
HAL Id: hal-00746872
https://hal.science/hal-00746872

Submitted on 29 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust adaptive numerical integration of irregular
functions with applications to basket and other

multi-dimensional exotic options
Christophe de Luigi, Jérôme Lelong, Sylvain Maire

To cite this version:
Christophe de Luigi, Jérôme Lelong, Sylvain Maire. Robust adaptive numerical integration of irregular
functions with applications to basket and other multi-dimensional exotic options. Applied Numerical
Mathematics, 2016, 100, pp.14-30. �10.1016/j.apnum.2015.11.001�. �hal-00746872�

https://hal.science/hal-00746872
https://hal.archives-ouvertes.fr

ADAPTIVE NUMERICAL INTEGRATION AND CONTROL VARIATES FOR

PRICING BASKET OPTIONS

CHRISTOPHE DE LUIGI∗, JÉRÔME LELONG† , AND SYLVAIN MAIRE∗

Abstract. We develop a numerical method for pricing multidimensional vanilla options in the Black-Scholes
framework. In low dimensions, we improve an adaptive integration algorithm proposed by two of the authors by
introducing a new splitting strategy based on a geometrical criterion. In higher dimensions, this new algorithm is
used as a control variate after a dimension reduction based on principal component analysis. Numerical tests are
performed on the pricing of basket, put on minimum and digital options in dimensions up to ten.

Key words. Option Pricing, Adaptive Numerical Integration, Control Variate

AMS subject classifications. 65C05, 65D30,91G60

1. Introduction. Pricing financial derivatives generally boils down to numerically compute
an expectation, at least for European type contracts. Basically, there are two ways of doing so:
either solving a partial differential equation or resorting to Monte Carlo techniques. Monte Carlo
integration is known to provide better results when the dimension of the problem increases but
for reasonably small dimensional problems, its efficiency is not that clear. However, alternative
numerical integration techniques may help in such situations. In the Black-Scholes framework,
the pricing of vanilla options reduces to a numerical integration problem over R

d, where d is the
number of underlying assets. This problem has some specificities coming from the properties of
the function to integrate. First, the integrand decreases quickly away from the origin and hence we
can consider that the integration domain is a hypercube [−A,A]d with A relatively small. Second,
the integrand is clearly not a smooth function in the whole domain as it is only continuous at
the interface between the area where the function vanishes and the area where it is positive.
Moreover, this interface is neither known and nor located at the boundary of the hypercube so
there is no hope of using techniques like the periodisation method [7] to increase the smoothness
of the integrand. Finally, the integrand is a muldimensional function in a dimension d, which can
be large, so one also has to deal with the curse of dimensionality.

Hence, it seems quite natural to use Monte Carlo or quasi-Monte Carlo [17] methods to face
such a difficult problem. In fact a crude use of these methods is not necessarily sufficient to reach
a good accuracy. Besides the usual variance reduction methods, one needs to develop adaptive
methods to make them really competitive. In many situations, the function to integrate or to
approximate may have completely different behaviors in terms of variations or even in terms
of regularity in different parts of the domain D. In those cases, it might be more efficient to
adaptively split D in subregions according to error indicators based on quadrature points. The
most famous adaptive Monte Carlo integration routines are MISER [20] and VEGAS [12]. They
rely on stratified and importance sampling and error indicators based on the empirical variance,
respectively. Quasi-Monte Carlo versions of these two algorithms have been introduced in [21].
More recently, adaptive approaches have been developed for stratified sampling [5, 8] and for
importance sampling [11]. The idea of adaptive algorithms is to make use of past simulations to
help better leading future ones. In the case of stratified sampling, both the number of samples in
each strata and the boundaries of the strata can be learnt inline. The idea remains quite similar
for adaptive importance sampling, which consists in adaptively learning the optimal change of
measure from the already drawn samples. Following the methodology of [22], two of the authors
have developed an adaptive integration algorithm [3] based on quasi-Monte Carlo quadratures,
which proved to be efficient for very smooth but also for less smooth functions [16]. This algorithm
has already been tested on the pricing of basket options achieving excellent results in dimension

∗Aix Marseille Université, CNRS, ENSAM, LSIS, UMR 7296, 13397 Marseille, France; Université de Toulon,
CNRS, LSIS, UMR 7296, 83957 La Garde, France; {deluigi,maire}@univ-tln.fr

†Grenoble INP, Laboratoire Jean Kuntzmann, CNRS UMR 5224, 51 rue des Mathématiques, 38041 Grenoble
cedex 9, France; jerome.lelong@imag.fr

1

two but loosing most of its efficiency for larger dimensions. The loss of accuracy is mainly due to
the difficulty to capture the interface between the two regions of interest.

Our goal is to improve this algorithm in order to use it in higher dimensions, for the pricing
of more general options like digital or put on minimum options and also for the computations of
sensitivities with respect to the parameters of the Black-Scholes model. The improvements of the
algorithm will consist in a new splitting criterion and on a dimension reduction using a principal
components analysis combined with control variates.

The rest of the paper is organized as follows. In section 2, we describe the different kinds of
options considered in the Black-Scholes framework and we discuss the type of sensitivities we are
interested in. In section 3, we recall the adaptive algorithm developed in [3] and introduce a new
criterion based on very simple geometric considerations like the ones used in mesh refinement for
finite element methods. In section 4, we compare the new criterion to the old one on the pricing
of different types of options in low dimensions. We focus on examples in dimension two in order
to emphasize the quality of the mesh refinement. Section 5 is devoted to sensitivity analysis.
We compute the Delta of the different derivatives using standard deterministic techniques like
polynomial interpolation allowed by the high accuracy of our adaptive pricing method. The last
section deals with higher dimensional models. The adaptive method is coupled with dimension
reduction via a principal component analysis to derive a variance reduction method based on
control variates.

