;i)2T n

f (xh;i)

end if
end for

end while .

Figure 4.1: Simultaneous Optimistic Optimization (SOO) algorithm.

4.1. Simultaneous Optimistic Optimization 63

Lemma 4.1. At any time t, and for any depth 0 � h � hmax (t), when-
ever t � (jI 0j + jI 1j + � � � + jI h j)hmax (t), we haveh�

t � h.

Proof. 1 The algorithm does not expand nodes with a strictly larger
depth than hmax (t), thus either h�

t = hmax (t) or h�
t < h max (t). If h�

t =
hmax (t) then the statement holds trivially.

Now assume that h�
t < h max (t). Let � h denote the time when the

optimal node (h; i �
h) (i.e. the one containingx �) of depth h is expanded.

We have the property that any node of depthh+1 � hmax (t) which

is expanded at a times 2 � h
def= [� h ; � h+1 � 1] belongs toI h+1 . Indeed,

for any s 2 � h the optimal node (h + 1 ; i �
h+1) of depth h + 1 is a leaf

of the current tree Ts and has not been expanded yet. Thus, if SOO
expands a node(h + 1 ; i) of depth h + 1 during � h this means that
its value f (xh+1 ;i) is at least as good as the valuef (xh+1 ;i �

h +1
) of the

optimal node of depth h + 1 (by de�nition of the algorithm), which is
� (h + 1) -optimal (from Assumption 2).

Now it could be that during a crossing of the tree, no node of depth
h + 1 is expanded because the currently best node of depthh + 1 is
dominated by another node(l; i) of lower depth l � h. In that case we
have (l; i) 2 I l since

f (x l;i) � f (xh+1 ;i �
h +1

) � f � � � (h + 1) � f � � � (l):

Since each crossing of the tree may result in at mosthmax (t) node
expansions, we deduce that for any0 � h < h max (t),

� h+1 � � h �
h X

(h+1 ;i)2 I h +1

1f (h + 1 ; i) is expanded during� hg

+
hX

l=1

X

(l;i)2 I l

1f (l; i) is expanded during� hg
i
hmax (t)

=
hh+1X

l=1

X

(l;i)2 I l

1f (l; i) is expanded during� hg
i
hmax (t)

1This is a correction of the proof in [Munos, 2011]

64 Optimistic Optimization with unknown smoothness

Now sinceh�
t < h max (t) we have

h �
tX

h=0

� h+1 � � h �
h �

tX

h=0

h+1X

l=1

X

(l;i)2 I l

1f (l; i) is expanded during� hghmax (t)

=
h �

t +1X

l=1

h �
tX

h= l � 1

X

(l;i)2 I l

1f (l; i) is expanded during� hghmax (t)

�
h �

t +1X

l=1

X

(l;i)2 I l

1f (l; i) is expanded at any timeghmax (t)

�
h �

t +1X

l=1

jI l jhmax (t)

Since by de�nition, � h �
t +1 > t and � 0 = 1 , we deduce that

t < 1 +
h �

t +1X

l=1

jI l jhmax (t) �
h �

t +1X

l=0

jI l jhmax (t):

Thus for any h � hmax (t) such that t � (jI 0j+ jI 1j+ � � �+ jI h j)hmax (t),
we haveh � h�

t .

We deduce the following bound on the loss of SOO.

Theorem 4.2. Let ` be a semi-metric such that Assumptions 1, 2, 3, 4
are satis�ed. Let us write h(n) the smallest integerh such that

Chmax (n)
hX

l=0

� (l) � d � n; (4.1)

(where we remind that � (l) and d depend on`), then the loss of SOO
is bounded as

rn � �
�

min(h(n) � 1; hmax (n))
�
: (4.2)

Proof. From Lemma 3.1 and the de�nition of h(n) we have

hmax (n)
h(n)� 1X

l=0

jI l j � Chmax (n)
h(n)� 1X

l=0

� (l) � d < n;

4.1. Simultaneous Optimistic Optimization 65

thus from Lemma 4.1, whenh(n) � 1 � hmax (n) we haveh�
n � h(n) � 1.

Now in the caseh(n) � 1 > h max (n), since the SOO algorithm does not
expand nodes beyond depthhmax (n), we haveh�

n = hmax (n). Thus in
any case,h�

n � min(h(n) � 1; hmax (n)) .
De�ne (h�

n ; i �) to be the deepest expanded node containingx � . Us-
ing the local smoothness assumption (3.8), we deduce that:

f (x(n)) � f (xh �
n ;i �) � f � � � (h�

n) � f � � � (min(h(n) � 1; hmax (n))) :

This result may seem surprising: although the semi-metric̀ is not
known, the performance is almost as good as for DOO (see Theo-
rem 3.2) which uses the knowledge of̀ . The main di�erence is that
the maximal depth hmax (n) appears both as a multiplicative factor in
the de�nition of h(n) in (4.1) and as a threshold in the loss bound
(4.2). Those two appearances ofhmax (n) de�ne a trade-o� between
deep (largehmax) versus broad (small hmax) types of exploration. We
now illustrate the case of exponentially decreasing diameters.

Corollary 4.3. Let ` be a semi-metric such that Assumptions 1, 2, 3, 4
are satis�ed. Assume that � (h) = c h for somec > 0 and < 1.

� If the near-optimality d > 0, the loss of SOO is bounded as

rn � max
� � C

1 � d

� 1=d � 1� n
hmax (n)

� � 1=d; c hmax (n)
�
:

Thus, for a choice of the depth-function hmax (n) = �((log n)a),
for somea > 1, the regret is rn = ~O(n� 1=d).

� If the near-optimality d = 0 , the loss of SOO run with the depth
function hmax (t) =

p
t, is bounded for all n, as

rn � c
p

n min(1 =C;1)� 2:

(where we remind that d; C; c; depend on`).

Proof. Using the notations of Theorem 4.2, whend > 0 we have

n � Chmax (n)
h(n)X

l=0

� (l) � d = Cc� dhmax (n)
 � d(h(n)+1) � 1

 � d � 1
:

66 Optimistic Optimization with unknown smoothness

Thus

(c h(n)) � d �
n

hmax (n)
1 � d

C
:

We deduce from Theorem 4.2 that

rn � �
�

min(h(n) � 1; hmax (n))
�

= max
�
c h(n)� 1; c hmax (n) �

� max
� � C

1 � d

� 1=d � 1� n
hmax (n)

� � 1=d; c hmax (n)
�
:

Now, for hmax (n) = �((log n)a), for large enoughn, the second element
in the previous max is dominated by the �rst one, which is of the order
~O(n� 1=d).

Now, if d = 0 then n � Chmax (n)
P h(n)

l=0 � (l) � d = Chmax (n)(h(n) +
1); thus for the choicehmax (n) =

p
n we deduce that the loss decreases

as:

rn � �
�

min(h(n) � 1; hmax (n))
�

� c
p

n min(1 =C;1)� 2:

Since our algorithm does not depend oǹ , the analysis is actually
true for any semi-metric ` that satis�es Assumptions 1, 2, 3,
4 thus Theorem 4.2 and Corollary 4.3 hold for the best possible choice
of such a ` (which may depend on f itself!). In particular, we can
think of problems for which there exists a semi-metric` such that the
corresponding near-optimality dimension d is 0. Actually, we will see
in Section 4.2.2, as well as in the examples described in the next sub-
section, that the cased = 0 is already very general and covers a large
class of functions.

Remark 4.1. The maximal depth function hmax (t) is still a parameter
of the algorithm, which somehow in�uences the behavior of the algo-
rithm (deep versus broad exploration of the tree). However, for the case
d = 0 that we illustrate next, one may choose a generichmax (t) =

p
t

for which a stretch exponential bound on the loss is guaranteed. In
addition, even when d > 0, we see that the choicehmax (t) = (log t)a,
for a > 1, provides an asymptotic loss of the ordern� 1=d (up to a
poly-logarithmic factor).

4.1. Simultaneous Optimistic Optimization 67

4.1.2 Examples

Example 1: Consider Example 1 described in Section 3.3.2 whereX =
[� 1; 1]D and f (x) = 1 � k xk�

1 , where � � 1 is unknown. We have seen
that DOO using the metric `(x; y) = kx � yk�

1 provides a polynomial

loss rn = O
�
n� 1

D
��

� � �
�

whenever � < � , and an exponential lossrn �
21� n when � = � .

Consider the case when the smoothness order� is unknown and
apply SOO with the maximum depth function hmax (t) =

p
t. As men-

tioned before, SOO does not require the knowledge of̀, thus we can
apply the analysis for any ` that satis�es Assumptions 1, 2, 3, 4. So
let us consider `(x; y) = kx � yk�

1 . Then � (h) = 2 � h� , � = 1 , and
the near-optimality dimension of f under ` is d = 0 (and C = 1). We
deduce that the loss of SOO isrn � 2(2�

p
n)� : Thus SOO provides a

stretched-exponential loss without requiring the knowledge of� .
Note that a uniform grid provides the loss n� �=D , which is polyno-

mially decreasing only (and subject to the curse of dimensionality since
the exponent of the rate depends onD). Thus, in this example SOO
is always better than both Uniform and DOO, except if one knows
perfectly � and applies DOO with � = � (in which case we obtain
an exponential loss). The fact that SOO is not as good as DOO op-
timally �tted comes from the truncation of SOO at a maximal depth
hmax (n) =

p
n (whereas DOO optimally �tted would explore the tree

up to a depth linear in n).

Example 2: The same conclusion holds for Example 2, where we con-
sidered a function f de�ned on [0; 1]D that is locally equivalent to
�k x � x � k� , for some unknown� > 0 (see the precise assumptions in
Section 3.3.2). We have seen that DOO using̀(x; y) = ckx � yk� with

� < � has a lossrn = O
�
n� 1

D
��

� � �
�
, and when � = � , then d = 0 and

the loss isrn = O(2� � (n=C � 1)):
Now by using SOO (which does not require the knowledge of�)

with hmax (t) =
p

t we deduce the stretched-exponential lossrn =
O(2�

p
n�=C) (by using `(x; y) = kx � yk� in the analysis, which gives

� (h) = 2 � h� and d = 0).

68 Optimistic Optimization with unknown smoothness

n loss of SOO
50 rn = 3 :56� 10� 4

100 rn = 5 :90� 10� 7

150 rn = 1 :92� 10� 10

Figure 4.2: Numerical performance of SOO for the function f (x) =
1=2

�
sin(13x) sin(27x) + 1

�

Remark 4.2. All functions considered in the two previous examples are
such that there exists a semi-metric` such that the near-optimality of
f w.r.t. ` is d = 0 .

4.1.3 Illustrations

Figure 4.3 shows the �rst iterations of SOO on the function f (x) =
1=2

�
sin(13x) sin(27x) + 1

�
already considered in Section 3.3.3. At each

round several cells (indicated by the circled dots and the bold segments)
are simultaneously split. Here we used a branching factorK = 3 and
the maximal depth function hmax (t) =

p
t.

Table 4.2 reports the loss of SOO for di�erent numerical budgets.
In comparison to Table 3.8 the loss of SOO is better than DOO using
the sub-optimal semi-metric `1 and is almost as good as DOO with the
optimal semi-metric `2. This corroborates the theoretical guarantees
stated in Subsection 4.1.1. Indeed, in this example the near-optimality
dimension of f w.r.t. the semi-metric `2 is d = 0 , as illustrated in
Example 2 in Subsection 4.1.2, thus the loss of SOO is a stretched-
exponential.

Figure 4.4 also shows the �rst iterations of the SOO algorithm for
the (garland) function f (x) = x(1 � x)

�
4�

p
j sin(60x)j

�
. We also used

K = 3 and hmax (t) =
p

t. This function f has a local behavior (around
its maximum) f (x) � f (x �) � cjx � x � j � , for some constantc > 0 and
� = 1=2. One can easily check that the near-optimality dimension off

w.r.t. the metric `(x; y) def= cjx � yj1=2 is d = 0 , thus the loss of SOO is
also stretched-exponentially decreasing to0. Notice that SOO neither
requires the knowledge ofc nor � (in contrast to DOO).

4.1. Simultaneous Optimistic Optimization 69

Figure 4.5 illustrates the SOO algorithm for the optimization of a
Brownian motion (i.e. f is a function sample of a Gaussian process).
We can prove that with high-probability (w.r.t. the random choice of
f), f is lower-bounded asf (x) � f (x �) � cjx � x � j � , for some constant
c > 0 (which depends on the failure probability) and � = 1=2. An
open question is whether the near-optimality dimension off w.r.t. the
metric `(x; y) def= cjx � yj1=2 is (in high probability) d = 0 , in which case
SOO would have a stretched-exponential loss, ord > 0 for which SOO
would have a polynomial loss.

Finally, Figure 4.6 shows a 2-dimensional problem with the function
f (x1; x2) = f (x1)f (x2) where f (x) =

�
sin(13x) sin(27x) + 1

�
=2. Again

we usedhmax (t) =
p

t and K = 3 (where a cell is spit in 3 along the
longest direction). In this situation again, the near-optimality dimen-
sion of f w.r.t. the semi-metric l(x; y) = cjx1 � y1j2jx2 � y2j2 (for some
constant c > 0) is d = 0 .

70 Optimistic Optimization with unknown smoothness

Figure 4.3: The �rst 5 iterations of the SOO algorithm and the resulting tree
Tn after n = 150 function evaluations. Here f (x) =

�
sin(13x) sin(27x) + 1

�
=2 and

K = 3 . The blue dots represent the evaluations of the function at the center of the
cells. The circle around the dots and the bold segments shows the nodes that are
expanded at each iteration.

4.1. Simultaneous Optimistic Optimization 71

Figure 4.4: The �rst 5 iterations of the SOO algorithm and the resulting tree Tn

after n = 150 function evaluations for the garland function f (x) = x(1 � x)
�
4 �p

j sin(60x)j
�
.

72 Optimistic Optimization with unknown smoothness

Figure 4.5: The �rst 5 iterations of the SOO algorithm and the resulting tree Tn

after n = 150 function evaluations. Here f (x) is a (function) sample of a Brownian
motion.

4.1. Simultaneous Optimistic Optimization 73

Figure 4.6: The �rst 5 iterations of the SOO algorithm and the resulting tree Tn

after n = 150 function evaluations. Here we considered the 2-dimensional function
f (x1 ; x2) = f (x1)f (x2) where f (x) =

�
sin(13x) sin(27x) + 1

�
=2 and K = 3 . When a

node is expanded, its corresponding cell is split in the widest direction in 3 subsets
of same size.

