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Abstract Nowadays, it is possible to build a multi-GPU
supercomputer, well suited for implementation of digital
signal processing algorithms, for a few thousand dollars.
However, to achieve the highest performance with this
kind of architecture, the programmer has to focus on

inter-processor communications, tasks synchronization . . .

In this paper, we propose a high level programming model
based on a Data Flow Graph (DFG) allowing an efficient
implementation of Digital Signal Processing (DSP) ap-
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plications on a multi-GPU computer cluster. This DFG
based design flow abstracts the underlying architecture.
We focus particularly on the efficient implementation of
communications by automating computation - commu-
nication overlap, which can lead to significant speedups
as shown in the presented benchmark. The approach is
validated on three experiments: a multi-host multi-gpu
benchmark, a 3D granulometry application developed for
research on materials and an application for computing
visual saliency maps.

Keywords GPU cluster - Data Flow Graph (DFG) -

computation communication overlap

1 Introduction

Recent computers embed many CPU cores and at least
one powerful commodity off-the-shelf 3D graphics card
commonly called Graphical Processing Unit (GPU). Work-
stations can host several GPU boards, which are well
suited for scientific and engineering computations. Such
computers are linked through high bandwidth networks
to build clusters for High Performance Computing (HPC).
These machines provide highly parallel many-core archi-
tectures while being cost-effective. Moreover, they signif-
icantly reduce dissipated power, and space needs com-
pared to classical HPC clusters. However, the real chal-
lenge is to achieve the highest performance on muti-GPU
architectures. The programmer has to design architecture-
specific code including CPU-GPU communications, mem-
ory management, task scheduling and synchronization.
Therefore, a high level programming paradigm is required
in order to abstract all these important operations from
the programmer.

In this paper, we propose a design flow allowing efficient
implementation of a DSP application specified as a DFG
on a multi-GPU computer cluster. Effective implementa-
tion of communications by automating the computation
- communication overlap is also adressed.

The rest of the paper is organized as follows. Section 2



discusses some related work. Section 3 presents the ben-
efits of communication - computation overlap on multi-
GPU architectures. Section 4 details the efficient imple-
mentation through our design flow of an algorithm ex-
pressed as a DFG mapped on a GPU cluter. Section 5
shows experimental results for three examples: a multi-
host multi-gpu benchmark, a 3D granulometry applica-
tion developed for research on materials and an applica-
tion for computing visual saliency maps.

2 Related Work

In the past years, there has been a trend to develop pro-
gramming languages adapted to multi-core / many-core
computing. Since the emergence of accelerators (such as
GPU, Cell, etc), today’s challenge is toward hybrid ar-
chitectures.

The use of GPU clusters for scientific computing is
not a recent topic. It was studied before any appropri-
ate programming paradigm for GPU scientific comput-
ing even existed: the first exploited scalable GPU clus-
ter was programmed using Cg language [10]. Now that
adapted programming paradigms such as Compute Uni-
fied Device Architecture (CUDA) and Open Computing
Library (OpenCL) exist, more focus is given to this kind
of hybrid computing. The difficulty remains in the ne-
cessity to combine accelerator dedicated programming
languages with traditional CPU programming languages
in order to exploit an hybrid CPU/GPU cluster.

2.1 Parallelizers

Many studies have been conducted in order to simplify
the code generation for users not accustomed to GPU
programming (HMPP [9], HICUDA [14], PGI Accelera-
tor [30], StarSS, OpenACC, etc). An evaluation of five
of these frameworks with a real world application from

medical imaging is reported in [22]. The Compaan HotSpot

Parallelizer [29] from Compaan Design transforms codes
with parameterized nested loop to a process network
which can then be implemented on multicores CPU, GPU
or FPGAs.

Hybrid Multi-core Parallel Programming (HMPP) [9],
proposed by the CAPS French company, helps imple-
ment incremental porting strategies by providing a set
of compiler directives with tools and a also software run-
time support for C and Fortran. HMPP allows to paral-
lelize a sequential code and to distribute computation
over CPU and multiple GPU cores. Several runtimes
have also been proposed.

2.2 Runtimes

Several task scheduling strategies for a multi-GPU plat-
form based on a pool of tasks have been proposed [19,
5, 6, 24]. However, the strategy of maintaining a pool
of tasks that are randomly dispatched to idle processing
units might perform poorly for applications with data
dependencies and thus dependencies between tasks. In
other words, applications with fine-grain parallelized in-
dependant tasks are not a generality. Some solutions pro-
pose a history-based time estimator for job scheduling in
order to dispatch redundant tasks on the most suitable
architecture. Previous tasks are distinguished based on
their input data size and their computation time. How-
ever, this model is simplistic and implies exectued tasks
to be launched several times in order to be efficient.

Moreover, communications between processing units
introduce more complexity to the programmer since it
will imply different programming APIs for each type of
communication: for example, CPU-GPU transfers might
use CUDA, multi-threads use OpenMP and multi-core
use MPI. Some runtime system environments have been
developped in order to abstract the communication layer
to the programmer [3, 23, 20, 8].

StarPU [3] is a runtime system designed to dynam-
ically schedule a pool of tasks on heterogeneous cores
with various scheduling policies. It also avoids uneces-
sary data transfers thanks to a Virtual Shared Memory
(VSM) software. However, from our experience, it seems
that the implementation of communication/computation
overlapping, which can lead to significant speedups, re-
quires that the designer express it in its code. This can
be a tiedous task.

Most presented solutions focus on the exploitation of
hybrid architectures for data parallelism purposes (us-
ing a Map-Reduce scheme) or dispatching of indepen-
dant tasks. Our work focuses on a more specific scenario:
the implementation of DSP applications on a multi-GPU
cluster.

2.3 DFG based design flows

DFG is a formalism that expresses an application as a
computation pipeline that highlights the potential par-
allelism of implementation. It has proved along years to
be an adequate formalism to model DSP applications.