2. Presentation of the model.

2.1. The model framework. We consider a Black-Scholes model in dimension d in which
each asset is supposed to follow the standard one dimensional dynamics given under the risk
neutral measure by

dSi
t = Si

t(rdt + σidW
i
t)

with Si
0 = si and where Wt = (W t

1 , ...,W
t
d) denotes a vector of correlated standard Brownian

motions. The volatility σ is a vector in R
d, the instantaneous interest rate is r and (s1, ..., sd)

is the vector of spot values. The covariance structure of these correlated Brownian motions is
supposed to be defined by 〈W,W 〉t = Γt where Γ is a positive definite matrix with all its diagonal
terms equal to one. In the numerical examples considered in the next sections, we assume that

Γi,j = δi,j + ρ(1 − δi,j)

where the parameter ρ ∈] − 1
d−1 , 1[to ensure that the matrix Γ remains positive definite. We

introduce the Cholesky decomposition C of Γ (such that CCT = Γ) and denote by Ci its ith row
for 1 ≤ i ≤ d. The Black-Scholes model can be rewritten

Si
t = Si

0 exp

{
(r − σ2

i

2
)t+ σiCiBt

}

where now B is a standard d−dimensional Brownian motion.
In this model, we want to price options with payoffs written as functions of the asset price at

a maturity time T . Hence, the price is given by the discounted expectation exp(−rT)E(ψ(ST))
where the function ψ characterizes the option type. In the following, we consider three different
multidimensional options for

• Basket options with payoffs

ψ(ST) =

(
d∑

i=1

λiS
i
t −K

)

+

,

• Digital basket options with payoffs

ψ(ST) =

(
d∑

i=1

λiS
i
t −K

)

+

1{∀ 1≤i≤d, Si
t
≤Ui},

2

• Put on minimum options with payoffs

ψ(ST) =

(
K − min

1≤i≤d
Si

t

)

+

.

The vector (λ1, ..., λd) represents the weight of the different assets within the basket. These weights
may be negative to allow to consider exchange options. The variable K denotes the strike price
and the vector U corresponds to an upper barrier on the asset price at maturity time T . Most of
the time, the expectation E(ψ(ST)) needs to be computed numerically by means of Monte Carlo
methods. In order to use a systematic approach, the expectation E(ψ(ST)) is usually rewritten
as E(φ(G)) where G is a standard normal random vector in R

d and φ : Rd → R
+ is a measurable

and integrable function. To use our adaptive method described in the next section, we need to
transform the computation of E(φ(G)) into the numerical computation of

I(A) =

∫

[−A,A]d

φ(x)p(x)dx

where p(x) is the density of G and A ∈ R+ is chosen large enough to have a good approximation
of E(φ(G)) by I(A).

2.2. Key role of the delta. When selling a financial derivative, the price of the option
is obviously of a primary interest but one should keep in mind that the original definition of an
option price goes back to the replicating theory. The price is actually defined as the value at time
t = 0 of the replicating portfolio. Hence, the price becomes fairly useless if we do not know how to
implement the replicating portfolio; hopefully, we precisely know how many stocks the portfolio
should carry on at any time t and this quantity is given by the famous Delta of an option defined
as the gradient of the option price with respect to the spot vector

∆ = ∇S0
exp(−rT)E(ψ(ST)).

There are several numerical methods for computing the delta of an option. The most commonly
used method is based on a finite difference approach because of its automatic application. However,
when coupled with a Monte Carlo method it often yields a poor accuracy unless a very large number
of samples is used.

3. Description of the adaptive algorithm.

3.1. Quasi-Monte Carlo quadratures. Any adaptive integration method relies on a
quadrature rule designed for the non-adaptive case. While Monte Carlo or quasi-Monte Carlo
methods can deal with integrands with no or little regularity, usual quadrature rules like Gauss
product rules are built for functions having a given regularity or belonging to particular bases.
These quadratures should not be too sensitive to the dimensional effect and thus quadrature for-
mulae based on interpolation or approximation on different reduced size bases are considered. In
the case of d−dimensional Fourier bases on periodic smooth functions, Korobov spaces [9] are
built using that the Fourier coefficients am verify

|am| ≤ C

(m̃1m̃2...m̃Q)β

where m̃ = max(1, |m|) and β > 1 is linked to the regularity of the integrand. The corresponding
quadrature formulae are lattice rules [9, 23] which are exact for the most significant Fourier
coefficients according to this decay. Non-periodic but smooth functions can be periodized [7] to
still use these quadratures but with an increasing constant of decay.

In the case of polynomial approximations, Novak and Ritter [18] have obtained quadrature
formulae, which are exact for polynomials with total degree less than a given value. Based on the
use of the control variates method on piecewise interpolation polynomials, Atanassov and Dimov
[1] built a numerical method reaching an optimal rate of convergence for multivariate smooth
functions with a fixed degree of differentiation.