74 Optimistic Optimization with unknown smoothness

Figure 4.7: The �rst 3 iterations of the SOO algorithm and after n = 17 ; 53 and 54
function evaluations on the function built from the example illustrated in Figure 2.2.

4.1. Simultaneous Optimistic Optimization 75

4.1.4 Discussions

Comparison with the DIRECT algorithm: The DIRECT (DIviding
RECTangles) algorithm [Jones et al., 1993, Finkel and Kelley, 2004,
Gablonsky, 2001] is a Lipschitz optimization algorithm that applies
when the Lipschitz constant L of f is unknown. It uses an optimistic
splitting technique similar to ours where at each round, it expands the
set of nodes that have the highest upper-bound (such as de�ned in
DOO) for at least some value ofL .

Our approach may be considered as a generalization of DIRECT
in the facts that (1) it simultaneously expands all the most promising
nodes underany possible semi-metric(whereas DIRECT considers any
possible Lipschitz constant for a �xed metric only), and (2) we only
require the local smoothness assumption on the function (3.8), whereas
DIRECT requires f to be (globally) Lipschitz.

Thus we are able to derive �nite-time loss bounds in a much broader
setting than the setting of DIRECT, for which, and to the best of
our knowledge, there is no �nite-time analysis (only the consistency
property limn!1 rn = 0 is proven in [Finkel and Kelley, 2004]).

We are not aware of other �nite-time analyses of similar global op-
timization algorithms that do not require the knowledge of the smooth-
ness of the function.

SOO is a rank-based algorithm: The algorithm only requires the
knowledge of the rank of the function evaluations and not their speci�c
values. Indeed the decision to expand a node only depends on whether
the value at this node is larger than the values of other nodes of the
same or lower depth. The speci�c values are not important as long as
their pairwise comparison is possible. This is also a property shared
by the CMA-ES optimization algorithm (see e.g. Figure 10.4 in [Auger
and Hansen, 2011]). Thus ifg : R 7! R is strictly increasing, SOO
will perform identically on f and g � f . For example SOO will perform
identically on x 7! k x � x � k and x 7! g(kx � x � k). And our analysis
of the loss of SOO actually re�ect this property since we can choose
to de�ne the semi-metric as `(x; y) = g(kx � yk), as illustrated in
subsection 4.1.2 for the caseg(z) = z� .

76 Optimistic Optimization with unknown smoothness

SOO for the hard function illustrated in Figure 2.2: Finally we re-
port in Figure 4.7 the result of SOO applied to the function built from
the example illustrated in Figure 2.2 (where we usedD = 6). This
function served as an illustration of the particularly bad behavior of
UCT. If one looks at this function at a high level scale, this function
does not possess any smoothness around its maximum. Actually, for
this type of functions (say all functions equivalent to this one up to a
permutation of the values at the leaves), the best algorithm would be
a uniform search, since no information from higher levels can be used
to guide the search.

In addition, any optimistic algorithm will be fooled here since, in
any cell (not containing the optimum), the function has higher values
on the left than on the right. Thus, as long as the optimum is not
reached, the search will be focusing more on left branches than on right
ones, at all levels, leading to a particularly misleading behavior. This
is all the more true for UCT since the B-values computed by UCT are
not true high probability upper-con�dence-bounds, and we saw that
the number of samples required by UCT to �nd the optimum can be
as bad as
(exp(exp(: : : exp(1) : : :))) , where the number of entangled
exponentials isD .

In contrast, SOO (�tted with hmax (t) =
p

t) requires �only�

(K 2D) samples to �nd the optimum. This is because at each crossing
of the tree, SOO expands a node with lowest depth. Thus aftern node
expansions, then=hmax (n) =

p
n nodes of lowest depth have all been

expanded.
Now if the actual �smoothness� of the function were known (we

can show that here d = 0 and C = 2 D) one could use it to de�ne
true upper-con�dence-bounds and use it in the DOO algorithm. Such
a DOO optimally �tted would expand �rst the nodes with lowest depth
(since the diameter term � (h) would dominate the evaluations f (xh;j)
in the computation of the b-value bh;j , see Algorithm 3.6), thus reducing
to a uniform search, which is the best thing to do here. The resulting
number of samples required to �nd the optimum would be K D (only).

Thus in this hard instance of function optimization, the best pos-
sible search is the uniform search (achieved by DOO optimally �tted)

4.2. Extensions to the stochastic case 77

and the cost is exponential inD . Now SOO is exponential in2D which
is much better than UCT which is � D -uply� exponential. This example
illustrates the fact that any optimistic algorithm that does not know
the smoothness of the function may be poorer than a uniform search
on particularly unsmooth functions. But this is the price to pay in or-
der to be able to do much better than uniform as soon as the function
possesses some smoothness (even if it is unknown).

4.2 Extensions to the stochastic case

We now consider the case when an evaluation off at a point x t 2 X
returns a noisy estimater t of f (x t) such that E[r t jx t] = f (x t).

In this X -armed bandit setting, several results have already been
obtained for the cumulative regret. Bubeck et al. [2011b] derived mini-
max regret bounds when the mean-reward functionf is assumed to be
Lipschitz continuous with an unknown Lipschitz constant. However, f
is assumed to be twice di�erentiable with a known bound on the second
order derivative. Then Slivkins [2011] considers a Lipschitz assumption
on f in an �implicit metric space� (i.e. the metric ` is unknown) and
derives a regret bound similar to that of the zooming algorithm (as
well as HOO or StoOO seen in previous sections) run with the cor-
rect metric, under an assumption that some �quality� of the taxonomy
is lower-bounded. Finally, Bull [2013] extends the previous work, and
derive a ~O(

p
n) bound on the cumulative regret Rn for a large class

of functions, called zooming continuous functions. Their result on the
cumulative regret is stronger than our bound on the loss (or simple
regret) since a bound on the cumulative regretRn implies a bound on
the expected lossErn , as already mentioned in Section 3.4.2. However
the class of zooming continuous functions is not at general as the set
of functions f that we study in sub-section 4.2.2 (i.e. for which there
exists a semi-metric ` such that the near-optimality dimension of f
w.r.t. ` is d = 0) for which we obtain a ~O(n� 1=2) loss bound. Thus
their results are complementary to ours.

The direction followed here consists of extending SOO to the
stochastic case in a similar way DOO has been extended to StoOO

78 Optimistic Optimization with unknown smoothness

(see Section 3.4.1). The idea is to sample each statexh;j several times
in order to build an accurate estimate of f (xh;j) before expanding the
corresponding node(h; j).

The corresponding algorithm, called StoSOO (for Stochastic and
Simultaneous Optimistic Optimization), has been introduced in [Valko
et al., 2013] and is described in Figure 4.8.

Parameters: � > 0, the max number of samples per nodek > 0, and
the maximum depth function t 7! hmax (t).
Initialization: T1 = f (0; 0)g (root node). Set t = 1 (round number)
while t � n do

Set vmax = 0 .
For each leaf (h; j) 2 L t , compute the b-valuesbh;j (t) according to
(4.3).
for h = 0 to min(depth(Tt); hmax (t)) do

if t � n then
Among all leaves of depth h, select (h; i) 2
arg max(h;j)2L t bh;j (t)
if bh;i (t) � vmax then

Set vmax = bh;i (t).
if Th;i (t) < k then

Sample statex t = xh;i and collect reward r t

t t + 1
else

Add the K children of (h; i) to Tt (we expand this node)
end if

end if
end if

end for
end while .
Return the state with highest empirical mean whose node has been
expanded:

x(n) = arg max
x h;j 2T n nL n

�̂ h;j (n):

Figure 4.8: The Stochastic Simultaneous Optimistic Optimization (StoSOO) algo-
rithm

4.2. Extensions to the stochastic case 79

StoSOO de�nes the b-valuesbh;j (t) of any node at round t, by

bh;j (t) def= �̂ h;j (t) +

s
log(n2=�)
2Th;j (t)

; (4.3)

where Th;j (t) def=
P t

s=1 1f xs = xh;j g is the number of times the state

xh;j has been selected up to timet, and �̂ h;j (t) def= 1
Th;j (t)

P t
s=1 r s1f xs =

xh;j g is the empirical average of the rewards received inxh;j . In the case
Th;j (t) = 0 we setbh;j (t) = 1 .

Now, like for StoOO, instead of selecting the most promising nodes
according of their value f (xh;j) we select them according to their
b� value bh;j . The parameter k used in the algorithm is the number of
samples that need to be collected from a state before the corresponding
node is expanded. Finally, StoSOO returns the statex(n) with highest
empirical value among the set of nodes that have been expanded (thus
which have been sampledk times).

4.2.1 Analysis of StoSOO

We have the property that for any � > 0, de�ning the event � as in
(3.10), Lemma 3.4 implies that P(�) � 1 � � . Notice that the b-values
bh;j (t) de�ne high-probability upper-con�dence-bounds on the values
f (xh;j) (and not on supx2 X h;j

f (x) as it was the case for the b-values
de�ned by StoOO in (3.9)).

Thus the intuition of the algorithm is that in the event � , the b-
value bh;j (t) of a nodeX h;j that has been expanded (thus sampledk
times) is an � -upper-bound on the true value f (xh;j), i.e. bh;j (t) � � �

f (xh;j) � bh;j (t), where � = 2
q

log(n2=�)
2k . Thus, in the event � , StoSOO

works in a very similar way as algorithm SOO does, except that:

� The sampling budget (the number of nodes that are expanded)
is now at least m = n=k (instead of n for SOO), since each node
may be sampled up tok times,

� We rely on � -upper boundsbh;j of the nodes, instead of the exact
values f (xh;j), to decide which nodes to expand.

80 Optimistic Optimization with unknown smoothness

Thus the analysis of StoSOO (in the event�) reduces to the analy-
sis of the so-called� � -optimistic� SOO algorithm , which is de�ned
exactly as the SOO algorithm except that each evaluation to the func-
tion is perturbed positively by at most � (i.e., when sampling a state
xh;j one observesbh;j , which is such that f (xh;j) 2 [bh;j � �; bh;j]).

Let us now analyze this � -optimistic SOO using a similar proof to
that of SOO. De�ne the sets

I �
h

def= f nodes(h; i) such that f (xh;i) + � (h) + � � f � g:

After t (perturbed) function evaluations, let us write h�
t the depth

of the deepest expanded node containingx � . Let (h�
t + 1 ; i �) be the

optimal node of depth h�
t + 1 (i.e., such that x � 2 X h �

t +1 ;i �). As long
as this node has not been expanded, any expanded node(h�

t + 1 ; i) of
depth h�

t + 1 is [� (h�
t + 1) + �]-optimal. Indeed,

f (xh �
t +1 ;i) � bh �

t +1 ;i � � � bh �
t +1 ;i � � �

� f (xh �
t +1 ;i �) � � � f � �

�
� (h�

t + 1) + �
�
:

We deduce a lower bound on the depthh�
t as a function of the size of

the sets jI �
h j in a same way as in Lemma 4.1 (proof not reproduced).

Lemma 4.4. For any depth 0 � h � hmax (t), whenever t �
hmax (t)(jI �

0j + jI �
1j + � � � + jI �

h j), we haveh�
t � h.

Then the next results bounds the number of nodes in the setsjI �
h j

for any depth h � h�
def= min f h � 0; s.t. � (h + 1) < � g:

Lemma 4.5. Let d be the �= 2-near-optimality dimension (where � is
de�ned in Assumption 4), and C be the corresponding constant. Then
for any h � h� , we have

jI �
h j � C

�
� (h) + �

� � d:

Proof. The proof is similar to that of Lemma 3.1. By contradiction: for
h � h� , if jI �

h j > C [� (h) + �]� d we would havejI �
h j > C [2� (h)] � d, which

would mean that there exists more thanC[2� (h)] � d disjoint `-balls of
radius �� (h) with center in X� (h) . This contradicts the fact that d is
the �= 2-near-optimality dimension.

4.2. Extensions to the stochastic case 81

Now we can state our main result for � -optimistic SOO using a
budget of m � -positively perturbed evaluations of f .

Theorem 4.6. Let d be the �= 2-near-optimality dimension and h(m)
be the smallest integerh such that

Chmax (m)
hX

l=0

�
� (l) + �

� � d � m: (4.4)

Then the loss of� -optimistic SOO is bounded as

rm � � + �
�

min(h(m) � 1; hmax (m); h�)
�
: (4.5)

Proof. Consider �rst the case whenh(m) � 1 � h� . Then using a similar
argument as in the proof of Theorem 4.2 we deduce that afterm node
expansions, the depthh�

m of the deepest expanded node in the branch
containing x � satis�es h�

m � min(h(m)� 1; hmax (m)) . Now if h(m)� 1 >
h� , we can use Lemma 4.5 up to depthh� to deduce similarly that h�

m �
min(h� ; hmax (m)) . Thus altogether h�

m � min(h(m) � 1; h� ; hmax (m)) .
Now de�ne (h�

m ; i �) as the optimal node of depthh�
m (i.e., containing

x �). Let xh;j be the state returned by the algorithm. Thus bh;j � bh �
m ;i �

and we deduce that

f (xh;j) � bh;j � � � bh �
n ;i � � �

� f (xh �
n ;i �) � � � f � � � (h�

m) � �

� f � � � (min(h(m) � 1; hmax (m); h�)) � �:

We now state our main result for StoSOO in the case where the
near-optimality dimension for the best valid semi-metric ` is d = 0 .