For example, the SynDex [12] CAD software gener-
ates an optimized implementation of on application spec-
ified with a directed acyclic hyper-graph on an architec-
ture specified with a directed graph called multicompo-
nent architecture which is composed of programmable
components such as RISC, CISC, DSP processors and /or



of non programmable components such as ASIC, FPGA.
Some heuristics are used to generate an optimized im-
plementation of the application, e.g. minimization of the
execution time of the application. It results in a distri-
bution of the application on the architecture and a static
schedule of the computations and communications. It
can be noticed that the potential parallelism of the im-
plementation depends on the application specification,
i.e. SynDEx does not perform any analysis of atomic ver-
tex to extract some parallelism. However, at our knowl-
edge it is not possible to natively target GPU cluster
with SynDEx.

Thus DFG is well suited to the specification of appli-
cations that must be implemented with time rate con-
straints, such as streaming applications, on parallel ar-
chitectures, such as GPU clusters. Also, several studies
have introduced the use of DFG for multi-GPU and/or
multi-core workstations [11, 15, 4, 27, 1, 2].

Shirlea et al. [27] present a design flow relying on a

DFG specification of the application on a multi-architecture

(CPU, GPU and FPGA) platform with work-stealing ca-
pabilities. Their framework has a dispatching model of
tasks among processing units based on their best per-
formance affinity provided manually (hard-coded) by an
expert. However, from a more practical point of vue, this
solution implies the development of as many implemen-
tations as there are architectures: CPU,GPU and FPGA.
Therefore, this work is mostly interesting for the use of
applications with relatively high common tasks. Their
goal is to allow medical imaging domain experts to pro-
gram without worrying about parallelism and the details
of underlying C implementation of the model. Also, the
amount of time spent developping and optimizing the
different implementations is an investment compensated
by the fact that they will be part of a task database to
be used several times along time.

Aldinucci et al. [1] present a two phase process target-
ing heterogeneous architectures built of multi-cores and
GPUs. The first step is aimed at translating high level
languages into macro data flow graphs. These graphs are
then executed by means of a parallel macro data flow in-
terpreter specialized to run data parallel computations
on GPUs without programmer intervention. Also, all the
details relative to data movement to and from GPU as
well as to memory allocation and to thread schedul-
ing on the GPU are managed by a modified interpreter
loop. The preliminary experimental results show that the
approach is feasible and efficiently implements different
kinds of applications on a heterogeneous, single node ar-
chitecture.

2.4 Our design flow

Our solution also relies on a DFG specification of the
application but our goal is different. It is to simplify

the porting of an already GPU-implemented applica-
tion onto a GPU cluster and, most importantly, to free
the designer from expressing all the extra coding glue
needed by the communications and synchronizations be-
tween the processing elements. Indeed, DFG’s nodes may
be dispatched on different processing units of different
kinds (CPU/GPU) and its edges can represent different
data types which can be implemented on different kinds
of communication channels (PCle, Inifiniband, Ether-
net). .. Also, while the DFG formalism expressed within
each processing element (CPU or GPU) is sequentially
executed, the processing elements run in parallel. Thus,
the data flow between them and the computations need
to be synchronized to ensure the data coherency. There-
fore, a representation of the model of implementation
presented later in this article would be a set of commu-
nicating sub-DFG, one per processing element, with a
global synchronization mecanism ensuring the data co-
herency.

To our knowledge, there is no work that completely
abstracts all these routines from the programmer. In this
paper, we provide a design flow that has a suitable en-
try point to the application developer of DSP applica-
tions. It abstracts several programming portions of code
by automating their production in order to lighten the
programmer’s work. These abstractions concern:

— the memory allocation and optimization on both CPU
and GPU

— the expression of inter-processor communications

— the synchronization of tasks

Another feature brought by our design flow is the possi-
bility to overlap computation and communication which
can significantly reduce the amount of time spent per
iteration in a pipeline.

Before presenting the design flow that we propose, the
following section shows a benchmark that allows quan-
tifying the performance gain that can be expected when
computation and communication overlap on a GPU clus-
ter.

3 Communication - Computation Overlap
Benchmarks

In this section, we detail communication - computation
overlap, in a real world application. We suppose data
transfer time is around the kernel execution duration.
First, the principle of communication - computation over-
lap for multi-GPU systems is given. Then this overlap is
shown and measured. An assessment of data transfer rate
can be derived for several hardware configurations. This
study is done using a single multi-CPU workstation of
the GPU cluster.

The programming interface used is the CUDA Nvidia
API, a popular environment for GPGPU, dedicated to



Nvidia’s GPU devices. CUDA is generally more efficient
than OpenCL programming standard [17] [7], as the later
is affected by its ability to produce versatile CPU/GPU-
compatible code.

3.1 Methodology

A basic test model is proposed for one host PC with two
GPU boards for the following data flow algorithm:

Kernel A
(9pu0)

Kernel B
(gpu)

Producer
(cpu)

consumer
(cpu)

Fig. 1: data flow graph (DFG) of the test model

The architectural target is a node equipped with 2
GPU accelerators (Kernel A running on GPU-0, Kernel
B running on GPU-1). The host program is designed
as follows. After initializing memory blocks on the host
and devices, an infinite loop handles communications,
computations and synchronization for each GPU device
in four steps:

— host to device data transfer

— kernel execution on GPU device

— device to host data transfer

— wait for the synchronization barrier

The code is written in multi-threaded C, based on
the Posix pthread library. We create one CPU thread for
each GPU board plus one CPU thread for the synchro-
nization barrier. Allocation of the host memory blocks in
page-locked (pinned) memory (with the cudaHost Alloc()
function) allows a 70% increase of transfer rate compared
with pageable host memory allocated by the malloc()
function. The reader can find a detailed comparison be-
tween non pinned and pinned memory here[18].

A first implementation concerns the synchronous mode
with regular sequential data transfers and computations:

Data transfers are launched by cudaMemcpy() func-
tions. Communications and kernel execute sequentially
as shown in Figure 2. Both GPU devices run kernels
concurrently. The latency stands to two cycles of syn-
chronization due to concurrent execution of the two ker-
nels.