3

The previous quadratures give highly accurate results for smooth functions but they can yield
a really poor accuracy for non-smooth functions. Monte Carlo methods are somehow more stable
because they are not sensitive to the smoothness of the integrand. The quadratures developed
in [16] combine the approximation on reduced Tchebychef polynomial basis and the use of quasi-
Monte Carlo points to build this approximation. They are especially efficient for very smooth
functions but they can also handle pretty well only continuous functions. They have been obtained
after successive improvements of an initial adaptive Monte Carlo method [13] via quasi-random
sequences [15] and the introduction of Tchebychef polynomial basis of Korobov type [14]. We
recall these formulae for a multivariate function defined on the hypercube [−1, 1]d. For m ∈ N,
let m̂ = max(1,m). We introduce the set

Wd,q =
{
m ∈ N

d/ (m̂1...m̂d) ≤ q
}

which corresponds to the level q of approximation. The reduced Tchebychef polynomial approxi-
mation writes

f(x1, x2, .., xd) ≃
∑

m∈Wd,q

bmTm1
(x1)Tm2

(x2)..Tmd
(xd)

where the Ld,q = card(Wd,q) coefficients bm verify

|bm| ≤ C1

(m̂1m̂2...m̂d)2L

for a C2L function. To compute the numerical approximation of the coefficients bm, we fit the
model

∑

m∈Wd,q

bmTm1
(x1)Tm2

(x2)..Tmd
(xd)

to the observations of the function f at some quadrature points Pi = (X
(1)
i , ..., X

(d)
i) with 1 ≤ i ≤

M. The choice of the points Pi is obviously crucial for the condition number κ(A) of the least-
square matrix A. We have proved in [16] that if these points are independent random variables
distributed according to the multidimensional Tchebychef density

w(x1, x2, .., xd) =

d∏

i=1

1

π
√

1 − x2
i

1[−1,1](xi)

then κ(A) goes to 1 when M → ∞ at a Monte Carlo speed σ√
M

. Moreover the variance σ2 is

bounded by one for any set Wd,q. An even better choice to represent the density w is to use
quasi-Monte Carlo points or quantization points [19].

We compute numerically the inverse of the matrix A in order to obtain once and for all
quadrature formulae for each of the coefficients bm and finally a quadrature formula for the integral
itself. In the following, the quadrature points are built using α × Ld,q Halton points with one
additional point at each corner of the domain for a total of M = α × Ld,q + 2d points. In most
situations, the parameter α is chosen equal to 3 which is sufficient to ensure a small value for κ(A).
The corner points are control points to detect a possible change of regularity of the function f .
Nevertheless, we will see in Section 4, that more quadrature points may be necessary to detect
this change of regularity on the difficult example of digital options. The approximation of

I(f) =

∫

[−1,1]d

f(x)dx

is given by the quadrature formula

Qd,α,q(f) =

α×Ld,q+2d∑

i=1

ωif(X
(i)
1 , ..., X

(i)
d)

4

which is obtained thanks to the corresponding approximations Qd,α,q,bm
(f) of the coefficients bm

and the integration of the approximation model. We also denote by Qd,α,q,R(f) and Qd,α,q,bm,R(f)
the relative quadrature formulae on a given rectangle R which will be used in the adaptive inte-
gration algorithm.

3.2. Error indicators. We keep the same error indicators than the one used in our previous
paper [3]. They rely on hierarchical quadratures for the integral of f but also for some of the
coefficients of its weighted mean-square approximation. We select two sets Wd,q1

and Wd,q2
with

1 ≤ q1 < q2, the corresponding quadrature formulae Qd,α,q1
(f) and Qd,α,q2

(f) for the integral of f
and also the quadrature formulae for some of the leading coefficients in the approximation model.
These coefficients are the d+ 1 coefficients belonging to the set Ad of the coefficients bm for which
all the indexes (m1,m2..,md) are equal to zero or only one is non-zero and equal to one. Our error
indicator Ed,α,q1,q2,R(f) is

|Qd,α,q1,R(f) −Qd,α,q2,R(f)| +
∑

m/bm∈Ad

|Qd,α,q1,bm,R(f) −Qd,α,q2,bm,R(f)|

on a given hyperrectangle R. This indicator is more robust than the usual indicator based on the
comparison between only Qd,α,q1,R(f) and Qd,α,q2,R(f). Indeed, it is less likely to happen that all
the estimators of the leading coefficients are close to each other but all wrong. The approximate
value of the integral on a given hyperrectangle is Qd,α,q2,R(f) and the approximate integral of f
is the sum of the integrals over all the hyperrectangles.

3.3. Splitting strategies. Now, we describe the splitting strategies used in the numerical
experiments. At each step of the algorithm, the list of all the remaining hyper-rectangles involved
in the algorithm is stored and these hyperrectangles are sorted according to their error indicator.
Once the splitting is performed, the hyperrectangle R with the largest error indicator is removed
from the list and the hyperrectangles R1 and R2 are inserted in the list according to their error
indicators Ed,α,q1,q2,R1

(f) and Ed,α,q1,q2,R2
(f).

3.3.1. Fully adaptive splitting. The first strategy named FAS is fully adaptive. It consists
in trying the d possible ways to divide the hyper-rectangle R with largest error indicator in two
equal size pieces R1 and R2 along one of the axes and keeping only the best splitting. The best
splitting is the one for which

Ed,α,q1,q2,R1
(f) + Ed,α,q1,q2,R2

(f)

is minimum among the d possible choices. Each step of this algorithm requires dN(αLd,q + 2d)
evaluations of the function f . The computational cost of the method should also take into account
the cost of inserting the two newly created hyperrectangles into the list of all hyperrectangles.
This can be done efficiently by an insertion sort which has a complexity of O(N log(N)) for our
algorithm with N steps. In most practicals examples, the evaluation of the function f requires a
lot of atomic computations and hence it makes sense to neglect the cost the sort compared to the
number of function evaluations.