Theorem 4.7. Assume there exists a semi-metric̀ such that Assump-
tions 1, 2, 3, 4 hold. Assume that the diameter (measured with`) of
the cells decrease exponentially fast, i.e.� (h) = c h for somec > 0 and
 < 1. Assume that the �= 2-near-optimality dimension is d = 0 (and
write C the corresponding constant). Then the expected loss of StoSOO
run with parameters k, hmax (t) =

p
t=k, and � > 0, is bounded as:

82 Optimistic Optimization with unknown smoothness

E[rn] � (2 + 1=)

s
log(n2=�)

2k
+ c

p
n=k min(1 =C;1)� 1 + �: (4.6)

In particular, for the choice k = n
(log n)3 and � = 1=

p
n, we have

E[rn] = O
� (log n)2

p
n

�
:

Proof. We have seen that in the event� , the StoSOO algorithm behaves

like the � -optimistic SOO with � =
q

2 log(n2=�)
k run for at least m = n=k

rounds (node expansions).
When d = 0 , from Theorem 4.6, we have that m �

Chmax (m)
P h(m)

l=0

�
� (l) + �

� � d = Chmax (m)(h(m) + 1) ; thus for
hmax (m) =

p
m we deduce that the loss of� -optimistic SOO (thus

the loss of StoSOO in the event�) is at most:

rn � � + �
�

min(h(m) � 1; hmax (m); h�)
�

� � + � (h�) + �
�

min(h(m) � 1; hmax (m))
�

� (1 + 1=)� + c
p

m min(1 =C;1)� 2:

The bound on the expected loss of StoSOO follows from the fact
that � holds with probability 1 � � .

Finally, for the speci�c choice k = n
(log n)3 we notice that the second

term in the bound (4.6) is a o(1=
p

n).

Thus in the case the near-optimality dimension for the best valid
semi-metric is d = 0 and the diameters are exponentially decreasing,
StoSOO achieves the same rate~O(n� 1=2) as StoOO and HOO (which
required the knowledge of the semi-metric`). In the next subsection
we discuss this important cased = 0 .

4.2.2 The important case d = 0

Notice that SOO and StoSOO algorithms do not require the knowledge
of the semi-metric `; the semi-metric is only used in the analysis of
the algorithm. Thus one can choose the best possible semi-metric̀,
possibly according to the function f itself , as long as it satis�es
the following properties:

4.2. Extensions to the stochastic case 83

� f is locally smooth w.r.t. ` around a global optimum x � (i.e. such
that (3.8) holds)

� The cells are well-shaped (Assumption 4) and their diameter
(measured with `) decreases exponentially fast

� There existsC > 0 such that for any � > 0, the maximal number
of disjoint `-balls of radius �� centered inX� is less thanC (i.e. the
near-optimality dimension d is 0).

In Examples 1 and 2 we illustrated the case of functionsf de�ned on
[� 1; 1]D that are locally equivalent to a polynomial of degree� around
their maximum, i.e., f (x �) � f (x) = �(kx � x � k�) for some � > 0,
where k � k is any norm. The precise de�nition is given in Example 2
of Subsection 3.3.2. In light of the discussion in Subsection 4.1.2, the
choice of semi-metric `(x; y) def= kx � yk� implies that the previous
properties are satis�ed and the near-optimality dimension d = 0 . This
extends to the case when the function has di�erent smoothness orders
in di�erent directions, even when those directions are not aligned with
the axes of the hierarchical partitioning.

More generally, this result extends to any function whose upper-
and lower envelopes aroundx � are of the same order, as expressed in
the next lemma.

Lemma 4.8. Consider a �nite dimensional and bounded space, i.e.,
such that X can be packed byC0� � D `-balls with radius � , for any
� > 0, and such that X has a �nite doubling constant (de�ned as the
minimum value q such that every ball in X can be packed by at mostq
balls of half the radius). If there exists constantsc > 0 and � > 0 such
that

min(�; c` (x; x �)) � f (x �) � f (x) � `(x; x �); for all x 2 X ; (4.7)

then the near-optimality of f w.r.t. ` is d = 0 .

Proof. For � < � the left inequality in (4.7) implies that the set of � -
optimal states X� is included in a `-ball of radius �=c centered in x � .
Since X has a �nite doubling constant, this ball can be packed by no

84 Optimistic Optimization with unknown smoothness

more than a constant number of`-balls of radius � . This proves that the
local near-optimality of f w.r.t. ` is d = 0 , and in light of Remark 3.3
we also deduce that the near-optimality dimension isd = 0 (since X is
a �nite dimensional and bounded space).

Figure 4.9 provides an illustration of this condition when the en-
velope has a quadratic shape. The functions considered in Figures 4.3
and 4.4 also satisfy this property.

Figure 4.9: Any function satisfying (4.7) (i.e., lying in the gray area) has a near-
optimality dimension d = 0 since it possesses a lower- and upper-envelopes that are
of same order around x � .

Now, one can de�ne a tight semi-metric ` according to the local
behavior of f around x � in order that (3.8) holds (thus the right in-
equality in (4.7)). For example if the spaceX is a normed space (with

norm k � k), one can de�ne `(x; y) def= ~̀(kx � yk) with

~̀(r) def= sup
x:kx � � xk� r

�
f (x �) � f (x)

�
: (4.8)

Thus f (x �) � `(x; x �) naturally forms a lower-envelope off . Thus
assuming that the left inequality of (4.7) (upper-envelope) holds, then
the near-optimality dimension is d = 0 again.

4.2. Extensions to the stochastic case 85

However, although the cased = 0 is quite general, it does not
hold in situations where there is a discrepancy between the upper- and
lower-envelopes off around x � , as illustrated in Figure 4.10.

Figure 4.10: We illustrate the case of a function with di�erent order in the upper
and lower envelopes. Heref (x) = 1 �

p
x + (� x2 +

p
x) � (sin(1=x2) + 1) =2. The best

possible semi-metric of the form `(x; y) = cjx � yj � is such that � � 1=2 in order
to satisfy (3.8). However, since the upper-envelope of f is quadratic, the maximum
number of `-balls with radius � that can pack X � (i.e., Euclidean balls with radius
� 1=�) is at most of order � 1=2=�1=� � � � 3=2 since � � 1=2. Thus there is no metric
of the form `(x; y) = cjx � yj � for which d < 3=2.

Finally, as discussed in Remark 3.3, the near-optimality dimen-
sion d is a local property of f near x � since it coincides with the
local near-optimality dimension. However the corresponding constant
C in De�nition 3.1 depends on the global shape off . For instance,
let f be a function with near-optimality dimension d around x � with
a corresponding constantC. Now consider the function ~f de�ned as

86 Optimistic Optimization with unknown smoothness

~f (x) def= max 1� i � k f (x � � x + x i), where f x1; : : : ; xkg are k points in X
(i.e. ~f is the maximum of k translated copies off). Thus ~f possesses
k global optima f x1; : : : ; xkg and the near-optimality dimension of ~f
is still d but the corresponding constant can be as large askC (this is
simply because one may packk times more balls in the set of� -optimal
states of ~f , than in the set of � -optimal states of f). Thus for a same
bound on the loss, optimizing ~f will require k times more samples than
for optimizing f .

4.2.3 About lower-bounds

The results stated in this chapter and in the previous one provide
upper-bounds on the loss of optimistic algorithms applied to classes
of functions de�ned by their behavior around their global optimum.
In order to evaluate the relevance of those results one would like to
compare them to lower-bounds for the same classes of functions. Un-
fortunately little is known about lower-bounds for classes of functions
de�ned by such a local smoothness property.

Instead, the main classes of functions considered for lower-bounds
are convex (or concave for the problem of maximization considered
here) and Lipschitz. For example [Nemirovsky and Yudin, 1983, Traub
et al., 1988, Nesterov, 2004] used information-theoretic considerations
to derive lower-bounds for several classes of concave and Lipschitz func-
tions, under the assumption that one has access to an �oracle�, which
is a black box returning local information (such as the value and the
derivative) of the function at any query state. We report lower-bounds
for two types of oracle: the �zero-order� oracle (which is the same as
what is considered in this paper, i.e. which returns the value of the func-
tion f (x t), possibly perturbed by noise, at any query pointx t) and the
��rst-order� oracle (which returns both the value and a sub-gradient
of the function). The following lower-bounds are of a worse-case type:
they provide a lower-bound on the loss that any algorithm may su�er
on at least one function in a given class.

In the case of deterministic evaluations, we have the following re-
sults (we do not mention the details of the results, such as the depen-
dence on the size of the spaceX or other important constants and refer

4.2. Extensions to the stochastic case 87

the interested reader to the previous references).

� For Lipschitz functions, using a zero-order oracle the lower-bound
on the loss is
(n� 1=D), where D is the ambient dimension.

� For the class ofr -times continuously di�erentiable functions, us-
ing a zero-order oracle we have a loss
(n� r=D).

� For concave functions, using a �rst-order oracle, the loss is lower-
bounded by an exponentially decreasing function
(e� n=D).

� For strongly concave and Lipschitz functions, using a �rst-order
oracle, the loss is

� � p
q� 1

p
q+1

� 2n
�

with q = L=� whereL is the Lip-
schitz constant and � the strong concavity constant. The bound
does not explicitly mention the ambient dimension D but it is
indirectly contained in � .

Now for the stochastic setting, using a �rst-order oracle, for concave,
Lipschitz functions, the loss is
(

p
D=n) and for strongly concave func-

tions, it is
(q2=n) (see also [Agarwal et al., 2012] for other settings
such as when the solution is sparse).

In light of those lower-bounds we can deduce the following proper-
ties of the optimistic algorithms discussed in this paper:

� In the deterministic case, DOO achieves a lossO(n� 1=d) which is
better than the lower-bound
(n� 1=D) for Lipschitz functions as
soon as the near-optimality dimensiond is smaller than the am-
bient dimension D. Note that we always haved � D for Lipschitz
functions. We thus see that DOO bene�ts from the local prop-
erty of the function near its maximum as captured by the locally
smooth assumption. This also says that the lower bounds (which
are de�ned in a worst-case sense) are achieved by functions that
do not possess any local smoothness property (basically the set of
near-optimal states X� covers a positive proportion of the whole
space).

� Now, in the case one knows the local smoothness of the function
and uses a semi-metric̀ such that d = 0 , then DOO achieves an

88 Optimistic Optimization with unknown smoothness

exponential lossO(� n=C) which is even comparable to the lower-
bounds for concave functions. This is remarkable given that the
assumption required for DOO is only local, whereas concavity is a
globally constraining property. However notice that the constant
C (corresponding to the near-optimality de�nition) as well as
depend on the ambient dimensionD as well.

� When the local smoothness of the function is unknown, SOO
achieves almost the same performance loss as DOO �tted with
the best choice of semi-metric̀ , which is better than the lower-
bounds for Lipschitz functions, and almost as well as the expo-
nential rate for concave functions.

� In the stochastic case, similar conclusions are drawn. StoOO and
HOO �tted with the best semi-metric (as well as StoSOO with-
out the knowledge of this metric) achieve a loss~O(n� 1=2) which
is as good (up to a logarithmic factor) as the lower-bound for
concave and Lipschitz functions (but not as good as that for the
strongly concave case), although they only require a much weaker
locally smooth property. However it is important to notice that
the constant hidden behind the ~O notation may be exponential in
D (as already mentioned in the conclusion of Chapter 3), in con-
trast to the lower-bound for concave functions. The reason is that
the constant factor represents the cost of the initial exploration
of the space, which needs to be exponential inD in general for
functions having a locally smoothness property only, whereas it
is not the case for globally concave functions. But the raten� 1=2

represents the asymptotic behavior of the algorithm. So we see
that the optimistic algorithms discussed in this paper achieve the
best possible rate indicated by the lower-bounds for general con-
cave functions. This illustrates that those methods performs an
natural (and e�cient) transition from global to local search. An
open question is whether one can achieve the same raten� 1 as
the lower-bound for strongly concave functions under our locally
smooth assumption only.

Finally, let us say that in general those lower-bounds do not tell us

4.3. Conclusions 89

much about the optimality of the algorithms described in this paper
since they consider general classes of functions (such as Lipschitz or con-
cave) and not classes of function that are de�ned in terms of their local
behavior around their maximum. For example, the class of functions
that we considered in our examples wheref (x �) � f (x �) = �(kx � x � k�)
for 0 < � < 1 (illustrated in Figure 4.4) are not even locally concave,
but still are as easy to optimize (using SOO) as any other locally con-
cave function (e.g. by choosing� � 1) (since SOO is a ranked-based
algorithm). Thus we believe that the property of concavity or even Lip-
schitzness does not entirely capture the right notion of complexity for
the problem of function optimization. The general problem of deriving
lower-bounds for the class of functions described in this paper appears
to be an important open question.

4.3 Conclusions

Assuming that the function f is locally smooth w.r.t. some semi-metric
` enables the design of optimistic exploration strategies, even wheǹ
is unknown. Since the algorithm does not depend oǹ, the loss anal-
ysis can be undertaken using the best possible valid (i.e. such that
Assumptions 1, 2, 3, 4 hold) semi-metric.

In the deterministic case, the SOO algorithm performs almost as
well as DOO optimally-�tted, and achieves an stretch exponential loss
in the case where the near-optimality dimensiond = 0 for any valid
semi-metric. For the stochastic case, and under the same condition, the
StoSOO algorithm performs almost as well as StoOO or HOO �tted
with the best choice of semi-metric.

We showed that the cased = 0 covers already a large class of
functions. Now, when there is no valid semi-metric such thatd = 0 (as
illustrated in Figure 4.10) the problem of designing an algorithm that
would do almost as well as StoOO or HOO for a valid semi-metric with
the lowest d > 0, is open.

Notice that StoSOO can be seen as a Monte Carlo Tree Search
algorithm that strongly resembles the UCT algorithm. Indeed the nodes
selected for sampling are based on a similar upper-con�dence-bound

90 Optimistic Optimization with unknown smoothness

(4.3) which does not contain the diameter of the cells, in contrary to
the StoOO or HOO algorithms. The main di�erences with UCT are that
(1) StoSOO selects several nodes simultaneously at di�erent depths of
the tree, and (2) samples the same state several times before deciding
to expand the corresponding node. We believe that (1) is essential in
that it implements the optimism in the face of uncertainty at di�erent
levels of the function representation, whereas (2) may be relaxed in a
similar way as in HOO by allowing to expand a leaf at each sample (at
the cost of the additional assumption that f satisfy the weak-Lipschitz
property (3.11), as discussed in Remark 3.6).

However StoSOO is not anytime in the sense that it requires the
knowledge of the time horizonn in order to set the value ofk (maximum
number of samples per state). Designing ananytime version of StoSOO
may require collecting a di�erent number of samples per node (as a
function of their depth), and is left for future work.

The main message of this chapter is to illustrate that the simple
knowledge that the function possesses some smoothness, even though,
this smoothness is unknown, may be su�cient to design optimistic
optimization strategies with performance guarantees. The performance
of such algorithms are expressed in terms of the best valid semi-metric
under which the function is smooth, and we have seen that for a large
class of functions, they perform almost as well as optimistic algorithms
that would known (and use) the best semi-metric.