GPU-0 [inKAO ] KAO [outKAO] inKA1 | KA1 [outkA1
GPU-1 [ KB-1 [ inKBO | KBO [outkBO|
A

synchro barriers

Fig. 2: serialized communication - computation execu-
tion

6PU Hostto Device | inKAQ | inKA1 | inKA2 | inKA3 | inKA4 |

0 Device to Host } } utkAO} utkKA1} utkKA2}
Kernel execution KA-1 KAO KA1 KA2 KA3

GPU Host to Device | } } inKBO | inKB1 |

1 Device to Host ! | | } }
Kernel execution KB-4 KB-3 KB-2 KB-1 KBO

Fig. 3: concurrent execution of communications and com-
putations

A second implementation is more efficient, running
with communication - computation overlap. CPU threads
launch kernels and transfers simultaneously, in asynchro-
nous mode, which means that all data is stored in double
buffers, each one allocated on the CPU and the GPU de-
vices. Data transfers are launched by cudaMemepy Async()
functions and concurrent execution of kernels and trans-
fers is managed by CUDA streams.

In the Figure 3 example, the latency stands to a total
of six cycles (two more cycles are inserted on each GPU
for host — device and device — host communications).

3.2 Communication - Computation Overlap

We monitor CPU-GPU communication and GPU com-
putation time. The overlap of data transfers and kernel
execution is underscored by varying the time length of
GPU kernels. We set kernel duration from 0 to twice the
data transfer length. The test program saves loop’s du-
ration, with or without data transfers, in synchronous or
asynchronous mode. Experimental conditions are trans-
fers of 64 MiB blocks to achieve maximum bandwidth
on the PCI express bus. We checked three motherboard
configurations, recommended for GPU supercomputers:

— an AsusTek G53JW notebook featuring an Intel I7
Q740 CPU and including a GTX460M board (mono
GPU)

— a workstation based on AsRock X58 SuperComputer
motherboard with an Intel 17 920 CPU and 3 GTX285
boards

— a workstation based on Asus P6T7 WS Supercom-
puter motherboard with an Intel 17 920 CPU equipped
and 3 GTX285 boards

The results were measured using Nvidia’s GPU CUDA
SDK 3.2 (NVIDIA 260.19.26 driver) under linux Ubuntu
10.04. In asynchronous mode, there is a complete overlap
if the kernel’s duration exceeds transfer time. Otherwise,
only the duration of the transfer remains. In synchronous
mode, we find that transfer duration adds to the length
of the kernel (Figure 4).

The speedup factor is defined as improvement of over-
lapped mode versus no overlap that reaches a factor of
two if data transfer time is around kernel execution du-
ration.
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Fig. 4: Communication/kernel overlap on Asus Notebook

3.3 Data Transfer Bandwidth on PCle

On the PC motherboards, data transfers between host
memory and GPU devices go through the PCI express
bus. PCle is a high-speed point-to-point serial link con-
necting expansion boards to the chipset. For PCle Gen2.0,
the serial bus uses two low-voltage differential LVDS
pairs, providing a 5 GT/s (giga transfers per second)
in each direction.

The AsusTek G53JW notebook has the 3400 Intel
chipset, implementing PCle 2.0 x8 lanes. Actual data
transfer bandwidth performs 3.0 GB/s for host to device
(h—d) transfer and 3.2GB/s d—h transfer. So in this
case, there is no overlap between the h—d and the d—h
data transfers, on the same GPU board.

motherboard | 1 transfer | 2 transfers | 6 transfers
AsRock X58 3.0 6.0 7.0
Asus P6T7 5.5 7.1 7.1

Table 1: PCle 2.0 bandwidth of motherboards (in GB/s)

On Geforce boards, the PCle interface does not sup-
port full-duplex transfers (h—d and d—h simultaneously).
Half duplex transfers of Geforce boards is the bottleneck
for high speed data transfers. Quadro and Tesla boards
support full duplex transfers on PCle which allows at
best doubling the data transfer bandwidth.

Both workstation motherboards have the X58 Intel
chipset, with 2 PCle 2.0 x16 links. The AsRock X58
motherboard (three GPU boards PCle x16), seems to
be less efficient for a single data transfer but both moth-
erboards cap around 7.0 GB/s for six simultaneous data
transfers, ie simultaneous h—d and d—h transfers for
each GPU board.

Thus we demonstrated that communication and com-
putation can overlap when asynchronous transfers in multi
GPUs nodes are used.

Thus, we improved the efficiency of multi-GPU par-
allelism by hiding the transfer time.

matrix

matrix

‘matrix

Fig. 5: Data Flow Graph example

4 Design Flow

Our goal is to provide a design flow that allows the im-
plementation of a DSP application on a computer clus-
ter without considering the cluster’s inter-processing el-
ements communication - specific implementations. Par-
ticularly, we focus on an automated and efficient imple-
mentation of communications. This includes buffer allo-
cation, inter-processor communication and computation
- communication overlap management.

The first subsection presents the efforts the designer
produces in our design flow to express the work distribu-
tion on a cluster’s processing elements of a DFG appli-
cation. The second subsection discusses the runtime exe-
cution process. Finally, in the last subsection, we present
the two runtime communication - computation strategies
offered to the user.