3.3.2. Geometrical Random Splitting. The FAS requires d trials to find the optimal
splitting. It is mainly interesting when the integrand has variations different from several degrees
of magnitude from one coordinate to another like for instance for the two dimensional function
cos(200x+ y). When pricing vanilla options, this kind of situation is unlikely to happen. Further-
more and maybe more importantly, we have noticed in our previous work [3] that the convergence
problems of our algorithm came from a too fine splitting in one direction near the interface between
the regions where the regularity changes.

We propose another strategy named geometrical random splitting (GRS) in order to reduce the
computational costs and to solve the convergence problems by finding more precisely this interface.
At each step of the algorithm, we divide the hyperrectangle with the largest error criterion in two
equal size pieces R1 and R2 uniformly at random among the admissible directions. The admissible
directions are the ones having the larger length among the axis of the hyperrectangle. The initial

5

hyperrectangle is always a hypercube which means that we can never have a ratio more than two
between the different lengths of the axis of the hyperrectangles occurring in the mesh. The cost
of the algorithm is N(αLd,q + 2d) and it is stochastic which enables to compute some statistics on
its results.

4. Pricing Vanilla options in low dimensions. In this section, we compare the FAS and
the GRS for pricing vanilla options on several examples already treated in [3] and also on examples
from the general model. On all numerical examples, the same quadrature formulae will be used
for the two methods. The number of iterations of the algorithm will be N = 2000 for the FAS
and consequently d times more for the GRS in order to keep the same complexity.

4.1. Basket options. Let us focus a little on basket options. The price of such options, with
payoffs only depending on the asset price at maturity time T , can be expressed as an expectation
e−rT

E(ψ(ST)). When the random vector ST has a density fS with respect to the Lebesgue
measure, computing this expectation is easily turned into a numerical integration problem

E(ψ(ST)) =

∫

[−∞,∞]d

ψ(x)fS(x)dx.

When d = 1, there is no need of a numerical integration as a closed formula exists. In the
Black–Scholes framework, we know that

ST
law
=

(
Si

0 exp

{
(r − σ2

i

2
)T + σiCi

√
T G

})

1≤i≤d

where G is a random normal vector with values in R
d. Hence,

E(ψ(ST)) =

∫

[−∞,∞]d

ψ

(
Si

0 exp

{
(r − σ2

i

2
)T + σiCi

√
T x

}
, 1 ≤ i ≤ d

)
1

(2π)d/2
e−|x|2/2dx.

For the particular case of a call basket option, the payoff ψ writes down

ψ(s) =

(
d∑

i=1

λisi −K

)

+

.

Therefore, if we denote by V (T,K) the price of the call basket option, we can write

V (T,K) = e−rT 1

(2π)d/2

∫

[−∞,∞]d

(
d∑

i=1

λiS
i
0 exp

{
(r − σ2

i

2
)T + σiCi

√
T x

}
−K

)

+

e−|x|2/2dx.

Using the equality (s − K)+ − (K − s)+ = s− K and letting the price of the corresponding put

basket option be U(T,K) = e−rT
E

(
(K −∑d

i=1 λiS
i
T)+

)
, we obtain the so–called call put parity

relationship

V (T,K) − U(T,K) =

d∑

i=1

λi −K exp(−rT).

In general, this formula is used to obtain the hardest price to compute (in terms of variance)
between the call or the put option prices from the other. Here, we independently compute the
call and put option prices and use this formula as a criterion of accuracy. The infinite integral is
truncated and we let

V (T,K,A) = e−rT 1

(2π)d/2

∫

[−A,A]d

(
d∑

i=1

λiS
i
0 exp

{
(r − σ2

i

2
)T + σiCi

√
T x

}
−K

)

+

e−|x|2/2dx

be the truncated estimation of V (T,K). The truncated approximation of the put basket option
price U(T,K,A) is defined in a similar way. Note that these multi–dimensional integrals are
truncated on a square domain. In all the following examples dealing with basket options, we fix
the weights of the basket as λi = 1

d so that the baskets are all homogeneous and their weights sum
up to one.

6

4.1.1. Examples in dimension 2. The numerical tests considered in this paragraph are
very similar to the ones treated in [2]. Three different values for the strike price are tested, one
at the money K1 = 100, one out K2 = 127.80 and one completely out K3 = 300. These examples
were already studied in [3] and the conclusion was that the FAS was outperforming Monte Carlo
and quasi-Monte Carlo integration. Hence, we only compare the GRS to the FAS. Moreover, the
new algorithm is only run once as we have a deterministic error criterion based on the call-put
parity formula.

The GRS is used with quadrature formulae of degrees 18 and 24. The latter corresponds to a
number of function evaluations of 2000 × 403 × 2 ≃ 1.6 × 106. We give in Tables 4.1 and 4.2, the
values of the truncated estimations for A1 = 12 and A2 = 13. We also compute

C(T,K,A) =

∣∣∣∣V (T,K,A) − U(T,K,A) − 1

2
S

(1)
0 − 1

2
S

(2)
0 +K exp(−rT)

∣∣∣∣

for these reference values and denote by Cold(T,K,A) the same error indicator using the FAS.
Truncating the domain of a real valued standard normal random variable to [−12, 12] may seem
far too large. This is true from a Monte-Carlo point of view and we have actually also run some
tests with more conventional values such as A = 5. These tests were already showing a far better
accuracy than a crude Monte Carlo; the results obtained on the examples of Table 4.1 already
had 4 accurate digits. However, since we are targeting to compute sensibilities, we need a better
accuracy, which explains the choices of the parameter A.