5
Optimistic planning

In this chapter we consider the optimistic approach for solving planning
problems. In comparison to the previous chapters about optimization,
the planning problem introduces some structure in the search space
and the function to be optimized. Here, the search space is the set
of available policies (where a policy may be a mapping from states to
actions), and the function to be optimized (the so-called value function)
is de�ned as the (possibly expected) sum of rewards collected along the
trajectories resulting from following a policy.

In this chapter, we assume that a full model of the dynamics and the
reward function is available but each call to the model has a (numerical)
cost. Thus our goal is to return the best possible plan given a �nite
numerical budget (e.g., number of calls to the model, CPU time, ...).

More precisely, we consider the following online planning setting:
at each time k, we perform a simulated search (planning) in the set
of all possible policies starting from the current state xk and using a
�nite number n of calls to the model (our numerical budget). When the
budget is exhausted, we return a recommended actionak to follow. This
action is executed in the real environment, which generates a transition
to a next state xk+1 . Then another search is performed from this new

91

92 Optimistic planning

state, and the same procedure is repeated again and again.
Since the budget for returning each action is limited, our goal is to

perform the most e�cient search in the space of policies starting from
the current state, in order to recommend the best possible immediate
action to follow.

Such algorithms belong to the planning class [La Valle, 2006] and
are known as online planning [Kearns et al., 2002a, Péret and Gar-
cia, 2004] or lazy planning [Defourny et al., 2008] in the Computer
Science literature, and as model-predictive or receding-horizon control
[Maciejowski, 2002, Camacho and Bordons, 2004] in the Systems and
Control literature. In the AI community, related works are the classical
A* heuristic search [Nilsson, 1980] and the AO* variant from [Hansen
and Zilberstein, 1999].

This online planning approach is di�erent from the value-function
and policy search methods usually considered in dynamic programming
and reinforcement learning [Sutton and Barto, 1998, Bertsekas and
Tsitsiklis, 1996, Szepesvári, 2010, Sigaud and Bu�et, 2010, Bu³oniu
et al., 2010]; the latter methods usually seek a global solution, whereas
online planning �nds actions on demand, locally for each state where
they are needed. We thus expect those online planning techniques to
be less dependent on the state space size.

In this chapter we present three settings where the optimistic prin-
ciple can guide us in performing this search [Bu³oniu et al., 2011a].
In all settings we consider an in�nite-time horizon with discounted re-
wards. Section 5.1 considers the case of deterministic dynamics and re-
ward functions, Section 5.2 the case of general stochastic rewards with
deterministic dynamics, and Section 5.3 the general case of Markov
Decision Processes.

In all three situations we provide performance bounds on the loss
(how close the quality of the recommended action is from that of the
optimal action) as a function of the number of calls to the model.
For clarity, in this chapter we will make use of standard notations
in reinforcement learning that may di�er from the notations used in
previous chapters.

5.1. Deterministic dynamics and rewards 93

5.1 Deterministic dynamics and rewards

5.1.1 Setting and notations

Here the dynamics and reward functions are deterministic. LetX de-
note the state space,A the action space,f : X � A ! X the transition
dynamics, andr : X � A ! R the reward function. If at time t, the cur-
rent state is x t 2 X and the chosen actionat , then the system jumps
to the next state x t+1 = f (x t ; at) and a reward r (x t ; at) is received.
Again we will assume that all rewards lie in the interval [0; 1].

We assume that the state space is large (possibly in�nite), and
the action space is �nite, with K possible actions. We consider an
in�nite-time horizon problem with discounted rewards (0 � < 1 is
the discount factor). For any policy � : X ! A we de�ne the value
function V � : X ! R associated to that policy:

V � (x) def=
X

t � 0

 t r (x t ; � (x t)) ;

where x t is the state of the system at timet when starting from x (i.e.
x0 = x) and following policy � .

We also de�ne the Q-value function Q� : X � A ! R associated to
a policy � , for each state-action pair (x; a), as the value of playinga in
x and � thereafter:

Q� (x; a) def= r (x; a) + V � (f (x; a)) :

We have the property that V � (x) = Q� (x; � (x)) . Now the op-
timal value function (respectively Q-value function) is de�ned as:

V � (x) def= sup � V � (x) (respectively Q� (x; a) def= sup � Q� (x; a), which
corresponds to playinga now and optimally after). From the dynamic
programming principle, we have the Bellman equations (see e.g., [Bert-
sekas and Tsitsiklis, 1996, Puterman, 1994]):

V � (x) = max
a2 A

�
r (x; a) + V � (f (x; a))

�

Q� (x; a) = r (x; a) + max
b2 A

Q� (f (x; a); b):

94 Optimistic planning

5.1.2 Planning under �nite numerical budget

We assume that we possess a generative model off and r that can be
used to generate simulated transitions and rewards. We want to make
the best possible use of this model in order to return a single action (or
a sequence of actions) from any given initial state. The action-selection
procedure takes as input the current statex of the system and out-
puts an action a(n) using at most n calls to the generative model. The
amount n of available numerical resources may not be known before
they are all used (e.g. because of time constraints), so we wish to design
anytime algorithms that can return an action a(n) for any possible time
n. Our goal is that the proposed actiona(n) be as close as possible to
the optimal action in that state. For that purpose, we de�ne the perfor-
mance lossrn as the di�erence in terms of the sum of obtained rewards
between following the recommended actiona(n) and then following an
optimal path instead of following an optimal path from the beginning:

rn
def= max

a2 A
Q� (x; a) � Q� (x; a(n)) : (5.1)

Now, from such an online planning algorithm one may de�ne a
policy � which would select in each state encountered along a trajectory
the action recommended by the algorithm usingn calls to the model.
The previous de�nition of the loss is motivated by the fact that an
algorithm with small loss at each state (say rn � �) will generate a
policy � which is near-optimal (i.e., such that V � (x) � V � (x) � �

1� ,
see e.g., [Hren and Munos, 2008]).

5.1.3 The planning tree

For a given initial state x, consider the (in�nite) planning tree de�ned
by all possible sequences of actions (thus all possible reachable states
starting from x). Write A1 the set of in�nite sequences(a0; a1; a2; : : :)
whereat 2 A. The branching factor of this tree is the number of actions
jAj = K . Since the dynamics are deterministic, to each �nite sequence
a 2 Ad of length d corresponds a state that is reachable starting from
x by following this sequence ofd actions.

Using standard notations over alphabets, we writeA0 = f;g , A �

the set of �nite sequences, fora 2 A � we write h(a) the length of a,

5.1. Deterministic dynamics and rewards 95

and aAh = f aa0; a0 2 Ahg, where aa0 denotes the sequencea followed
by a0. We identify the set of �nite sequencesa 2 A � to the set of nodes
of the tree.

The value v(a) of an in�nite sequence a 2 A 1 is the discounted
sum of rewards along the trajectory starting from the initial state x
and de�ned by the choice of this sequence of actions:

v(a) def=
X

t � 0

 t r (x t ; at); where x0 = x; and x t+1 = f (x t ; at):

Now, for any �nite sequence a 2 A � (or node) we de�ne the value
v(a) = sup a02A 1 v(aa0). We write v� = v(;) = sup a2A 1 v(a) the opti-
mal value at the initial state (root of the tree). We also de�ne the u-
and b-values (respectively lower- and upper- bounds onv(a)) as

u(a) def=
h(a)� 1X

t=0

 t r (x t ; at), and b(a) def= u(a) +
 h(a)

1 �
: (5.2)

Indeed, since all rewards are in[0; 1] we trivially have that u(a) �
v(a) � b(a):

At any �nite time t an algorithm has expanded a set oft nodes,
which de�nes the expanded treeTt . Expanding a nodea 2 Ah means
using the generative modelf and r to generate transitions and rewards
for the K children nodesaA. The set of leaves ofTt represents the set
of nodes that can be expanded at timet + 1 and is denoted byL t .

Thus, once a node,a 2 A � is expanded, the valuesu(a) and b(a)
can be computed (since they only depend on rewards obtained along
the �nite sequence a).

5.1.4 Minimax bounds

First, consider a uniform planning strategy, de�ned by expanding at
each roundt any node inL t having the smallest depth. At round n (i.e.,
oncen nodes have been expanded), the algorithm returns the immedi-

ate action a 2 A having the largest u-value: a(n) def= arg max a2 A u(a)
(ties broken arbitrarily).

This strategy expands the set of sequences in a uniform fashion;
hence, at round n = 1 + K + K 2 + � � � + K d = K d+1 � 1

K � 1 , all nodes of

96 Optimistic planning

depth up to d have been expanded. Thus the valueu(a) of each action
a 2 A is known up to an error v(a) � u(a) � d+1

1� , since the rewards
of all paths up to depth d have been seen, and the remaining rewards
from depths d+ 1 on sum to at most d+1

1� . We deduce an upper-bound
on the loss of uniform planning:

rn �
1

 (1 �)

�
n(K � 1) + 1

� � log 1 =
log K : (5.3)

In addition we have the following lower-bound (see [Hren and
Munos, 2008]): For any algorithm and any n, there exists a reward
function, such that its loss is at least

rn �

1 �

�
n(K � 1) + 1

� � log 1 =
log K : (5.4)

We thus observe that the uniform planning strategy achieves a loss

(n� log 1 =
log K) in a minimax sense (i.e. for any possible environment).

And the lower-bound tells us that (up to a constant factor) there is no
algorithm that can do better uniformly over all problems.

However, this does not tell us that there is no better algorithms
for some problems. In the next section we show that strictly better
algorithms can be designed for speci�c classes of problems.

5.1.5 Optimistic planning

The in�nite set of sequencesA1 is our search space (denoted byX in
previous sections) and eacha 2 A 1 is a point in that space. The value
v(a) of each sequencea 2 A1 is the sum of discounted rewards along

the sequence. Now, by de�ning the metric `(a; a0) = h (a;a 0)

1� , where

h(a; a0) def= max f t � 0; 80 � s < t; a s = a0
sg (with the convention that

h(a; a0) = 0 if a1 6= a0
1), we have the property that for all a; a0 2 A1 ,

jv(a) � v(a0)j � `(a; a0);

i.e., the value function v is Lipschitz w.r.t. the metric `.
Any subtree Tt corresponds to a partitioning of A1 into subsets. To

each subseta 2 L t the value b(a) is an upper-bound onv(a). Expanding

5.1. Deterministic dynamics and rewards 97

a leaf a 2 L t of this tree means splitting the corresponding subset into
K smaller subsetsaa0, for a0 2 A.

Thus one may apply the DOO algorithm from Section 3.3: at each
round t, we expand the leaf of the expanded tree with highestb-value.
And after n node expansions, we return the action with highestu-value
(where the values are de�ned in (5.2)).

This de�nes an algorithm, called Optimistic Planning algorithm
(OPD) (see Algorithm 1), that builds an asymmetric planning tree
aiming at exploring �rst the most promising parts of the tree. Branches
with low rewards close to the root will not be further explored and only
near-optimal paths will be continually expanded.

Algorithm 1 Optimistic Planning algorithm (OPD)

Expand the root.
for t = 1 to n do

Expand a nodeat 2 arg maxa2L t b(a),
end for
return Action arg max

a2 A
u(a)

Although OPD is directly inspired from DOO, there are two im-
portant di�erences with DOO: (1) here we have a structured problem
where the valuev(a) of any point a 2 A1 is the sum of (discounted)
rewards along an (in�nite) sequence of actions, and (2) the budgetn
represents the number of calls to the generative model (i.e. transitions
and rewards) and is not directly related to the number of evaluations
of the function v.

Analysis: Like for DOO, we have the property that the b-value of
any node expanded by OPD is at least as much as theb-value of a
leaf containing an optimal path, which is at least v� . Thus the deepest
expanded node in the �nal tree Tn has a u-value which is at least
v� � dn

1� , where dn is the maximal depth of nodes inTn . We deduce
that the value of the best path in Tn (thus also the recommended action)
has au-value which is at least v� � dn

1� , which implies that the loss of

98 Optimistic planning

OPD is bounded as

rn �
 dn

1 �
: (5.5)

As a consequence, for any reward function, the upper bound on the
loss for the optimistic planning is never larger than that of the uniform
planning (since the uniform exploration is the exploration strategy that
implies the smallest depthdn for any given n).

However the lower bound tells us that no improvement (compared
to uniform planning) may be expected in a worst-case setting. In order
to quantify a possible improvement over uniform planning, one thus
needs to de�ne speci�c classes of problems.

We now de�ne a measure of the quantity of near-optimal sequences.
By denoting T + the set of sequences inAh , for any h, that are h

1� -
optimal, we de�ne � 2 [1; K] as the (asymptotic) branching factor of
T + :

� = lim sup
h!1

�
�
�
�
�

(

a 2 Ah : v(a) � v� �
 h

1 �

) �
�
�
�
�

1=h

: (5.6)

This measure is closely related to the notion of near-optimality
dimensiond (and corresponding constantC) introduced in Chapter 3.3.
Indeed, if there are C0� h (for some constant C0) sequences of length
h in T + , then the corresponding nodes represents a set of`-balls of
diameter h

1� that form a packing of the set of (in�nite) sequences that

are h

1� -optimal. Writing � = h

1� we have that the set of � -optimal

points of A1 can be packed byC0� h = C� � d such `-balls, where the
near-optimality dimension d and corresponding constantC are:

d =
log �

log 1=
and C = C0� (1 �) � d: (5.7)

We have the following result:

Theorem 5.1. If � > 1 then the loss of OPD isrn = O
�
n� log 1 =

log �
�
:

If � = 1 and there are at mostC0 sequences of lengthh in T + (for

any h � 0), the loss decreases exponentially fast asrn = O
�
e� log 1 =

C 0 n �
:

The proof of this result can be found in [Hren and Munos, 2008],
but in light of the previous discussion, it is a direct consequence of the
analysis of DOO.

5.1. Deterministic dynamics and rewards 99

Some intuition about T + : By de�nition, T + is the set of �nite
sequences that are h

1� -optimal, thus from any a 2 T + , given the set
of rewards obtained along this sequence, one cannot decide whether
this sequence belongs to an optimal path or not. Now, once a sequence
does not belong toT + , it is not useful to further expand it since it
is clear that whatever the later rewards are, it is not be part of an
optimal path. Thus T + is exactly the set of sequences that deserve to
be further expanded in order to �nd the optimal path.