4.1 Programmer’s Contribution

The Algorithm-Architecture Adaptation (AAA) is ex-
pressed thanks to the combination of two graphs: the
application DFG and the Architecture Graph (AG).
The application is specified with a textual representa-
tion of a DFG: it is composed of nodes, representing the
computations, and edges, showing the data dependencies
between nodes. The semantic of a DFG is as follows: a
node can be fired if and only if all its inputs are available.
When fired, it consumes all its inputs and executes the
function it is associated to, producing all its outputs. A
data type is associated to each edge and a function to
each node. Figure 5 presents an example of a DFG: node
p produces data consumed by node a which produces
data for node b that broadcasts it to nodes c1, c2, d, and
so on. An iteration is the firing of all nodes of the DFG.
Each node’s label is composed of its name and a 2-tuple
representing its scheduling and latency ; it is discussed
more in detail in subsection 4.2. Notice that the DFG
decomposition is manual. It is naive because the goal of
the tool is not to help in the parallelization process but
rather help to deploy an application on a cluster. Thus,
the programmer already has a good understanding of the
bottlenecks of the application and decides which compu-
tation node is best suited for each step in the process.
Parallelizing compilers/tools can be used beforehand.
The architecture is described with a textual repre-
sentation of an AG. The nodes represent the processing



elements, and the edges the communication channels be-
tween them. Edges also specify the nature of each com-
munication link. Figure 6 presents the AG of a cluster
of two computers with one CPU and three GPUs each.
On our cluster, CPU and GPUs on the same computer
communicate through PCle whereas computers commu-
nicate through Infiniband Network.

The mapping of an application on the architecture is
specified in the textual representation of the application
DFG. Figure 7 shows a possible mapping between the
application DFG and the AG we presented earlier.

The designer’s code is then compiled and linked with
a library we developed, called Parallel Computations with
Communications Overlap (PACCO). This library allows
to obtain a binary which can execute the application
with computation - communication overlap capability.
Since we rely on MPI [13] for inter-computer commu-
nications, we use mpirun to distribute then launch the
application on the cluster. At runtime, the DFG with its
mapping annotations and the AG are analyzed. Some
graph transformations are done to allow communication
- computation overlap and to obtain an optimized mem-
ory allocation. We then create the threads that will man-
age the CPU and GPU tasks: DFG nodes firing, memory
transfers and synchronizations. This code needs to be re-
compiled only when the designer introduces a new data
type (resolution functions) in the DFG or associates a
new function (C++ class) to a DFG node.

To summarize, the designer role is:

1. provide an application DFG

provide an AG

3. provide a c++ class description for each kind of func-
tion associated to the DFG nodes

4. complete resolution functions that are called at run-
time to do the memory allocations

o

Figure 8 summarizes all the steps of the design flow
and its execution process. The designer provides the in-
formation within the dark rounded rectangles.

4.2 At Runtime

The objective of graph analysis is to obtain an Imple-
mentation Graph (IG) that contains information used by

gpu0_cpul gpu0_cpu0
pcie pcie

gpul_cpul <>  cpul (€«—>» cpud <> gpul_cpul
pcie ib pcie
pcie pcie

gpu2_cpul gpu2_cpu0

Fig. 6: Architecture Graph example

=l gpul_cpu0 [ gpu0_cpu1

matrix

=] gpup_cpu0d

matrix

gpul_cpul

cput pcie

pcie

pcie | gpu2_cpu0 gpu2_cpul

Fig. 7: DFG mapped on AG

each CPU and GPU thread to determine the data flow
path, an optimised buffer allocation, functions schedul-
ing and their repartition among the processing elements.
There are five steps the execution process goes through
and which are detailed in the following subsubsections:
node scheduling, buffer insertion, buffer size, optimizing
memory allocation and computing node’s latency.

ST T T T T T N - >

£ 1 - (
\ Resolutions functions \f 1| Ct+classes to be fired }\'
N | [PaccoLb] 1 g v

e b

Application launch ]
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Implementation graph
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Fig. 8: Design flow



4.2.1 Scheduling

First step consists in finding a schedule, i.e. the nodes’
firing order for each iteration of the DFG. For this pur-
pose, a recursive algorithm is used which principle is as
follows: a node can be scheduled if and only if all its pre-
decessors are scheduled, otherwise schedule the predeces-
sors. Each time a node is scheduled, it takes the value
of a counter which is then incremented. The schedule is

specified in the first element of the couple appearing on
each DFG node label.

4.2.2 Buffer Node Insertion

The DFG of an application specifies the data depen-
dencies (edges) between computations (nodes). From the
implementation point of view, we need buffers to store
the data that is produced and consumed by the nodes.
This means that buffers are required between nodes. This
is easily done on the application DFG by interleaving
buffers between nodes. However, while mapping an ap-
plication DFG to an AG we introduce some architec-
ture specific constraints which makes the data flow path
evolve. When mapped on the same processing element,
buffer insertion between nodes is the same as working
directly on a DFG ; when mapped on different process-
ing elements, the data flow path becomes longer and its
length may vary. Figure 9 illustrates the result of buffer
node insertion of the application DFG presented in Fig-
ure 5 on the AG shown on Figure 6 with the mapping
proposed in Figure 7. For example we consider the case
of nodes b And c2 that have a producer-consumer rela-
tionship. Node b is mapped on GPU1 of CPUOQ, whereas
c2 is mapped on GPUO of CPUL. To go from GPU1 of
CPUO to GPUO of CPU1, you have to pass by CPUO and
then by GPUL. Thus, four buffers are required: (1) bn_2
allocated on the memory of GPU1 of CPUO computer (2)
bn_9 allocated on the CPUO computer main memory (3)
bn_10 allocated on the CPU1 computer main memory
(4) bn_11 allocated on the memory of GPUO of CPU1
computer. We notice that the data produced by b is also
consumed by c1. As the architectural path going from
b to c1 is included in the path from b tp c¢2, no other
buffer node is required.

To insert the buffer node, we implement the algorithm
which behaves as follows: a buffer node is inserted for
all DFG nodes outputs. The inserted buffer nodes are
mapped on the same processing element as the DFG
node it is connected to (case of buffer nodes bn_0. .5,
in Figure 9). For each of these buffer nodes, we search
an architectural path going from the considered buffer
node to the DFG node it targets. When travelling along
this path, with every processing element crossed, we in-
sert a new buffer node if there exists none with the same
source, cf. the two paths of previous example.