V U C Cold

(K1, A1) 28.49407706 14.564874729 2 × 10−8 1 × 10−8

(K1, A2) 28.49407708 14.564874726 2 × 10−10 1 × 10−8

(K2, A1) 18.85549194 28.853971355 2 × 10−8 2 × 10−8

(K2, A2) 18.85549196 28.853971353 2 × 10−9 7 × 10−9

(K3, A1) 1.810536572 160.02292952 2 × 10−8 2 × 10−8

(K3, A2) 1.810536593 160.02292952 4 × 10−10 4 × 10−10

Table 4.1: Basket option with parameters T = 3, r = 0.05, d = 2

S
(1)
0 = S

(2)
0 = 50, σ1 = σ2 = 0.4, ρ = 0.3

On this first example, we obtain a very good accuracy of at least 8 digits on all the computa-
tions of the prices of call and put options. These values are both validated by the parity call put
formula and by the comparison between the truncated approximations for the two different values
of A. There is no significant difference between the two splitting strategies. The two versions of

V U C Cold

(K1, A1) 20.04091112 6.1117087694 2 × 10−9 1 × 10−8

(K1, A2) 20.04091112 6.1117087676 1 × 10−10 1 × 10−8

(K2, A1) 8.915343209 18.913822596 7 × 10−10 2 × 10−8

(K2, A2) 8.915343211 18.913822598 5 × 10−10 7 × 10−9

(K3, A1) 0.021755879 158.23414880 4 × 10−10 2 × 10−8

(K3, A2) 0.021755880 158.23414880 6 × 10−11 4 × 10−10

Table 4.2: Basket option with parameters T = 3, r = 0.05, d = 2

S
(1)
0 = S

(2)
0 = 50, σ1 = σ2 = 0.2, ρ = 0.7

the algorithm are still very efficient on an example with a smaller volatility and more correlated
assets. The accuracy is even better than on the first example and we note that the GRS is now one
or two digits more accurate than the FAS. It is also interesting to compare the meshes obtained

7

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(a) Geometrical Random Splitting

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(b) Fully Adaptive Splitting

Figure 4.1: Mesh for option of Table 4.1 with K = K1 = 100

for the call options for the two splitting strategies. In Figure 4.1, we plot these meshes for the first
example with parameters (K,A) = (K1, A2). We observe that the refinement is done mainly near
the interface separating the region where the function vanishes and the region where it is positive.
On these figures, we can see that the GRS is more robust and more able to follow the interface
than the FAS.

4.1.2. Examples in dimension 3 and 4. In this paragraph, we consider two examples of
basket options on independent assets: one example in dimension 3 and one in dimension 4. We
will run each example with two different strike prices.

We give in Table 4.3 the values of the truncated estimations for A1 = 12 and A2 = 13 for a
3 dimensional basket option. The indicator error for this example is based on E3,3,18,24,R(f) and
the number of function evaluations is given by 2000 × 1592 × 3 ≃ 9.5 × 106.

V U C Cold

(K1, A1) 14.80805242 2.2717704262 1 × 10−7 4 × 10−6

(K1, A2) 14.80805257 2.2717705311 7 × 10−8 7 × 10−7

(K2, A1) 2.927052540 16.212009773 6 × 10−8 8 × 10−5

(K2, A2) 2.927053375 16.212010568 2 × 10−8 5 × 10−5

Table 4.3: d = 3, T = 3, r = 0.05, ρ = 0.3, S
(1)
0 = S

(2)
0 = S

(3)
0 = 30

σ1 = σ2 = σ3 = 0.2, K1 = 90,K2 = 120

We observe that the GRS is a lot more accurate than the FAS. The accuracy is about 7
digits on the at the money option and 8 on the one out of the money. On the out of the money
option, the FAS hardly achieves 5 digits of accuracy.

We give in Table 4.4 the values of the truncated estimations for A1 = 5 and A2 = 6. The
indicator error for this example is based on E4,3,18,24,R(f) and the number of function evaluations
is given by 2000 × 9121 × 4 ≃ 4.4 × 107.

On this last example, the improvement of the algorithm is even more impressive. The accuracy
is about 7 digits with the GRS compared to hardly 4 with the FAS. The difference between the
two values of the criterion C for the two values of A is not due to a wrong computation of the
integrals but simply because the integration domain was truncated too much when A = A1.

8

V U C Cold

(K1, A1) 4.22830628 0.32667437 1 × 10−5 3 × 10−5

(K1, A2) 4.22832492 0.32667871 1 × 10−7 4 × 10−4

(K2, A1) 0.16841321 5.77905377 7 × 10−6 7 × 10−4

(K2, A2) 0.16842047 5.77906874 6 × 10−8 6 × 10−4

Table 4.4: d = 4, T = 1, r = 0.05, ρ = 0.3, S
(1)
0 = S

(2)
0 = S

(3)
0 = S

(4)
0 = 20

σ1 = σ2 = σ3 = σ4 = 0.1, K1 = 80,K2 = 90

4.2. Put on minimum options. For the pricing of basket options, our approximation
criterion was relying on the parity call put formula which does not hold for on minimum or digital
options. It required also the pricing of a call and a put to be computed. To define error criteria
for general options, we exploit the stochastic nature of the GRS. Instead of running only once this
algorithm, we run it ten times only on the call pricing and compute its average V̄ , its empirical
variance s2

v and our error criterion will be simply Err = sv. We also give the approximation Vold

obtained with the FAS and the estimation VMC obtained using the crude Monte Carlo method
for the computation of the price as the expectation of a normal random vector as described in
Section 2.1. This Monte Carlo estimation is accurate up to three digits in relative error and we
also give the number of samples required to reach such an accuracy.