The nice property of OPD is that it only expands nodes in T +

(which explains why the performance of OPD is expressed in terms
of the branching factor � of T +). This implies that OPD cannot be
improvable uniformly over the class of problems characterized by a
given � .

Indeed, by de�ning the class of problemsP(�) by all environments
having a setT + with branching factor � , we have that the loss of OPD

on any problem P 2 P (�) satis�es: rn (P) = O
�
n� log 1 =

log �
�
: And we

may also deduce a� -minimax lower bound (not proven here): for any
algorithm and for any � 2 [1; K], there exists a problemP 2 P (�) such

that the loss of this algorithm applied to P is at least rn =

�
n� log 1 =

log �
�
.

Thus OPD is � -minimax optimal.

Remark 5.1. OPD greatly improves over the uniform planning when-
ever there is a small proportion of near-optimal paths (i.e.� is small),
and the bound is always at least as good as that for uniform planning.
The case� = 1 provides exponential rates. In particular, this is the
case when there exists a depthh0 such that for any sequence of depth
h � h0 along an optimal path, the gap in the Q-values at the corre-
sponding state xh is lower bounded by a quantity independent of h:
9� > 0, for all h � h0,

V � (xh) � max
a2 A s.t. Q � (xh ;a)<V � (xh)

Q� (xh ; a) � � : (5.8)

Indeed in such a situation, the number of nodes in a sub-optimal branch
departing from any state xh (along the optimal path) is at most K H

where H =(1 �) � � . Thus
�
�
�
n

a 2 Ah : v(a) � v� � h

1�

o�
�
� is bounded

by a constant independent ofh, thus � = 1 .

100 Optimistic planning

SOO for planning? In previous sections (see e.g. Section 5.3.2) we
built a metric ` de�ned over the space of policies, such that the value
function v is Lipschitz w.r.t. ` (see e.g. (5.14)). Now it could be the
case that the value function possesses some additional local smooth-
ness around the optimal policy � � , in the sense that there exists an-
other semi-metric `0 of �higher order� such that (3.8) holds, i.e. for
all � , v(� �) � v(�) � `0(� � ; �) (in a way similar to the example il-
lustrated in Section 3.3.3 where the functionf was globally Lipschitz
w.r.t. `1 and locally smooth w.r.t. the higher-order semi-metric `2). In
such cases, it would be interesting to use a version of SOO for planning.
In the deterministic case described in Section 5.1, an extension of OPD
to the simultaneous node expansion strategy implemented in SOO is
straightforward and is expected to improve the numerical performances
in some planning problems that possess such higher order smoothness.

5.2 Deterministic dynamics, stochastic rewards

Now we consider the problem of planning in environments where tran-
sitions are deterministic but rewards are stochastic. Thus for any state
x and action a 2 A, the call to the generative model returns a transition
to a unique next-state f (x; a) and a reward sample drawn (indepen-
dently from previous samples) from a probability distribution � (x; a)
(with mean r (x; a)) on [0; 1]. Thus several calls to the generative model
for each state action (x; a) are required in order to estimate precisely
the average rewardr (x; a). Again we consider an in�nite-time hori-
zon problem with discounted rewards and the value function is de�ned
identically as in Section 5.1.1.

Now consider the planning problem given an initial statex and de-
�ne the set of in�nite sequences of actionsA1 like in Subsection 5.1.2.
For any �nite sequence a 2 A � , we write � (a) the corresponding re-
ward distribution, and r (a) its expectation. During the exploration of
the environment, the agent sequentially makes calls to the generative
model, under the global constraint that the number of calls is at most
n in total. For a 2 Ah , write Y m

h � � (a) the reward sample collected
when selecting the sequencea for the mth time.

5.2. Deterministic dynamics, stochastic rewards 101

5.2.1 OLOP algorithm

We now describe the Open Loop Optimistic Planning (OLOP) algo-
rithm introduced in [Bubeck and Munos, 2010]. In that paper, the term
�open-loop� refers to policies that are function of a sequence of actions
only and not of the underlying resulting states. However in the setting
described here (where the transitions are deterministic), the underlying
state is uniquely de�ned by the sequence of actions, thus the planning
is actually closed-loop.

The OLOP algorithm is described in Algorithm 2. Given a budget
n (which here needs to be known before the algorithm starts), the
algorithms generatesM sequences of actions of lengthL (where LM �
n). The algorithm de�nes b-values assigned to any sequence of actions
in AL . At time m = 0 , the b-values are initialized to + 1 . Then, after
episodem � 1, the b-values are de�ned as follows: For any1 � h � L ,
for any a 2 Ah , let

Tm (a) =
mX

s=1

1f as
0:h� 1 = ag

be the number of times we played a sequence of actions beginning with
a. Now we de�ne the empirical average of the rewards for the sequence
a as:

b� m (a) =
1

Tm (a)

mX

s=1

Y s
h 1f as

0:h� 1 = ag;

if Tm (a) > 0, and 0 otherwise. The corresponding upper-con�dence-
bound on the value of the sequence of actionsa 2 Ah is de�ned as:

b0
m (a) =

h� 1X

t=0

 t b� m (a0:t) + t

s
2 logM
Tm (a0:t)

!

+
 h

1 �
;

if Tm (a) > 0 and + 1 otherwise. Now that we have upper con�dence
bounds on the value of many sequences of actions we can sharpen these
bounds for the sequencesa 2 AL by de�ning the b-values as:

bm (a) = inf
1� h� L

b0
m (a0:h� 1): (5.9)

At each episodem = 1 ; 2; : : : ; M , OLOP selects a sequenceam 2 AL

with highest b-value, observes the rewardsY m
t � � (am

0:t � 1), t = 1 ; : : : ; L

102 Optimistic planning

provided by the environment, and updates theb-values. At the end of
the exploration phase, OLOP returns an action that has been the most
often played, i.e. a(n) = arg max a2 A Ta(M).

Algorithm 2 Open Loop Optimistic Planning

Let M be the largest integer such thatM dlogM=(2 log 1=)e � n.
Let L = dlogM=(2 log 1=)e.
for m = 1 to M do

Computes the b-values at time m � 1 for sequences of actions in
AL using (5.9) and chooses a sequence that maximizes the corre-
sponding b-value:

am 2 arg max
a2 A L

ba(m � 1):

end for
return Action a(n) = arg max a2 A Ta(M).

5.2.2 Analysis of OLOP

Let � 2 [1; K] be de�ned as

� = lim sup
h!1

�
�
�
�
�

(

a 2 Ah : v(a) � v� � 2
 h

1 �

) �
�
�
�
�

1=h

: (5.10)

Notice that this de�nition is very close to (5.6), where the additional
2 factor accounts for the additional uncertainty due to the empirical
estimation of the rewards. We deduce the following bound on the ex-
pected loss, whose proof is omitted here but can be found in [Bubeck
and Munos, 2010].

Theorem 5.2. For any � 0 > � , the expected loss is bounded as:

Ern =

8
><

>:

~O
�

n� log 1 =
log � 0

�
if

p
� 0 > 1;

~O
�
n� 1

2

�
if

p
� 0 � 1:

5.2. Deterministic dynamics, stochastic rewards 103

5.2.3 Discussion

In this section we compare the performance of OLOP with previous
algorithms that can be adapted to this framework. This discussion is
summarized in Figure 5.1. We also point out several open questions
raised by these comparisons.

Figure 5.1: Comparison of the exponent rate of the bounds on the loss for
OLOP, uniform planning, UCB-AIR, and HOO/StoOO/Zooming, as a function of
d 2 [0; log K

log 1 =], or equivalently � 2 [0; log K
log 1 =], or � 2 [1; K], in the case K 2 > 1.

We have the relations � = K � and � = log K
log 1 = � d.

Comparison with HOO/StoOO/Zooming algorithms: In Sec-
tion 5.1.5 we showed that the mappinga 2 A1 7! v(a) is Lipschitz
w.r.t. some metric ` de�ned over the spaceA1 . Thus we could use the
HOO algorithm described in Section 3.4.2 (or the zooming algorithm
of [Kleinberg et al., 2008a]) and derive performance bounds in terms
of the near-optimality dimension d = log �

log 1= (see (5.7)). The expected

104 Optimistic planning

loss of HOO would thus be of order

Ern = ~O(n� 1=(d+2)) = ~O(n� log 1 =
log � +2 log 1 =): (5.11)

Clearly, this rate is always worse than the ones in Theorem 5.2. This
is expected since these algorithms do not use the speci�c structure of
the global reward function (which is the sum of rewards obtained along
a sequence) thus do not estimate e�ciently the mean-rewards based
on generalization across arms. More precisely, they do not consider
the fact that a reward sample observed for an arm (or sequence)ab
provides information for the estimation of any other arm in aA1 . Thus
we see thatit is crucial to take into account the speci�c reward
structure of the problem in order to obtain tight bounds .

Comparison with UCB-AIR: If one knows that there are many near-
optimal sequences of actions (i.e. when� is close toK), then one may
deduce that among a given number of paths chosen uniformly at ran-
dom, there exists at least one which is very good with high probability.
This idea is exploited by the UCB-AIR algorithm [Wang et al., 2008],
introduced in Section 1.2.1 for the setting of many-armed bandits. This
algorithm could be used here, where at each round one may choose ei-
ther to generate a new sequence by selecting a set of actions uniformly
randomly, or to re-sample a sequence already explored. We have seen
that the regret bound of UCB-AIR is expressed in terms of the coe�-
cient � > 0, which is such that the probability of selecting an � -optimal
sequence is of the order of� � . In the planning problem, one can see
that � is closely related to � . Indeed, our de�nition of � implies that
the proportion of � -optimal sequences (chosen uniformly randomly), for
� = 2 h

1� , is O(� h), resulting in � = K � . Thus applying UCB-AIR in
our setting yields the bound on the expected loss:

Ern =

8
<

:

~O(n� 1
2) if � > K

~O(n� 1
1+ �) = ~O(n� log 1 =

log K=� +log 1 =) if � � K

As expected, UCB-AIR is very e�cient when there is a large propor-
tion of near-optimal paths. However UCB-AIR requires the knowledge
of � (or equivalently �) whereas OLOP (as well as HOO/Zooming)
does not.

5.3. Markov decision processes 105

Figure 5.1 shows a comparison of the exponents in the loss bounds
for OLOP, uniform planning, UCB-AIR, and HOO (in the case K 2 >
1). We note that the rate for OLOP is better than UCB-AIR when there
is a small proportion of near-optimal paths (small �). Uniform planning
is always dominated by OLOP and corresponds to a minimax lower
bound for any algorithm. HOO/Zooming are always strictly dominated
by OLOP and they do not attain minimax performances.

Open questions are whether or not (1) one can do as well as UCB-
AIR (for large �) when � is unknown, (2) one can do better than both
OLOP and UCB-AIR in intermediate cases (i.e. when1= 2 < � < K).

Comparison with OPD: Remarkably, in the case� 2 > 1, we obtain
the same rate for the loss as planning with deterministic rewards (using
OPD). Intuitively, the reason is that in the case � 2 > 1 the planning
problem is hard since either the planning horizon1=log(1=) and/or
the branching factor � may be large. Thus the planning tree has to
be explored both in breadth and in depth. Fortunately, it is in those
situations that the cross estimation of rewards among sequences (as
discussed in the previous comparison with HOO) is the most bene�cial.
Indeed in such cases, a rewardr (a) is estimated using reward samples
from many observed sequencesab. Thus using the speci�c structure of
the rewards enables a fast estimation of the mean rewards, and OLOP
achieves the same order (in the bound) on the expected loss as when
the rewards are deterministic. We deduce that, in terms of loss rates, in
hard instances of planning problems (under deterministic transitions),
planning with stochastic rewards is not harder than planning
with deterministic rewards .

5.3 Markov decision processes

Now we consider the setting of Markov decision processes where tran-
sitions are stochastic. More precisely we denote byp(yjx; a) the prob-
ability of a transition from x to y given action a. Here we assume
that the number N of possible next-states is �nite, i.e.supx2 X;a 2 A jf y :

p(yjx; a) > 0gj def= N < 1 . We also assume that the rewardsr (x; a) are

106 Optimistic planning

deterministic and lie in [0; 1].
Again we consider a in�nite-time horizon problem with discounted

rewards. For any policy � : X ! A the value function is de�ned as the
expected sum of discounted rewards:

V � (x) def= E
� X

t � 0

 t r (x t ; � (x t))
�
;

where x t is the state of the system at timet when starting from x (i.e.
x0 = x) and following policy � . We also de�ne the Q-value function
Q� : X � A ! R associated to a policy� , in state-action (x; a), as:

Q� (x; a) def= r (x; a) +
X

y
p(yjx; a)V � (y):

The optimal value function (respectively Q-value function) is de-

�ned as V � (x) def= sup � V � (x) (respectively Q� (x; a) def= sup � Q� (x; a))
and satis�es the Bellman equations:

V � (x) = max
a2 A

�
r (x; a) +

X

y
p(yjx; a)V � (y)

�

Q� (x; a) = r (x; a) +
X

y
p(yjx; a) max

b2 A
Q� (y; b):

We assume that we possess a full model of the transition probabil-
ities p and the reward function r , which can be used by the planning
algorithm. The model takes as input a state x and returns for each
action a the reward r (x; a) as well as the N next states y and the
corresponding transition probabilities p(yjx; a). An algorithm takes as
input an initial state x, and outputs an action a(n) using at most n
calls to the model. Again the performance is assessed with the lossrn of
choosinga(n) and then following an optimal path instead of following
an optimal path from the beginning, as de�ned in (5.1).

This setting is di�erent from the two previous sections in the fact
that the space of policies cannot be identi�ed with the set of in�nite
sequences of actions anymore, since a policy depends on the actual
resulting states and not only on the sequence of actions.

5.3. Markov decision processes 107

Figure 5.2: The subtree corresponding to the set of states that can be reached from
the initial state. The big arrows represent the actions (K = 2) and the thin arrows
the transitions to the next states (N = 2). Here 4 nodes have been expanded. The
optimistic policy and the leaves of the resulting optimistic subtree are represented
in yellow.