[=] gpu0_cput

gpul_cpul

gpu2_cpul

Z

cpul

[=] gpu1_cpu0 = cpud

[=] gpu0_cpu0

\/ gpu2_cpud

Fig. 9: Buffer nodes insertion

4.2.8 Buffer Depth

This step consists in determining the depth of each buffer
node: simple or double. The choice of the depth of a
buffer node depends on the location of its surrounding
computation nodes (same/different processing elements)
and on the communication strategy (with/without com-
putation overlapping): if a buffer receives/sends data to
a processing element different from its own in asynchron-
uous run, it has to be allocated as a double buffer. The
communication strategy also impacts the IG model of
execution, cf. sub section 4.3.

4.2.4 Optimizing Buffer Memory Usage

Memory allocation optimization is possible thanks to an
optimization pass that allows to share buffers inside a
processing element. This is done thanks to a graph col-
oring algorithm which colors the mergeable buffer nodes
in the same color ; the goal is to reduce the number of col-
ors in the graph. The coloring algorithm takes one input:
the buffer nodes’ incompatibility graph. This incompati-
bility graph, containing information about buffer nodes’
ability to be merged, is produced following a single rule:
two buffer nodes are incompatible (cannot be merged)
if they are connected to the same computation node. It
makes sense since a computation node may read/write
to the same memory location otherwise.



Moreover, when two or more buffers are merged, it
is the buffer with the biggest need in memory size that
is allocated. Thus, all merged buffers are contained in
the most voluminous one. Figure 10 shows the results
of this optimization applied to our presented example
application. In the context of computation - communi-
cation overlap, the part of bn_1 double buffer which is
not used by the asynchronous transfer between CPU1
and GPUO of CPUL is read by c2,d,f and written by
e and buffer node bn_3 is read by e,c3 and written by
d,f. To ensure data consistency, all these transfers are of
course done in the scheduling order. This optimization
has freed the allocated memory from two buffer nodes.

4.2.5 Latency Computation

Transfers between processing elements introduce delay
cycles in either with/without computation - communi-
cation overlap cases.

— with computation - communication overlap: each dou-
ble buffer introduces a delay of one cycle. The latency
specified in the second element of each node’s couple
in figure 9 were computed in this case

— without, each pair-connected buffer nodes located on
different processing elements introduces a delay of
one cycle

So, whatever the case, at a given time, DFG nodes can be
working on different iterations of the application DFG.
Moreover, to avoid firing DFG nodes before valid data
is present, and thus to avoid transients, we compute the
latency of the input of each DFG node. The threads only
fire a DFG node after a number of cycles equals to this
latency.

4.3 Runtime Strategies

At runtime, a POSIX CPU thread is associated to each
processing element (a CPU thread is dedicated to each
GPU device for transfers/computations management).
Each thread knows its attributed nodes by checking the
IG for nodes mapped to its processing element. Two
types of execution exist. Each one iteratively executes
in cycles as follows:

(=] gpu0_cput

Fig. 10: Buffer nodes optimization

1. without computation - communication overlap
— launch CPU-CPU transfers
— wait for all cluster’s transfers completion
— launch CPU-GPU transfers
— wait for all cluster’s transfers completion
— in each processing element, sequentially fire nodes
according to their scheduling order (processing el-
ements run simultaneously)
— wait for all processing elements’ computation to
be finnished
2. with computation - communication overlap
— launch asynchronous transfers and fire nodes si-
multaneously
— wait until all previous tasks are finnished

5 Case Studies

In this section we present three experiments that were
made with our tool. The first one shows its ability to im-
plement an application on a multi-host multi-gpu cluster
with computation - communication overlap. The second
one deals with the implementation of a 3D ganulometry
application used to study a material’s properties. At last,
the third one presents the implementation of an applica-
tion for computing visual saliency maps.

5.1 Multi-Host Experiment

This section presents an experiment which shows the
ability of our design flow to implement an application
on a multi-host multi-gpu cluster with computation -
communication overlap.

The cluster that was used for this experiment is com-
posed of two hosts connected by Quad Data Rate (QDR)
x4 Infiniband adapters connected on each host on a PCle
V2 X8 slot. QDR maximum throughput is 10 Gb/s per
line in each direction. Thus with x4 (four lanes) adapters,
the maximum throughput is 40 Gb/s (5 GB/s), in each
direction. However, we measured useful data transmis-
sion rate of 2.6 GB/s in each direction, which is in ac-
cordance with the manufacturer’s data. Each host has
also a GTX 285 GPU board connected to a PCle v2 x16
slot. The PClIe v2 bus offers a maximum throughput of
500 MB/s per line in each direction, leading to a maxi-
mum bandwidth of 8GB/s in each direction with 16 lanes
(x16). In practice we measured useful data transmission
rate of 5 GB/s in each direction.

The application that was used for this experiment con-
sists of a four nodes DGF that exchange matrices, cf. fig-
ure 11. The P (Producer) node generates matrices that it
sends to a first I (Incrementer) node that increments each
element of the matrix it receives. This first incrementer
node sends its result to a second incrementer node I.
The matrix produced by this last node is then sent to



the C (Consumer) node that can be used to make func-
tional checks on the results produced by the two I nodes.

Fig. 11: Application graph of the multi-host experiment

‘We mapped this application on the cluster as shown
in figure 12. The application, although similar to that
presented in section 3, has this time been distributed over
a multi-host architecture (the design flow we presented
in section 4 is able to switch from these two configura-
tions only by changing a few lines of the architecture and
mapping description files).

matrix

matrix

Fig. 12: Mapping used in the multi-host experiment

Recall that our goal is to demonstrate the ability of
our tool to implement an application with and with-
out computation - communication overlapping. So our
approach was to define experimental conditions under
which the computations time are of the same order of
magnitude as those of communication. As the produc-
tion time of a matrix (which can be done by the P node)
and the check time of a matrix (which can be done by
the C node) on a CPU is roughly one order of magni-
tude greater than the communication between hosts or
between CPUs and their associated GPU, we have cho-
sen not to make any processing in the P and C nodes. We
therefore varied the computational load with the I nodes
which are executed by the GPUs. Each incrementer node
runs the GPU kernel shown in figure 13. This kernel takes
as input the matrix in and produces as output the ma-
trix out. The width and height parameters are used to
specify the matrix size. The argument nb_loop is used to
vary the kernels computation load by varying the upper

bound of the following series

i<nb_loop+3

1
2 =

1=2

which converges to 0.5 and which we used to compute 1.
It’s not very interesting from a functional point of view,
but the goal was to have a simple way to vary the com-
putational loads on the GPUs.