4.2.1. Examples in dimension 2. Numerical results are given in Table 4.5 for both cases
A1 = 12 and A2 = 15.

V̄ Vold VMC Err
Ex1, A1 2.10306340730 2.10306339974 2.104291 1.5 × 10−10

Ex1, A2 2.10306340508 2.10306346643 2.104291 1.2 × 10−10

Ex2, A1 6.32237986596 6.32237987060 6.325378 2.2 × 10−10

Ex2, A2 6.32237986541 6.32237985738 6.325378 1.2 × 10−10

Table 4.5: Put on minimum options in dimension d = 2

Ex1: T = 1, r = 0.05, S
(1)
0 = S

(2)
0 = 50, ρ = 0.1,K = 45, σ1 = σ2 = 0.2

Ex2: T = 1, r = 0.05, S
(1)
0 = S

(2)
0 = 50, ρ = 0.9,K = 55, σ1 = σ2 = 0.2

We observe that the GRS provides an estimation of the price which is accurate up to 10 digits.
Indeed the integrals for the two values of A are computed with an accuracy of more than 10 digits
and they have 10 common digits. The estimations obtained with the FAS are slightly less accurate
up to 8 digits. In Figure 4.2, we plot the two meshes for Ex1 in the case A = A1. We observe
on the GRS that the refinement is still done near the interface separating the region where the
function vanishes and the region where it is positive but also near a line in the positive part. This
additional line is explained by a lack of regularity of the integrand due to the minimum function
in its definition. On these two meshes, we can see that once again the GRS is better than the FAS
to follow the interfaces where the regularity changes. For both examples, one run of our algorithm
requires 1.6 × 106 function evaluations meanwhile there are 4.6 × 107 and 1.6 × 108 Monte Carlo
samples for Ex1 and Ex2, respectively. Even if we take into account that 10 runs are used in
order to calculate the error indicator, the number of function evaluations for both methods (GRS
and crude Monte Carlo) are quite similar. This remains true in the following examples in higher
dimensions.

4.2.2. Examples in dimensions 3 and 4. We give in Table 4.6 the values of the truncated
estimations for A1 = 12 and A2 = 15 in dimension 3.

9

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(a) Geometrical Random Splitting

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(b) Fully Adaptive Splitting

Figure 4.2: Mesh for option of Table 4.5 with K = 45 (Ex1)

V̄ Vold VMC Err
Ex3, A1 2.89538461 3.021407 2.898180 6.3 × 10−8

Ex3, A2 2.89538389 2.909697 2.898180 3.1 × 10−8

Ex4, A1 6.85473710 6.802445 6.854480 6.3 × 10−8

Ex4, A2 6.85473692 6.795585 6.854480 6.3 × 10−8

Table 4.6: Results for put on minimum options in dimension d = 3

with r = 0.05, S
(1)
0 = S

(2)
0 = S

(3)
0 = 50, T = 1 and σ1 = σ2 = σ3 = 0.2.

Ex3: ρ = 0.1,K = 45
Ex4: ρ = 0.9,K = 55

We can see that the GRS is still very efficient and achieves an accuracy of about 7 digits.
Now, the FAS gives poorly accurate results and is also clearly less efficient than crude Monte
Carlo integration. This confirms the difficulties for the FAS to capture the interface when the
dimension of the problem increases. We give in Table 4.7, the values of the truncated estimations
for A1 = 12 and A2 = 15 in dimension 4. The conclusions are the same than in dimension 3.
The FAS fails to converge while the GRS is still very accurate. On all examples, whatever the
dimension is (up to 4), this latter strategy outperforms the crude Monte Carlo method as we have
at least 6 digits of accuracy instead of 3 for a similar complexity.

V̄ Vold VMC Err
Ex5, A1 3.567971 3.560892 3.574086 6.3 × 10−7

Ex5, A2 3.567971 3.322140 3.574086 3.1 × 10−7

Ex6, A1 7.212993 6.693007 7.215822 3.1 × 10−7

Ex6, A2 7.212994 7.305357 7.215822 3.1 × 10−7

Table 4.7: Results on minimum options in dimension d = 4

with r = 0.05, S
(1)
0 = S

(2)
0 = S

(3)
0 = S

(4)
0 = 50, T = 1 and σ1 = σ2 = σ3 =

σ4 = 0.2
Ex5: ρ = 0.1,K = 45
Ex6: ρ = 0.9,K = 55

10

4.3. Digital options. As we will see in the following numerical examples, the pricing of
digital options is somehow a much harder problem than the two previous ones. In fact, it is close
to the problem of looking for a small subdomain (where the function is positive) somewhere in a
large hyperrectangle. This is well illustrated in Figure 4.4 and even more in Figure 4.5 where this
small subdomain is delimited by three lines. Especially during the first iterations of the algorithm,
it may happen that a hyperrectangle of our mesh contains a part of this subdomain but with no
quadrature points lying in it. In this case, our error indicator is zero because the function is
considered as the null function and consequently this hyperrectangle is never split again. For
basket or put on minimum options, we had been able to handle this sampling problem by putting
additional quadrature points in each corner of the hyperrectangle. This trick is inefficient in the
case of digital options because the subdomain with positive values is small and has a completely
different form. In order to solve at least partially these convergence problems, we have increased
the parameter α in the number of quadrature points M = α×Ld,q+2d to obtain a larger probability
to detect a non-zero value of the function inside the hyperrectangles. Finally, we also compute
the median Med(V) of 10 runs of the algorithm because it is a more robust estimator in case of
false convergence.