5.3.1 Optimistic Planning in MDP

The Optimistic Planning in MDP (OP-MDP) algorithm [Bu³oniu et al.,
2011b, Bu³oniu and Munos, 2012] works by building incrementally a
tree corresponding to the set of states that can be reached from the
initial state. Notice that several nodes may correspond to the same
state because of di�erent transitions from the root to a given state.
Such duplicates could be merged by transforming the tree into a graph;
however here we restrict ourselves to a simple version of OP-MDP that
ignores duplicates (thus each node corresponds to a unique path to any
state).

We use the following notations: T denotes the in�nite planning
tree and Tn � T is the subtree resulting from n node expansions, as
illustrated in Figure 5.2 for n = 4 . L t is the set of leaves ofTt . We
denote by x i the state associated to any nodei 2 T . For any policy � :
T 7! A de�ned over the tree T , we denote byT � the (in�nite) subtree
corresponding to the set of nodes that are reachable when following� .
For any �nite subtree T 0 � T , we de�ne a policy-class� : T 0 7! A as a
set of policies� : T 7! A that share the same actions onT 0. We denote
by T � the corresponding (�nite) subtree.

108 Optimistic planning

Figure 5.3: Among the leaves of the current optimistic subtree, the one with the

largest contribution p(i) h (i)

1� is expanded (represented in red): a call to the model
returns the rewards and transition probabilities to the next states for each action.

Algorithm 3 describes OP-MDP. T0 is initialized to be the root
node, and for eacht = 1 to n � 1, a leaf Jt of L t is selected and
expanded, which results in addingKN children nodes (the numberK
of actions times the numberN of next states) to the current tree. After
n node expansions, OP-MDP returns the �rst action of the best policy
found so far.

The way the leaf Jt is selected is by �rst computing the optimistic
policy-class � +

t and then selecting a leaf of the corresponding subtree
with largest �contribution�, as de�ned by (5.13). More precisely, at each
round t, we de�ne the b-values and u-values of any node of the current
tree Tt as follows: for any leafj 2 L t , bt (j) def= 1

1� and ut (j) def= 0 , and
for any other node i 2 Tt n L t we de�ne

bt (i)
def= max

a2 A

�
r (x i ; a) +

X

j 2C(i;a)

p(x j jx i ; a)bt (j)
�
;

ut (i)
def= max

a2 A

�
r (x i ; a) +

X

j 2C(i;a)

p(x j jx i ; a)ut (j)
�
;

whereC(i; a) denotes the set of children nodes of nodei when choosing

5.3. Markov decision processes 109

Algorithm 3 Optimistic planning in MDP (OP-MDP)

Initial state x0, model of p and r , budget n
Initialize tree: T0 = f 0g (root node is called0)
for i = 1 ; : : : ; n � 1 do

Build optimistic subtree T +
t according to (5.12),

Select leafJt 2 L +
t with largest contribution:

Jt = arg max
j 2L +

t

p(j)
 h(j)

1 �
;

Expand Jt (adding KN new leaves)
end for
Return arg maxa2 A

�
r (x0; a) +

P
j 2C(0;a) p(x j jx0; a)un (j)

�
:

action a.
By a backward induction starting from the leaves up to the root,

we immediately deduce that the b-value (respectively the u-value) of
any node i 2 Tt provides an upper-bound (resp. a lower bound) on the
optimal value function at the corresponding state: ut (i) � V � (x i) �
bt (i), for any t.

We de�ne the optimistic policy-class � +
t : Tt 7! A as the optimal

policy for the b-values for any i 2 Tt :

� +
t (i) 2 arg max

a2 A

�
r (x i ; a) +

X

j 2C(i;a)

p(x j jx i ; a)bt (j)
�
: (5.12)

We denote by T +
t = T � +

t the corresponding optimistic subtree of
the set of nodes that can be reached when following the optimistic
policy, and L +

t the leaves of this subtree.
Now, for each leafj 2 L +

t (of depth h(j)) we de�ne p(j) as the prob-
ability of reaching the leaf j when starting from the root and following
policy � +

t :

p(j) def=
h(j)� 1Y

h=0

p(i h+1 ji h ; � +
t (i h)) > 0;

where the h(j) + 1 nodes(i 0
def= 0 ; i 1; : : : ; i h(j)

def= j) is the path from
the root to j . Notice that we have

P
j 2L +

t
p(j) = 1 . Finally, we call

110 Optimistic planning

contribution of a leaf j 2 L +
t the quantity

c(j) def= p(j)
 h(j)

1 �
: (5.13)

OP-MDP selects the leaf of the optimistic subtree with largest con-
tribution: Jt 2 arg maxj 2L +

t
c(j):

The intuition for that choice is that the diameter (di�erence be-
tween the upper and lower bounds) at the root is the sum of contribu-
tions of the leavesj 2 L +

t : bt (0) � ut (0) =
P

j 2L +
t

c(j). Thus expanding
the one with largest contribution reduces as much as possible the diam-
eter at the root, thus the accuracy of the value function at the initial
state.

5.3.2 Analysis of OP-MDP

For any two policies �; � 0 : T 7! A, de�ne T (�; � 0) = T � \ T � 0
the

set of their common nodes, andL (�; � 0) the set of leaves ofT (�; � 0)

(with the convention that L (�; � 0) = ; if T � = T � 0
). De�ne `(�; � 0) def=

P
j 2L (�;� 0) c(j) the sum of the contributions of L (�; � 0). We have the

property that the value function, de�ned for any � : T 7! A, as

v(�) def=
X

i 2T �

p(i) h(i) r (x i ; � (x i)) ;

is Lipschitz w.r.t. `:

jv(�) � v(� 0)j � `(�; � 0): (5.14)

For any policy-class � : T 7! A, de�ne the diameter of � as

diam(�) def= sup
�;� 02 �

`(�; � 0):

Note that from the de�nition of the contributions, we have that
diam(�) =

P
j 2L (�) c(j), where L (�) denotes the set of leaves of the

policy-class� .
Thus one can see OP-MDP as a deterministic optimistic optimiza-

tion algorithm (see DOO in Chapter 3.3) where at each roundt:

� the search spaceT is partitioned into policy-classes de�ned by
the current subtree Tt

5.3. Markov decision processes 111

� an upper bound on each policy-class can be computed with the
b-values and the optimistic policy-class� +

t is the one with largest
upper-bound

� the diameter of the policy-class� +
t is the sum of contributions of

its leavesL +
t , thus expanding the leafJt 2 L +

t with largest contri-
bution c(j) �splits� the optimistic policy class along its �widest�
direction.

Now the main di�erence is that we are not directly working on the
set of policies but on the set of nodes of the tree (which is no more
equivalent). Thus expanding a node has an impact on possibly many
policies, actually on all policies containing that node. Thus in order to
analyze this algorithm we should not try to characterize the quantity of
near-optimal policies, but instead the quantity of nodes that contribute
to near-optimal policies.

For any node i 2 T , let � i be the policy-class� 3 i such that
min j 2L (�) c(j) � c(i) and that has the largest diameter:

� i = arg max
� 3 i ;min j 2L (�) c(j)� c(i)

diam(�) ;

and for any � > 0, de�ne

S�
def=

�
i 2 T ; diam(� i) � �; and 9� 3 i; v (�) � v� � diam(� i)

	
:

S� represents the set of nodes that (1) belong to a policy-class� i

with a diameter at least � and (2) belong to a policy that is diam(� i)-
optimal. In other words, those are the set of nodes that contribute in
a signi�cant way to near-optimal policies.

The paper [Bu³oniu and Munos, 2012] uses a slightly di�erent def-
inition of S� (taking into account the number of leaves of� i) but the
main results stated next are immediate consequences of the analysis
undertaken in that paper.

Theorem 5.3. Let d � 0 be any constant such that jS� j = ~O(� � d),
i.e. such that there existsa; b > 0, for all � > 0,

jS� j � a(log(1=�))b� � d: (5.15)

112 Optimistic planning

Then the loss of OP-MDP after n node expansions, is

rn =

8
<

:

~O(n� 1
d) if d > 0

O(exp[� (n
a)

1
b]) if d = 0

The full proof of this result can be found in [Bu³oniu and Munos,
2012]. We now provide a sketch of proof and relate thisnear-optimality
planning exponentd to the branching factor � 2 [1; KN] of the set of
near-optimal nodes, like in previous sections with (5.6) and (5.10).

De�ne the set of near-optimal nodesT + � T :

T + def=
�
i 2 T ; v(i) � v� � diam(� i)

	
;

where the value of a nodev(i) is the value of the best possible policy

containing that node v(i) def= max �;T � 3 i v(�). Then the near-optimality
exponent d is related to the branching factor � of T + by d = log �

log 1= .
And like for the OPD, the set of near-optimal nodes represents

the set of nodes that deserve to be expanded in order to discover the
optimal policy. Similarly to OPD, the main intuition for the analysis of
OP-MDP is that this algorithms only expands nodes inT + . Indeed, if at
time t, a nodeJt is expanded, this means that its contribution is larger
than that of any other leaf in L +

t . Thus diam(� +
t) =

P
j 2L +

t
c(j) �

P
j 2L (� J t) c(j) = diam(� J t) (by de�nition of � J t). Now since � +

t is

the optimistic policy-class, it means that its upper-bound v(� +
t) +

diam(� +
t) is larger than v� . Thus

v(Jt) � v(� +
t) � v� � diam(� +

t) � v� � diam(� J t);

which means that Jt 2 T + .

5.3.3 Interesting values of d

The loss is small whend is small (and we obtain exponential rate when
d = 0), or equivalently when the branching factor � is 1.

Uniform rewards and probabilities. The worst possible rate is
achieved for � = KN (i.e. the branching factor of T + is the same

5.3. Markov decision processes 113

as that of T) and in this case the loss isrn = n� log(KN)
log 1 = . This hap-

pens when all policies provide the same rewards and the transition
probabilities are uniform. In that case OP-MDP reduces to a uniform
search, where all nodes of depth up to log n

log(KN) are expanded. It may
seem surprising that the performance is poor when the problem seems
easy, but we should keep in mind that one usually does not know in
advance what the di�culty of the problem is (i.e. d or � are not known
by the algorithm although the performance of OP-MDP is expressed in
terms of those parameters). If this measure of di�culty of the problem
were known, one could design algorithms that would exploit it, like the
UCB-AIR algorithm presented in Chapter 1 and discussed in previous
section.

Now, for any n, consider the class of problems where all rewards up
to depth log n

log(KN) are the same but di�er from that depth on. Thus no
algorithm can be uniformly better than a uniform planning algorithm
on this class of problems. Thus OP-MDP is minimax-optimal on the
class of problems characterized by� = KN .

Heterogeneous transition probabilities. When the transition proba-
bilities are signi�cantly heterogeneous, the part of the branching factor
of T + due to the number of next states may be signi�cantly less than
N . Indeed, the set of nodesT + that may be expanded by OP-MDP
contains nodes with signi�cant contribution only. Thus the nodes that
can be reached with a very small probability only are not be part ofT +

thus do not need to be expanded. This saves computations when the
transition probabilities are very heterogeneous, and in the limit, when
the probability (from any state) to one next state is close to 1, then
the branching factor approaches1, and the performance of OP-MDP
is as good as OPD for deterministic dynamics (see Section 5.1).

Structured rewards. In the case of structured rewards (i.e. the re-
wards along branches corresponding to di�erent actions are heteroge-
neous), then the part of the branching factor ofT + due to the number
of actions may be signi�cantly less than K . This case was already il-
lustrated in Section 5.1.

114 Optimistic planning

Now when the problem has both structured rewards and heteroge-
neous transition probabilities, then � can be much less thanKN and

even close to1, which provides a loss bound of ordern� log 1 =
log � . Thus like

previous optimistic algorithms, the performance of OP-MDP depends
on a measure of the quantity of near-optimal nodes, which are the nodes
that deserve to be expanded in order to build a near-optimal policy.
Our main contribution is to show that the right measure of complexity
for optimistic planning is de�ned by the size of T + which represents
the set of states that signi�cantly contribute to near-optimal
policies .

5.4 Conclusions and extensions

Generative model. OP-MDP requires a full model of the transition
dynamics (i.e., for each state-action pair(x; a), a call to the model re-
turns the set of next states y and the exact values of the transition
probabilities p(yjx; a)). In many situations, only a generative modelis
available: Given (x; a), each call to the model returns a single next
state y drawn from the true (but unknown) transition probabilities:
y � p(�jx; a). This is the case when an agent interacts online with an
unknown environment (such as in Reinforcement learning, see [Sut-
ton and Barto, 1998, Szepesvári, 2010]) from which he only observes
trajectories, or when one uses Monte-Carlo simulations to numerically
approximate heavy computations. Thus it would be useful to extend
OP-MDP to situations where only a generative model of the transition
dynamics (and rewards) is available. Also we would like to cover the
case of potentially in�nite number of next states (like in [Kearns et al.,
2002b]) by using an number of next state samples that would depend
both on the node characteristics (such as its contribution) and the nu-
merical budget n. Designing a planning algorithm enjoying �nite-time
performance guarantees using a generative model only is still an open
problem.

Extensions to POMDPs. In a partially observable Markov decision
process (POMDP) the state of the systemx t cannot be observed by

5.4. Conclusions and extensions 115

the agent (see e.g. [Kaelbling et al., 1998, Bäuerle and Rieder, 2011]).
However, in each time t, the agent receives an observationyt , which
is a stochastic function of the unknown state. In a POMDP, the best
policy (which maximizes the expected rewards given the uncertainty
over the state) can be obtained as a function of the belief statebt

(which is a distribution over the state spaceX). The literature on online
planning algorithms in this setting is large and we refer the interested
reader to [Ross et al., 2008] for a complete overview. The point-based
approximation method [Pineau et al., 2006] builds a search tree of belief
states, using a heuristic best-�rst expansion procedure which may be
combined with a branch-and-bound procedure based on computations
of upper and lower bounds on the value function. However no �nite-
time guarantee on the quality of the resulting action in terms of the
numerical budget is provided.

Casting this POMDP problem into our online planning setting, the
initial state is the current belief state, and the nodes of the tree that
are expanded are the belief states that can be reached from the initial
belief given a sequence of actions and observations. Using the work
described in the previous chapter one can use OP-MDP (assuming the
number N of possible observations is �nite) to perform an e�cient
online planning whose performance does not depend on the size of
the belief space (which is in�nite) but on characteristics of the belief
planning space, such as the quantity of belief states that contributes in
a signi�cant way to near-optimal policies.