__global__ void kernel_matrix_inc(
float* in,
float* out,
int width,
int height ,
int nb_loop) {

unsigned int x =

blockldx .x*blockDim.x 4+ threadldx.x;
unsigned int y =

blockIdx .y*blockDim.y + threadldx.y;

float one = 0.0f;

int i;

for( i = 2; i < nb_loop+3; i++ ) {
one += (1.0f/1)*(1.0f/1);

(int)(one + 0.5f) );

one =

(float)(

int index = yxwidth+x;
out [index] = in[index]+one;

Fig. 13: GPU kernel exucuted by the incrementers

We compared the performances of this application
with and without computation - communication overlap
for matrix size of 16 MB for values of nb_loop within the
range [0;400]. Figure 14 shows the allocation of buffers
made by the tool in both cases with and without com-
putation - communication overlap. In the without case,
the tool instantiates 2 * 16 MB = 32 MB of memory
on both the hosts (main memory) and the GPUs. In the
with case the sizes of the buffers are doubled.

The ”without overlapping” curve in figure 15 shows
the time in ms (left ordinate scale) required to com-
plete an iteration of the algorithm depending on the
value of nb_loop without computation - communication
overlap. The ”with overlapping” curve shows the same
results with computation - communication overlap. The
”speedup” curve shows the speedup (right ordinate scale)
which is calculated as the ratio of the curve without com-
putation - communication overlap and with computation
- communication overlap.
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Fig. 14: Buffer allocations generated for the multi-host
experiment
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Fig. 15: Results of the multi-hosts experiment

The ”without overlapping” curve is a straight line.
This is what we expect since the computation and com-
munication are serialized and since the complexity of the
algorithm executed by the GPU is in o(nb-loop). More
formally, if we note:

— T the transfer time of a matrix on infiniband,

— T}, the transfers times of a matrix from CPU to GPU
and from GPU to CPU (which are done in parallel),
« the slope of the line,

— T the time of an iteration

then we can write, assuming that transfers times are
greater than the time used by the tool to initiate the
transfers and to launch the kernels:

T =Ty, + Ty + axnb_loop

As expected the ”"with overlapping” curve starts with
a horizontal line, which corresponds to the values of
nb_loop for which the calculation time is shorter than
the communication time. Then, when the calculation

time is greater than the communication time, the ”with
overlapping” curve is a line parallel to the ”without over-
lapping” curve. As the transfers and communications are
parallelized, the expression of this "with overlapping”
curve is:

1. if a * nb_loop < max(Typ, T)

T = max(Ty, Th)
2. if o x nb_loop > max(Ty, T1,)

T = a*nb_loop

The expression of the speedup S, which corresponds to
the ”speedup” curve, is therefore:

1. if axnb_loop < max(Typ, Th)

Tiy + T + a x nb_loop

S =
max(ﬂ-b, Th)

It is a linear equation which has a maximum value
when « *x nb_loop = max(T;, Tr) equals to:

Tip + T,

_—— 41
max (T, Th) *

We can see that the speedup is therefore at most

equals to 3 if T, = T}y, which occurs when the com-

putation time equals the communication time on in-

finiband which also equals the communication time

between CPUs and GPUs.

In our case, if we note:

— R, the data rate on the infiniband,

— R;, the data rate in each direction between CPUs
and GPUs,

— d the matrix size

the expression of S becomes (knowing that the data

rate on the infinband is the lowest):

d d
~+ & R;
_ Ry Ry, _ ib
S=-t—""4+1=2+ i
Ry
which equals to 2 + 25%6 = 2.5 with the figures given

in the beginning of this subsection. This speedup is
in line with the speedup curve of figure 15 which has
a maximum equals to 2.7 at nb_loop = 120.
2. if o x nb_-loop > max(Ty, T},)
Tip +Th

=—+1
s oz*nb,loopjL

which has a 400 asymptote equals to 1.

To conclude the experiment, we obtained results con-
sistent with those expected. In addition, our tool al-
lows switching from configurations with computation -
communication overlap to configuration without only by
changing a parameter of the program call. Similarly, it
is as simple to change the mapping of the application
nodes. The tool therefore simplifies and encourages the
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architectural exploration. From the standpoint of per-
formance, we have seen that the computation - commu-
nication overlapping requires a memory usage 2 times
greater than without, at constant-grained computations,
and that it is only interesting when the communication
time is the same order of magnitude as the computation
time.

5.2 Granulometry

In the previous section, we validated the portage of a
functionnal application to a multi-GPU cluster which
permited to validate our design flow. This section will
discuss the implementation of a real-life application used
in the study of materials: granulometry [28].

5.2.1 Algorithm Description

Granulometry is the study of the statistical distribution
of the sizes of a population of finite elements. In other
words, it is the study of an image’s objects sizes. In
physics, that would resemble sieving (grain sorting): the
image is filtered with a series of sieves with decreasing
hole sizes. A more specific goal is to define the predomi-
nant size of objects in the image.

This is done using the morphological opening opera-
tion. An opening is the combination of two mathematical
morphology operators: it is an erosion followed by a di-
lation. These operations are filters and the mask used by
these filters is called a structuring element. When per-
forming an opening on an image, all finite element that is
smaller than the structuring element disappears. Thus,
the granulometry application processes an input image
by computing openings with an increasing structuring el-
ement size until all objects in the volume disappear i.e.
the volume is empty. One optimization consists in per-
forming morphological operations with a constant struc-
turing element size: an erosion/dilation with a structur-
ing element of size n x x is the same as performing n
successive erosions/dilations with a structuring element
of size z. In the end, our granulometry application looks
like Figure 16.