4.3.1. Examples in dimension 2. Our numerical results for both cases A1 = 12 and
A2 = 15 are given in Table 4.8.

V̄ Med(V) VMC Err
Ex7, A1, α = 3 2.30072052 2.30072041 2.299709 3.1 × 10−7

Ex7, A2, α = 3 2.30071826 2.30071825 2.299709 3.1 × 10−7

Ex8, A1, α = 3 0.12540527 0.15675651 0.15600 6.3 × 10−2

Ex8, A2, α = 3 0.13848118 0.15675549 0.15600 2.8 × 10−2

Ex8, A1, α = 15 0.15693827 0.15693825 0.15600 3.1 × 10−8

Ex8, A2, α = 15 0.15681002 0.15675531 0.15600 9.5 × 10−5

Table 4.8: Results for digital call options in dimension d = 2

with T = 1, r = 0.05, S
(1)
0 = S

(2)
0 = 50, U1 = U2 = 60, σ1 = σ2 = 0.2

Ex7: ρ = 0.1,K = 45
Ex8: ρ = 0.9,K = 55

On Ex7, we can see that we have no problem of convergence even with α = 3. The price is
approximately equal to 2.300718, mean and median are at least 6 digits close in all cases which is
confirmed by the error indicator. We also have 3 common digits with the Monte Carlo estimator.
The mesh obtained in Figure 4.3 shows that the subdomain where the function is positive is
roughly a small triangle with a surface ξ lower than 8. The ratio A2

2/ξ ≃ 28 is still small enough
to avoid sampling problems.

11

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

8

(a) Geometrical Random Splitting, A1

Figure 4.3: Mesh for option Ex7 of Table 4.8 α = 3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

(a) Geometrical Random Splitting, A2

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

(b) Geometrical Random Splitting, A1

Figure 4.4: Mesh for option Ex8 of Table 4.8 α = 3

The situation is completely different for Ex8 when α = 3. Mean and median have no more
than 2 common digits, the error indicator is also close to 0.01. However the median has 3 common
digits with the crude Monte Carlo estimator which means that the big convergence problems do
not happen so often. We plot in Figure 4.4 two examples of meshes obtained with A1 and A2 in
situations where the algorithm did not converge. We observe that the refinement is incomplete
in both cases and that the one obtained with A2 misses half of the region of interest. If we add
quadrature points by taking α = 15, we recover a high accuracy of 7 digits on the integrals at least
when A1 = 12. The subdomain we obtain in this case in Figure 4.5 has now a triangular shape.
Its surface is now roughly equal to 1 which explains the convergence problems we encountered
when α = 3 as the ratio A2

2/ξ ≃ 225.

12

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

(a) Geometrical Random Splitting, A1

Figure 4.5: Mesh for option Ex8 of Table 4.8 α = 15

For α = 15, one run of the GRS requires 8 × 106 function evaluations, which is 5 times more
than in the case α = 3 meanwhile there are 4.4 × 107 and 1.4 × 106 Monte Carlo samples for
respectively Ex7 and Ex8.

4.3.2. Examples in dimension 3. We give in Table 4.9, the values of the truncated esti-
mations for A2 = 12 and A2 = 15.

V̄ Med(V) VMC Err
Ex9, A1, α = 20 1.64950182 1.64950187 1.646800 2.5 × 10−6

Ex9, A2, α = 20 1.64948232 1.64948236 1.646800 1.9 × 10−6

Ex10, A1, α = 40 0.09316076 0.09316072 0.093269 3.1 × 10−7

Ex10, A2, α = 40 0.09307638 0.09316133 0.093269 2.5 × 10−4

Table 4.9: Results on digital options in dimension d = 3

with r = 0.05, T = 1, S
(1)
0 = S

(2)
0 = S

(3)
0 = 50, U1 = U2 = U3 = 60

Ex9: ρ = 0.1,K = 45
Ex10: ρ = 0.9,K = 55

The number of function evaluations are 6.3×107 for α = 20 and 1.3×108 for α = 40 meanwhile
there are 3.0 × 107 and 7.3 × 106 Monte Carlo runs respectively for Ex9 and Ex10. On Ex9, we
need to increase α to converge up to 5 or 6 digits but the number of function evaluations is still
comparable to the size of the Monte Carlo sample. On Ex10 with A2, the Monte Carlo method has
a smaller variance and the GRS a weaker accuracy which makes these two methods comparable in
terms of efficiency. However, with A1, the results obtained with the GRS seems very accurate in
comparison with those obtained with the Monte Carlo Method. A more detailed discussion about
the influence of the initial volume of the hypperrectangle will be given in dimension 4.

4.3.3. Examples in dimension 4. We give in Table 4.10, the values of the truncated
estimations for the usual values A1 = 12, A2 = 15 and also for two smaller values A3 = 5 and
A4 = 6.