In the case a full model of the POMDP is unknown, one can use
sampling-based techniques such as the one (based on UCT) described
in [Silver and Veness, 2012]. Unfortunately this method does not en-
joy �nite-time guarantee (since UCT can be arbitrarily poor in some
situations as illustrated in Section 2.3). This provides an additional mo-
tivation for extending the OP-MDP to situations where a generative
model only is available.

Bayesian RL. In Bayesian Reinforcement learning (see e.g. [Du�,
2002, Vlassis et al., 2012]) some parameters of the Markov decision pro-
cess are initially unknown and exploration can be performed by using

116 Optimistic planning

a Bayesian reasoning where one starts with a prior over the unknown
parameters and based on the transition and reward samples observed
at any time t, a posterior distribution over those parameters can be
computed (either in a closed form or using numerical approximation).
The so-called Bayesian-adaptive MDP (BAMDP) de�nes an enriched
MDP which contains both the current state and the current posterior
distribution over the unknown parameters. The interesting property
of the BAMDP is that its state dynamics are known. Also, following
the optimal action of the BAMDP from the current state provides a
good exploration-exploitation strategy (which is optimal in a Bayesian
sense) [Du�, 2002]. The planning problem (of solving the BAMDP) can
be addressed using sampling techniques similar to the ones for MDPs,
see [Wang et al., 2005]. Monte-Carlo tree search approaches have been
developed also recently, such as in [Asmuth and Littman, 2011, Guez
et al., 2012]. However, no �nite-time guarantees were provided in those
works. By using the fact that the dynamics of the BAMDP are known
and by noticing that the branching factor of the BAMDP planning tree
is the same as that of the original MDP (i.e. A � N), [Fonteneau et al.,
2013] applied OP-MDP to the BAMDP planning problem and derived
loss bounds in terms of the available numerical budget.

Finally, let us mention the harder problem of solving a POMDP
when the parameters of the dynamics or observation function are
unknown. An analogous Bayesian approach introduces the Bayesian-
Adaptive POMDP (BAPOMDP) [Ross et al., 2011] and an optimal
policy in the BAPOMDP provides a Bayes-optimal exploration in the
POMDP. However the planning problem of the BAPOMDP is more
challenging because the branching factor now scales with the number
of states of the original POMDP (see [Ross et al., 2011]). Again extend-
ing the OP-MDP to handle a possible in�nite number of next-states
using sampling from a generative model would contribute to the prob-
lem.

Conclusion on optimistic planning. When the dynamics are deter-
ministic, the set of policies is equivalent to the set of sequences of
actions. In such cases we can design optimistic planning algorithms

5.4. Conclusions and extensions 117

(OPD and OLOP) that takes into account the speci�c structure of the
planning problem (i.e. that the value of a policy is de�ned as the sum
of, possible expected, discounted rewards). Like for optimization algo-
rithms, we derived performance bounds as a function of the quantity
of near-optimal policies, measures with quantities liked, � , or � . When
the rewards are stochastic we described an algorithm OLOP that uses
the speci�c structure of the planning problem to improve over a di-
rect application of an X -armed bandit algorithm, such as HOO. This
implied that in hard instances of planning problems with stochastic
rewards (but deterministic transitions), the loss rate of OLOP is the
same as the loss achieved by OPD when the rewards are deterministic.

Now when the dynamics are stochastic, a policy is no more equiv-
alent to a sequence of actions, and a more subtle de�nition of the set
of important nodes that any good planning algorithm should expand
is required. We characterized the set of nodes that OP-MDP expands
as those that contribute in a signi�cant way to near-optimal policies,
and derived loss bounds based on this new measure of complexity.

In all considered planning problems we used the property that since
the discount factor < 1 the value function satis�ed a global Lipschitz
property w.r.t. some underlying metric de�ned on the planning tree.
Now this opens several questions. One question is whether it is possible
to extend those results to the case of average reward problems? An-
other question (already posed at the end of Section 5.1) is whether it is
possible to improve those results by using a possibly tighter semi-metric
` (which may be unknown) under which the value function would be
locally smooth (instead of globally Lipschitz) around the optimal pol-
icy, and extend the idea of SOO (seen in Chapter 4) to the planning
problem.

6
Conclusion

The main message of this work is to show that the �optimism in the
face of uncertainty� is a simple yet powerful principle that may guide
the exploration in general optimization and planning problems. It ap-
plies when some unknown environment has to be explored while some
criterion needs to be optimized.

In the multi-armed bandit problem, an unknown environment (set
of arms with unknown distributions) has to be explored while maximiz-
ing the sum of rewards. In function optimization under �nite numerical
budget (e.g. number of function evaluations), the exploration of the
space should be optimized in order to return the best possible recom-
mendation of the maximum once the numerical resources are depleted.
In both situations, the performance (either in terms of cumulative re-
gret or in terms of loss of the �nal recommendation) depends on some
complexity measure of the problem, which may be expressed in terms
of the quantity of near-optimal solutions.

In multi-armed bandits, the complexity measure is the inverse of
the �distance� (i.e. in the mean or in Kullback-Leibler divergence) be-
tween the distributions of sub-optimal and optimal arms. In function
optimization and in planning, we have de�ned a complexity measure in

118

119

terms of the quantity of near-optimal solutions (i.e. the near-optimality
dimensiond or the proportion of near-optimal path � or the branching
factor � of a relevant subset of the tree search) measured with respect
to some semi-metric under which the function is locally smooth.

Another important factor is our knowledge about the local smooth-
ness of the function around the global optimum. If this information
is known, then it can be used to build e�cient optimization algo-
rithms with performance rate independent of the search space dimen-
sion. When it is not the case, then one can still build adaptive strategies
that can, in some situations, perform almost as well as if this informa-
tion were known.

Finally we have seen an application to the problem of online-
planning which illustrates the bene�t of using the speci�c structure
of the problem (rewards, transitions) to design e�cient algorithms. In
such situations we showed that a relevant complexity measure for the
problem of online planning in a MDP is the quantity of states that
signi�cantly contribute to the set of near-optimal policies.

Acknowledgements

I would like to thank all my students and colleagues who worked
with me on the topics presented in this paper, including (by al-
phabetic order) Jean-Yves Audibert, Sébastien Bubeck, Lucian Bu³o-
niu, Alexandra Carpentier, Pierre-Arnaud Coquelin, Rémi Coulom,
Raphael Fonteneau, Sylvain Gelly, Jean-Bastien Grill, Jean-François
Hren, Nathaniel Korda, Odalric-Ambrym Maillard, Amir Sani, Marta
Soare, Gilles Stoltz, Csaba Szepesvári, Olivier Teytaud, Michal Valko,
and Yizao Wang.

This work was supported by the European Community's Seventh
Framework Programme (FP7/2007-2013) under grant agreementn�

270327.

120

References

Y. Abbasi-Yadkori, D. Pal, and Cs. Szepesvári. Improved algorithms for linear
stochastic bandits. In Advances in Neural Information Processing Systems,
2011.

Y. Abbasi-Yadkori, D. Pal, and Cs. Szepesvári. Online-to-con�dence-set con-
versions and application to sparse stochastic bandits. InArti�cial Intelli-
gence and Statistics, 2012.

Bruce Abramson. Expected-outcome: A general model of static evaluation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:182�
193, 1990.

A. Agarwal, D. Foster, D. Hsu, S. M. Kakade, and A. Rakhlin. Stochastic con-
vex optimization with bandit feedback. In Advances in Neural Information
Processing Systems, 2011.

Alekh Agarwal, Peter Bartlett, Pradeep Ravikumar, and Martin Wainwright.
Information-theoretic lower bounds on the oracle complexity of stochas-
tic convex optimization. IEEE Transcations on Information Theory , 58:5,
2012.

R. Agrawal. The continuum-armed bandit problem. SIAM Journal on Control
and Optimization, 33:1926�1951, 1995a.

R. Agrawal. Sample mean based index policies with O(log n) regret for the
multi-armed bandit problem. Advances in Applied Probability, 27(4):1054�
1078, 1995b.

S Agrawal and N. Goyal. Analysis of Thompson sampling for the multi-armed
bandit problem. In Conference on Learning Theory, 2012.

121

122 References

Shipra Agrawal and Navin Goyal. Further optimal regret bounds for Thomp-
son sampling. In Sixteenth International Conference on Arti�cial Intelli-
gence and Statistics, 2013.

John Asmuth and Michael L. Littman. Learning is planning: near Bayes-
optimal reinforcement learning via Monte-Carlo tree search. InUncertainty
in Arti�cial Intelligence , 2011.

J.-Y. Audibert, R. Munos, and Cs. Szepesvári. Exploration-exploitation trade-
o� using variance estimates in multi-armed bandits. Theoretical Computer
Science, 410:1876�1902, 2009.

J.-Y. Audibert, S. Bubeck, and R. Munos. Best arm identi�cation in multi-
armed bandits. In Conference on Learning Theory, 2010. URL .files/
ABM10.pdf.

Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial
and stochastic bandits. In Sanjot Dasgupta and Adam Klivans, editors,
Proceedings of the 22nd annual Conference On Learning Theory, COLT
'09, Montreal,Quebec, Canada, jun 2009.

P. Auer, R. Ortner, and C. Szepesvári. Improved rates for the stochastic
continuum-armed bandit problem. 20th Conference on Learning Theory,
pages 454�468, 2007.

Peter Auer. Using con�dence bounds for exploitation-exploration trade-o�s.
Journal of Machine Learning Research, 3:397�422, March 2003. ISSN 1532-
4435.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite time analysis of
the multiarmed bandit problem. Machine Learning, 47(2-3):235�256, 2002.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The
nonstochastic multiarmed bandit problem. SIAM Journal on Computing,
32:48�77, January 2003. ISSN 0097-5397.

A. Auger and N. Hansen. Theory of Randomized Search Heuristics: Founda-
tions and Recent Developments, chapter Theory of Evolution Strategies: A
New Perspective, pages 289�325. World Scienti�c Publishing, 2011.

Kazuoki Azuma. Weighted sums of certain dependent random variables.To-
hoku Mathematical Journal, 19:357�367, 1967.

J. S. Banks and R. Sundaram. Denumerable-armed bandits.Econometrica,
60:1071�1096, 1992.

Nicole Bäuerle and Ulrich Rieder. Markov Decision Processes with Applica-
tions to Finance. 2011.

References 123

D. A. Berry, R. W. Chen, A. Zame, D. C. Heath, and L. A. Shepp. Bandit
problems with in�nitely many arms. Annals of Statistics, (25):2103�2116,
1997.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scienti�c, 1996.

Amine Bourki, Guillaume Chaslot, Matthieu Coulm, Vincent Danjean, Hassen
Doghmen, Jean-Baptiste Hoock, Thomas Hérault, Arpad Rimmel, Fabien
Teytaud, Olivier Teytaud, Paul Vayssière, and Ziqin Yu. Scalability and
parallelization of monte-carlo tree search. InInternational Conference on
Computers and Games, 2012.

B. Bouzy and B. Helmstetter. Monte-Carlo go developments. In Hiroyuki Iida
Ernst A. Heinz H. Jaap van den Herik, editor, Advances in Computer
Games, page 159â€“174. Kluwer Academic Publishers, 2003.

Bruno Bouzy and Tristan Cazenave. Computer Go: an AI oriented survey.
Artif. Intell. , 132(1):39�103, October 2001. ISSN 0004-3702. . URLhttp:
//dx.doi.org/10.1016/S0004-3702(01)00127-8 .

Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas, Peter I.
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon
Samothrakis, and Simon Colton. A survey of monte carlo tree search meth-
ods. IEEE Transactions on Computational Intelligence and AIin Games,
4(1), March 2012.

B. Brügmann. Monte Carlo Go. Technical report, Syracuse University, NY,
USA, 1993.

S. Bubeck and R. Munos. Open loop optimistic planning. InConference on
Learning Theory, 2010.

S. Bubeck, R. Munos, G. Stoltz, and Cs. Szepesvári. Online optimization of X-
armed bandits. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, edi-
tors, Advances in Neural Information Processing Systems, volume 22, pages
201�208. MIT Press, 2008. URLhttp://hal.inria.fr/inria-00329797/
en/ .

S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed bandits
problems. In Proc. of the 20th International Conference on Algorithmic
Learning Theory, 2009.

S. Bubeck, R. Munos, G. Stoltz, and Cs. Szepesvári. X-armed bandits.Journal
of Machine Learning Research, 12:1655�1695, 2011a. URLhttp://arxiv.
org/abs/1001.4475 .

124 References

S. Bubeck, G. Stoltz, and J. Y. Yu. Lipschitz bandits without the Lipschitz
constant. In International Conference on Algorithmic Learning Theory ,
2011b.

Sébastien Bubeck.Bandits Games and Clustering Foundations. PhD thesis,
Université de Lille 1, 2010.

Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations and Trends in
Machine Learning, 5(1):1�122, 2012.

L. Bu³oniu, R. Munos, and R. Babuska. Optimistic planning in Markov deci-
sion processes. In Frank Lewis and Derong Liu, editors,In Reinforcement
Learning and Adaptive Dynamic Programming for feedback control. Wiley,
2011a.

Lucian Bu³oniu and Rémi Munos. Optimistic planning for markov decision
processes. InProceedings 15th International Conference on Arti�cial Intel-
ligence and Statistics (AISTATS-12), page 182â€“189, 2012.

Lucian Bu³oniu, Robert Babu²ka, Bart De Schutter, and Damien Ernst. Re-
inforcement Learning and Dynamic Programming Using Function Approxi-
mators. Automation and Control Engineering. Taylor & Francis CRC Press,
2010.

Lucian Bu³oniu, Rémi Munos, Bart De Schutter, and Robert Babu²ka. Opti-
mistic planning for sparsely stochastic systems. In2011 IEEE International
Symposium on Adaptive Dynamic Programming and Reinforcement Learn-
ing (ADPRL-11) , Paris, France, 11�15 April 2011b. Submitted to special
session onActive Reinforcement Learning.

Adam D. Bull. Adaptive-treed bandits. Technical report, arXiv:1302.2489v2,
2013.

A.N. Burnetas and M.N. Katehakis. Optimal adaptive policies for sequential
allocation problems. Advances in Applied Mathematics, 17:122�142, 1996a.