After each opening, we collect the number of positive
pixels still present in the image. We then plot the results
on a curve: the granulometric curve. The abscissa of this
curve represents the number of openings and the ordinate
shows the number of positive pixels left in the image. The
discrete derivative of the granulometric curve is called
the pattern spectrum and the abscissa of its peak is the
predominant size of objects in the image (Fig. 17).

5.2.2 Implementation Graph

Based on the granulometry decomposition of Fig. 16,
computing entities (nodes) are easily identified: (1) the

As long as there exists pixels of value in the image, we iterate.

1% iteration

counter
2" iteration i
counter

foriin[1 .. nbr_iterations]

N"iteration A
E Pixel
Erosion .

Fig. 16: Granulometry application decomposed.

Erosion

70000 : . . .
Granulometric curve —+—
Pattern spectrum —-% -

60000 |~ .
50000 [~
40000 |-
30000 [~

20000 [~

Number of pixels of value remaining in the image

10000 |~

Structuring element size

Fig. 17: Example of a granulometric curve. The pattern
spectrum’s extrema indicates the predominant size of the
objects in the image.

CPU thread reads the image to process from hardware
and (2) the GPU thread computes the openings until
the image is empty. However, for a certain image size
and from a certain number of openings the GPU com-
putation time becomes preponderant to other CPU and
communication times. Therefore, in order to obtain an
equally distributed workload per Processing Element, we
chose to use two GPUs. This will introduce three more
synchronization cycles of latency in the *without compu-
tation - communication overlap’ case and one more cycle
of synchronization in the 'with computation - communi-
cation overlap’ case. Also, this application is not adapted
for pipeline usage. Yet, it will leverage the load balanc-
ing capability of our design flow. Thus, the process can
be divided into three computations / five tasks (Fig. 18
and Fig. 19):

1. CPU thread reads the image to process from hard-
ware,

2. CPU — GPU 0 image transfer (automated by the
flow),

3. GPU 0 computes the N first openings (N is fixed by
the user),

4. GPU 0 — CPU — GPU 1 intermediate result trans-
fer (automated by the flow),

5. GPU 1 computes the M next openings.
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Fig. 18: Granulometry application divided in three dif-
ferent tasks.

iteration

=] gpu1_cpuo (=] =] gpu0_cpu0

cpu0

Fig. 19: Granulometry implementation graph.

5.2.8 Results

As earlier mentionned, the application has been ported
on two GPUs to allow an optimal workload distribution.
That is possible by tuning the workload on both GPUs
by fixing the number of openings. The number of open-
ings, the image size, its location and some other user code
parameters are read at runtime from a file. Hereafter, the
results for different GPU workloads with computation -
communication overlap (Fig. 20). In this example, the
image needs 40 openings to sieve all finite elments. The
distribution of these openings on both GPUs is optimal
when openings 1-28 are performed on the first gpu while
the 29-40 others are performed on the second one : it
shows a speedup of x2.7 thanks to an overlap between
CPU and GPUs computations compared to a sequential
computation.

5.3 Visual Saliency Model
This section describes the implementation of a compute

intensive application related to a biologically-inspired
model. Based on the primate’s retina, the visual saliency

2000 T 3
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1500

7
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© 41
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{05
P S i ‘ ‘ ‘ ‘ ‘ ‘ 0
0 5 10 15 20 25 30 35 40

nb_openings on gpu_0

Fig. 20: Load balancing the granulometry application on
two GPUs while CPU read time is constant.

model is used to locate regions of interest i.e. the capa-
bility of human vision to focus on particular places in
a visual scene. We propose an implementation of this
model on a multi-gpu node with computation- commu-
nication overlap.

Retinal filtering

v

Cortical-like filters

vy v

Interactions

vy v

Normalizations

vy Y

Summation

static
saliency
map

Fig. 21: Static pathway of the saliency model
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5.3.1 The Model

The saliency model implemented is the one proposed by
[16] as shown in figure 21. Visual information is decom-
posed into different spatial frequencies and orientations
in the primary visual cortex using Gabor filters. Each
filter G;; at orientation i and at frequency j, is deter-
mined by its central radial frequency f; and its standard
deviation o;; (figure 22).

(W = £, +v”
Gij(u,v) = exp(—*ijz
u' =wu-cos(0;) + v - sin(6;)
v =wv-cos(0;) —u-sin(6;)

Neuron responses in the primary cortex are influ-
enced by other neurons. Interactions occur with the same
pixel in different partial maps, that reinforce objects ly-
ing in the same orientation (but different frequencies)
while inhibiting those of different orientations and the
similar frequency. A region is salient if it is different from
its neighbors. Then, after a first normalization, each map
is multiplied by a factor (max(m;;) — m;;)?, maximum
of the map minus its average squared. Finaly, all partial
maps are added to obtain the static saliency map. This
bottom-up approach of the static pathway is detailled in
[21].

5.8.2 Algorithm Implementation

First, the input image r_im is filtered by a Hanning func-
tion to reduce intensity at the edges. In the frequency do-
main, cf_fim is processed with a 2-D Gabor filter bank
using six orientations and four frequency bands. The 24
partial maps cf_mapsli, j| are moved in the spatial do-
main c_mapsli, j]. Short interactions inhibit or excite the
pixels, depending on the orientation and frequency band
of partial maps. The resulting values are normalized be-
tween a dynamic range before applying Itti’s method for

Fig. 22: Cortical like Gabor filters, set of 24 G;; filters
with 4 frequencies and 6 orientations

Algorithm 1 Static pathway of visual model

Input: An image r_im of size w -
Output: The saliency map
1: r_fim «— Hanning filter(r_im)
2: c¢f _fim «— FFT(r_fim)
3: for i <+ 1 to orientations do

4: for j < 1 to frequencies do

5: cf -mapsli, j| < Gabor Filter(cf_fim,i,7)

6: comapsli, j| — IFFT(cf-maps]i, j])

T r_mapsli, j| < Interactions(c-maps]i, j])

8: r_normaps|i, j] «— Normalizations(r_maps]i, j])
9: end for

10: end for

11: saliency-map «— Summation(r_normapsli, j|)

normalization, and suppressing values lower than a cer-
tain threshold. Finally, all the partial maps are accumu-
lated into a single map that is the saliency map of the
static pathway (algorithm 1) [25], [26].