Apostolos N. Burnetas and Michaël N. Katehakis. Optimal adaptive policies
for sequential allocation problems.Advances in Applied Mathematics, 17(2):
122�142, 1996b.

E. F. Camacho and C. Bordons. Model Predictive Control. Springer-Verlag,
2004.

Olivier Cappé, Aurélien Garivier, Odalric-Ambrym Maillard, Rémi Munos,
and Gilles Stoltz. Kullback-leibler upper con�dence bounds for optimal
sequential allocation. Annals of Statistics, 41(3):1516�1541, 2013.

References 125

Alexandra Carpentier and Rémi Munos. Bandit theory meets compressed
sensing for high dimensional stochastic linear bandit. InInternational Con-
ference on Arti�cial Intelligence and Statistics , 2012.

Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games.
Cambridge University Press, New York, NY, USA, 2006. ISBN 0521841089.

Hyeong Soo Chang, Michael C. Fu, Jiaqiao Hu, and Steven I. Marcus.
Simulation-based Algorithms for Markov Decision Processes. Springer, Lon-
don, 2007.

Guillaume Chaslot. Monte-Carlo Tree Search. PhD thesis, Maastricht Uni-
versity, 2010.

P.-A. Coquelin and R. Munos. Bandit algorithms for tree search. In Uncer-
tainty in Arti�cial Intelligence , 2007.

Rémi Coulom. E�cient selectivity and backup operators in Monte-Carlo Tree
Search. In LNCS, editor, Computer Games, volume 4630, pages 72�83,
2006.

Varsha Dani, Thomas P. Hayes, and Sham M. Kakade. Stochastic linear op-
timization under bandit feedback. In Rocco A. Servedio and Tong Zhang,
editors, Proceedings of the 21st annual Conference On Learning Theory,
volume 80 ofCOLT '08 , pages 355�366, Helsinki, Finland, jul 2008. Omni-
press.

Boris Defourny, Damien Ernst, and Louis Wehenkel. Lazy planning under
uncertainties by optimizing decisions on an ensemble of incomplete distur-
bance trees. In S. Girgin, M. Loth, R. Munos, P. Preux, and D. Ryabko,
editors, Recent Advances in Reinforcement Learning, volume 5323 ofLec-
ture Notes in Computer Science, pages 1�14. Springer, 2008.

Michael Du�. Optimal learning: Computational procedures for Bayes-adaptive
Markov decision processes. PhD thesis, Department of Computer Science,
University of Massachusetts, Amherst, 2002.

Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvari. Para-
metric bandits: The generalized linear case. In J. La�erty, C. K. I. Williams,
J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors,Advances in Neural
Information Processing Systems 23, pages 586�594. 2010.

D. E. Finkel and C. T. Kelley. Convergence analysis of the direct algorithm.
Technical report, North Carolina State University, Center for, 2004.

Abraham D. Flaxman, Adam Tauman Kalai, and Hugh Brendan McMahan.
Online convex optimization in the bandit setting: gradient descent without
a gradient. In Proceedings of the 16th annual ACM-SIAM Symposium On
Discrete Algorithms, SODA '05, pages 385�394. SIAM, 2005.

126 References

C.A. Floudas. Deterministic Global Optimization: Theory, Algorithms and
Applications. Kluwer Academic Publishers, Dordrecht / Boston / London,
1999.

R. Fonteneau, L. Busoniu, and R. Munos. Optimistic planning for belief-
augmented Markov decision processes. InIEEE International Symposium
on Adaptive Dynamic Programming and reinforcement Learning, 2013.

J. M. X. Gablonsky. Modi�cations of the Direct algorithm . PhD thesis, 2001.

Aurélien Garivier and Olivier Cappé. The KL-UCB algorithm for bounded
stochastic bandits and beyond. InProceedings of the 24th annual Confer-
ence On Learning Theory, COLT '11, 2011.

S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modi�cation of UCT with
patterns in monte-carlo go. Technical report, INRIA RR-6062, 2006. URL
http://hal.inria.fr/inria-00117266_v3/ .

Sylvain Gelly and David Silver. Combining online and o�ine knowledge in
UCT. In Zoubin Ghahramani, editor, International Conference on Ma-
chine Learning, volume 227 of ICML '07, ACM International Conference
Proceeding Series, pages 273�280, Corvalis, Oregon, USA, jun 2007. ACM.
ISBN 978-1-59593-793-3.

Sylvain Gelly and David Silver. Monte-carlo tree search and rapid action value
estimation in computer Go. Arti�cial Intelligence , 175:1856�1875, 2011.

J.C. Gittins. Bandit processes and dynamic allocation indices.In Journal of
the Royal Statistical Society Series B, 41(2):148�177, 1979.

John C. Gittins, Richard Weber, and Kevin Glazebrook. Multi-armed Bandit
Allocation Indices. Wiley, 1989.

Arthur Guez, David Silver, and Peter Dayan. E�cient Bayes-adaptive re-
inforcement learning using sample-based search. InAdvances in Neural
Information Processing Systems, 2012.

E.R. Hansen. Global Optimization Using Interval Analysis. Marcel Dekker,
New York, 1992.

Eric A. Hansen and Shlomo Zilberstein. A heuristic search algorithm for
Markov decision problems. In Proceedings Bar-Ilan Symposium on the
Foundation of Arti�cial Intelligence , Ramat Gan, Israel, 23�25 June 1999.
URL http://rbr.cs.umass.edu/shlomo/papers/HZbisfai99.html .

J. Honda and A. Takemura. An asymptotically optimal policy for �nite sup-
port models in the multiarmed bandit problem. Machine Learning, 85:
361�391, 2011.

References 127

Junya Honda and Akimichi Takemura. An asymptotically optimal bandit al-
gorithm for bounded support models. In Adam Tauman Kalai and Mehryar
Mohri, editors, Proceedings of the 23rd annual Conference On Learning
Theory, pages 67�79. Omnipress, June 2010. ISBN 978-0-9822529-2-5.

R. Horst and H. Tuy. Global Optimization ? Deterministic Approaches.
Springer, Berlin / Heidelberg / New York, 3rd edition, 1996.

J-F. Hren and R. Munos. Optimistic planning of deterministic systems. In Eu-
ropean Workshop on Reinforcement Learning Springer LNAI 5323, editor,
Recent Advances in Reinforcement Learning, pages 151�164, 2008.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimiza-
tion without the lipschitz constant. Journal of Optimization Theory and
Applications, 79(1):157�181, 1993.

Leslie P. Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Plan-
ning and acting in partially observable stochastic domains.Arti�cial Intel-
ligence, 101(1�2):99�134, 1998.

A. Kalai and S. Vempala. E�cient algorithms for online decision problems.
Journal of Computer and System Sciences, 71:291�307, 2005.

Emilie Kau�man, Olivier Cappé, and Aurélien Garivier. On Bayesian upper
con�dence bounds for bandit problems. In International Conference on
Arti�cial Intelligence and Statistics , 2012.

Emilie Kau�mann, Nathaniel Korda, and Rémi Munos. Thompson sampling:
An asymptotically optimal �nite time analysis. In International Conference
on Algorithmic Learning Theory , 2012.

Emilie Kaufmann, Nathan Korda, and Remi Munos. Thompson sampling for
1-dimensional exponential family bandits. InNeural Information Processing
Systems, 2013.

R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Aca-
demic Publishers, Dordrecht / Boston / London, 1996.

M. Kearns, Y. Mansour, and A.Y. Ng. A sparse sampling algorithm for near-
optimal planning in large Markovian decision processes. InMachine Learn-
ing, volume 49, pages 193�208, 2002a.

Michael J. Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling
algorithm for near-optimal planning in large Markov decision processes.
Machine Learning, 49(2-3):193�208, 2002b.

R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric
spaces. InProceedings of the 40th ACM Symposium on Theory of Com-
puting, 2008a.

128 References

Robert D. Kleinberg. Nearly tight bounds for the continuum-armed ban-
dit problem. In Proceedings of the 18th conference on advances in Neural
Information Processing Systems, NIPS '04, Vancouver, British Columbia,
Canada, dec 2004. MIT Press.

Robert D. Kleinberg, Alexander Slivkins, and Eli Upfal. Multi-armed bandit
problems in metric spaces. InProceedings of the 40th ACM symposium on
Theory Of Computing, TOC '08, pages 681�690, 2008b.

L. Kocsis and Cs. Szepesvári. Bandit based Monte-Carlo planning. InProceed-
ings of the 17th European Conference on Machine Learning (ECML-2006),
pages 282�293. 2006.

Jussi Kujala and Tapio Elomaa. Following the perturbed leader to gamble at
multi-armed bandits. In International Conference on Algorithmic Learning
Theory, 2007.

Steven M. La Valle. Planning Algorithms. Cambridge University Press, 2006.

Tze Leung Lai and Herbert Robbins. Asymptotically e�cient adaptive allo-
cation rules. Advances in Applied Mathematics, 6:4�22, 1985.

Chang-Shing Lee, Mei-Hui Wang, Guillaume Chaslot, Jean-Baptiste Hoock,
Arpad Rimmel, Olivier Teytaud, Shang-Rong Tsai, Shun-Chin Hsu, and
Tzung-Pei Hong. The computational intelligence of MoGo revealed in Tai-
wan's computer Go tournaments. IEEE Trans. Comput. Intellig. and AI
in Games, 1(1):73�89, 2009.

J. M. Maciejowski. Predictive Control with Constraints . Prentice Hall, 2002.

Odalric Ambrym Maillard. Apprentissage séquentiel: Bandits, Statistique et
Renforcement. PhD thesis, Université des Sciences et des Technologies de
Lille 1, 2011.

Odalric-Ambrym Maillard, Rémi Munos, and Gilles Stoltz. Finite-time anal-
ysis of multi-armed bandits problems with Kullback-Leibler divergences. In
Proceedings of the 24th annual Conference On Learning Theory, COLT '11,
2011.

R. Munos. Optimistic optimization of deterministic functions without the
knowledge of its smoothness. InAdvances in Neural Information Processing
Systems, 2011.

A.S. Nemirovsky and D.B. Yudin. Problem Complexity and Method E�ciency
in Optimization . John Wiley & Sons Ltd, 1983.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer Academic Publishers, 2004.

References 129

Neumaier. Interval Methods for Systems of Equations. Cambridge University
Press, 1990.

N.J. Nilsson. Principles of Arti�cial Intelligence . Tioga Publishing, 1980.

L. Péret and F. Garcia. On-line search for solving large Markov decision
processes. InProceedings of the 16th European Conference on Arti�cial
Intelligence, 2004.

Joelle Pineau, Geo�rey J. Gordon, and Sebastian Thrun. Anytime point-
based approximations for large POMDPs.Journal of Arti�cial Intelligence
Research (JAIR), 27:335�380, 2006.

J.D. Pintér. Global Optimization in Action (Continuous and Lipschitz Op-
timization: Algorithms, Implementations and Applications) . Kluwer Aca-
demic Publishers, 1996.

M.L. Puterman. Markov Decision Processes � Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, NY, 1994.

Arpad Rimmel, Fabien Teytaud, and Olivier Teytaud. Biasing Monte-Carlo
simulations through RAVE values. In International Conference on Com-
puters and Games, 2010.

H. Robbins. Some aspects of the sequential design of experiments.Bulletin
of the American Mathematics Society, 58:527�535, 1952.

S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa. Online planning algorithms
for POMDPs. Journal of Arti�cial Intelligence Research , 32:663�704, 2008.

Stéphane Ross, Jeoelle Pineau, Brahim Chaib-draa, and Pierre Kreitmann. A
Bayesian approach for learning and planning in partially observable Markov
decision processes.Journal of Machine Learning Research, 12:1655�1696,
2011.

Paat Rusmevichientong and John N. Tsitsiklis. Linearly parameterized ban-
dits. Math. Oper. Res., 35:395�411, May 2010.

Olivier Sigaud and Olivier Bu�et, editors. Markov Decision Processes in
Arti�cial Intelligence . Wiley, 2010.

David Silver. Reinforcement Learning and Simulation-Based Search in Com-
puter Go. PhD thesis, University of Alberta, 2009.

David Silver and Joel Veness. Monte-carlo planning in large POMDPs. In
Advances in Neural Information Processing Systems, 2012.

Aleksandrs Slivkins. Contextual bandits with similarity information. In Pro-
ceedings of the 24th annual Conference On Learning Theory, COLT '11,
2011.

130 References

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger.
Gaussian process optimization in the bandit setting: No regret and exper-
imental design. In International Conference on Machine Learning, pages
1015�1022, 2010.

R.G. Strongin and Ya.D. Sergeyev. Global Optimization with Non-Convex
Constraints: Sequential and Parallel Algorithms. Kluwer Academic Pub-
lishers, Dordrecht / Boston / London, 2000.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, 1998.

Csaba Szepesvári.Algorithms for Reinforcement Learning. Morgan & Clay-
pool Publishers, 2010.

William R. Thompson. On the theory of apportionment. American Journal
of Mathematics, 57:450�456, 1935.

W.R. Thompson. On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples.Biometrika, 25:285�294,
1933.

J. F. Traub, G. W. Wasilkowski, and H. Wozniakowski. Information-based
Complexity. Academic Press, New York, 1988.

Michal Valko, Alexandra Carpentier, and Rémi Munos. Stochastic simulta-
neous optimistic optimization. In International Conference on Machine
Learning, 2013.

Nikos Vlassis, Mohammad Ghavamzadeh, Shie Mannor, and Pascal Poupart.
Reinforcement Learning: State of the Art, chapter Bayesian Reinforcement
Learning. Springer Verlag, 2012.

Tao Wang, Daniel Lizotte, Michael Bowling, and Dale Schuurmans. Bayesian
sparse sampling for on-line reward optimization. InInternational Confer-
ence on Machine Learning, 2005.

Yizao Wang and Sylvain Gelly. Modi�cations of UCT and sequence-like sim-
ulations for Monte-Carlo Go. In IEEE Symposium on Computational In-
telligence and Games,, pages 175�182, 2007.

Yizao Wang, Jean-Yves Audibert, and Rémi Munos. Algorithms for in�nitely
many-armed bandits. In Daphne Koller, Dale Schuurmans, Yoshua Bengio,
and Léon Bottou, editors, Proceedings of the 22nd conference on advances in
Neural Information Processing Systems, NIPS '08, pages 1729�1736, Van-
couver, British Columbia, Canada, dec 2008. MIT Press.