5.3.8 Results

Porting this application on a single gpu gives acceptable
results for real-time exploitation. For a 512x512 data in-
put, the output rate is 44 fps. However, for a 720x576
data input, it drops to 21 fps. In order to obtain a real-
time (30 fps) rendering with input data dimensions big-
ger than 512x512 | the application has been pipelined
on two GPUs. An exhaustive exploration of all possible
work repartition between both GPUs brings us to chose
the following optimal configuration: the first five steps
(Hanning filter, FFT, Gabor filter, IFFT, Interactions)
are ported on the first gpu while the last step (Normal-
izations) is ported onto the second gpu.

Figure 23 shows the trace look of the resulting config-
uration for one output (one frame). By using two GPUs,
the output rate is equal to the lowest of both GPUs:
here GPU 0 has the lowest one and the output rate of
the application is 33 fps. Note that while GPU 0’s oc-
cupation time is 100%, GPU 1’s computations occupy
only 55% of its time. That is the cost needed in order to
implement a real-time application. The workload could
have been better balanced between both GPUs if the in-
teractions step could be devided in smaller grain. Also,
it is interesting to note that the CPU < GPU transfer
time is higher with this configuration than with one sin-
gle GPU. That is because 24 partial maps are exchanged
between GPU 0 and GPU 1 instead of a single map on a
single GPU but since there is communication - computa-
tion overlap that doesn’t affect performance. Note that
the amount of allocated buffers on GPU 0 (Figure 24) is
divided by two after the buffer optimization pass.

5.8.4 Discussion on data and temporal (pipeline)
parallelisms

One might wonder why we implemented the visual saliency
application as a pipeline: instead of transferring inter-
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step time (us) time (%total)
Hanning filter 136 0.60
FFT 358 1.57
Gabor filter 1446 6.33
IFFT 6645 29.09
Interactions 4127 18.07
Normalizations

-normalize 3269 14.31

-Itti’s method 3453 15.12

-normalize and fuse 3405 14.91
Total 22839 100

(a) 512x512

step time (us) time (%total)
Hanning filter 225 0.47
FFT 738 1.55
Gabor filter 2276 4.77
IFFT 14908 31.23
Interactions 12510 26.21
Normalizations

-normalize 5554 11.64

-Itti’s method 5839 12.23

-normalize and fuse 5681 11.90
Total 47731 100

(b) 720x576

Table 2: Time consumption by each step of the saliency
application for different input dimensions.

CPU ., GPU transfer
Kernels on GPU_0

- Hanning Filter 225)

-FFT 714

- Gabor Filter 2268

- IFFT ( 14505 )

- Interactions 12501
Kemelson GPU_1 (I TGE05 N
- Normalization 5468

- Itti's method (5770 )

- Normalize and fuse 5581

Fig. 23: Trace look (ms) for a pipelined implementa-
tion of the saliency application on a video with 720x576
pixels resolution. Transfers between devices and kernels
launched on different devices occur simultaneously.

mediate images from one to the other GPU in the visual
saliency model, we could also distribute different images
to the GPUs and do the complete processing there.
This question arises when implementing any DFG appli-
cation on a multi-processor architecture: is it preferable
to allocate the application’s nodes on the different pro-
cessing elements, or to run a whole DFG instance on each
GPU, each of them working on a different image?
However, pipelining the application has some more ad-
vantages. It ensures:

— the output is delivered at a constant time rate (in the
case of data independent computations, which is the
case of the presented visual saliency application),

— the output is delivered in the right order,

— no further code development or modifications is needed.

It only needs to be split into steps dispatched onto

[=] gpu0_cpu0

complex_t_maps

=] gpul_cpu0

complex_t_maps
matrix_maps

matrix

complex_t
matrix

complex_t

Fig. 24: Saliency implementation graph.

fers are hidden with computation-communication over-
lap.

The only disadvantage is when workload on GPUs is
poorly distributed. Then, there is a loss compared to
peak performance.

If data were to be split among GPUs and the com-
plete process done there:

— the designer has to think how to split the input data
into as many data sets as there are GPUs executing
the application. It can’t just be split in three random
chunks of data. It has to be split in some kind of
Round Robin manner among the GPUs,

— the amount of data per GPU may need to vary de-
pending on the throughput of each GPU

— the frames delivered by all GPUs data sets will most
probably not be delivered in the same order as the
original input data,

— the output Frames Per Second won’t be constant.

Thus the advantage is that the designer does not have
to deal with input data sets repartition, output data re-
ordering and eventually with output data rate balanc-
ing. In addition, some applications require a pipelined
implementation, typically applications with latency con-
straints and which have computations with inter itera-
tions dependencies, i.e. computation nodes which have
an internal state.

6 Conclusion

This paper presents our analysis of task parallelism im-
plementation on a multi-gpu cluster, dealing with com-

processing elements (CPU or GPU). Intermediate trans-munication - computation overlap. Using our design flow,
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the programmer doesn’t have to deal with inter - com-
ponent communication and memory management. He
doesn’t waste time on basic, rudimentary but sometimes
complex coding (MPI, POSIX threads, task synchroniza-
tion ... ) but rather focuses on the development of com-
putation code. Thus, an application developed for a cer-
tain cluster configuration is easily portable on another
platform. As shown in the previous case studies, the pro-
posed design flow permits an easy deployment of an ap-
plication onto the multi-GPU cluster thus leaving more
time for exploitation of the best mapping configuration.
Also, since the efforts undertaken by the GPU manufac-
turers to make their hardware more and more adapted
to scientific computations, inter - processing elements’
communication is to become the most important pro-
gramming bottleneck after kernel coding. Therefore, we
believe that hybrid architecture exploitation needs to be
adressed with deeper interest.
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