13

V̄ Med(V) VMC Err
Ex11, A1, α = 30 1.22934667 1.22934613 1.228935 3.1 × 10−6

Ex11, A2, α = 30 1.22934272 1.22934341 1.228935 3.1 × 10−6

Ex12, A1, α = 40 0.04827239 0.04826375 0.060981 1.2 × 10−2

Ex12, A2, α = 40 0.04056702 0.03601258 0.060981 9.5 × 10−3

Ex12, A3, α = 40 0.06126412 0.06126407 0.060981 6.3 × 10−7

Ex12, A4, α = 40 0.06126593 0.06126569 0.060981 6.3 × 10−7

Table 4.10: Results on digital options for d = 4

with r = 0.05, T = 1, S
(1)
0 = S

(2)
0 = S

(3)
0 = S

(4)
0 = 50, U1 = U2 = U3 = U4 = 60

Ex11: ρ = 0.1,K = 45
Ex12: r = 0.05, ρ = 0.9,K = 55

The number of function evaluations are 4.4×108 for α = 30 and 5.8×108 for α = 40 meanwhile
there are 2.2 × 107 and 4.3 × 106 Monte Carlo runs respectively for Ex11 and Ex12. Obviously,
the complexity of the GRS increases with the dimension but it is still more efficient on Ex11 than
the Monte Carlo method. On Ex12, the volume of the subdomain where the function is positive is
getting too small compared to the size A4

2 of the initial hypperrectangle for the GRS to converge.
Nevertheless, we have been able to recover a very good accuracy on Ex12 by drastically reducing
the size of the initial hypercube using A3 and A4. Indeed, the corresponding price values have
almost 6 common digits and the error criterion is 2 × 10−7. This shows that is would be worth
using some basic preliminary numerical methods to circumvent the region of interest in a relatively
small box.

5. Delta computation.

5.1. Tchebychef Interpolation and differentiation. To compute the partial derivatives
involved in the computation of the Delta, we use a standard approach based on Tchebychef in-
terpolation polynomials. We describe in detail the two dimensional case for a general function
f(x, y). First, we compute the Tchebychef interpolation polynomial Tm,h,x0,y0

(x) of f(x, y0) using
m interpolation points in the interval]x − h, x + h[. The approximation of the first component

of the gradient of f at point (x0, y0) is given by
∂

∂x
Tm,h,x0,y0

(x). Thus, it requires to compute

m prices, which is done using the GRS. Using different values of the parameters h and m, we are
able to obtain reliable Delta approximations.

5.2. Monte Carlo approach. To measure the efficiency of the approach described in Para-
graph 5.1, we need an alternative method to compute the Delta, which is sufficiently accurate
to serve as a benchmark. We relied on a finite difference approach coupled with a Monte Carlo
technique. We closely followed the recommendations of [6] to tune the number of Monte Carlo
simulation and the finite difference step accordingly to ensure the best possible accuracy. For a
Monte Carlo method with n samples, we used a finite difference step equal to hn = n−1/6 so that
under mild assumptions the finite difference estimator converges almost surely to the exact value
and satisfies a central limit theorem with the rate n−1/3.

5.3. Numerical Results. For symmetry reasons, we compute only the first component of
the Delta. We compare in table 5.1 the Monte Carlo approach and the method based on Tchebychef
interpolation on 4 examples. These latter are taken in dimension 3 and 4 for basket and minimum
options. For the interpolation method, we use two sets of parameters chosen to have two different
accurate estimations of the Delta. The maximum number of function evaluations required for the
examples in dimension 4 is 5×4.4×107 = 2.2×108 which is comparable to the number of samples
n used in the Monte Carlo method.

14

Monte Carlo m = 3, h = 0.05 m = 5, h = 0.1 n
Ex13 0.300088 0.3002853 0.3002864 1.4 × 108

Ex14 -0.240865 -0.2382143 -0.2382098 1.6 × 108

Ex15 0.230224 0.2303219 0.2303214 1.1 × 108

Ex16 -0.186628 -0.1837101 -0.1836998 1.6 × 108

Table 5.1: Delta Computations with T = 1, r = 0.05, σ = 0.2, S0 = 50
Ex13: Basket options, d = 3, ρ = 0.1,K = 45
Ex14: Put on minimum options, d = 3, ρ = 0.5,K = 55
Ex15: Basket options, d = 4, ρ = 0.1,K = 45
Ex16: Put on minimum options, d = 4, ρ = 0.5,K = 55

The value of n is chosen to ensure an accuracy of 3 digits on the Delta. All estimations
of the Delta using the interpolation method have about 3 common digits with the Monte Carlo
estimation. Since for the two sets of parameters we have obtained at least 5 common digits for the
two different estimations, we may conclude that the interpolation method is more efficient than
the Monte Carlo approach.

6. Dimension reduction and control variates for high dimensional problems.

6.1. Description of the method. The GRS developed and tested in the previous sections
suffers from the curse of dimensionality but shows a very impressive accuracy in low or medium
dimensions up to 4 or 5. In this section, we propose a way to use this method to devise a control
variate for high dimensional models. We are still interested in computing expectations of the form
E(ψ(ST)) where ST is defined as in the previous section. The basic idea of the method is to
perform a principal component analysis of ST in order to reduce the dimension of the problem
by keeping only the leading components and setting the others to zero. The expectation in the
reduced model can be computed quickly and accurately using the GRS and can serve as a control
variate for the original problem.

6.1.1. Principal Component Analysis. We rewrite the model to embed the correlation
matrix Γ into the volatility structure turned into a matrix Σ defined by

Σ = diag(σ1, ..., σd) Γ diag(σ1, ..., σd).

Note that the vector (σ1WT , ..., σ2WT) is a Gaussian vector with covariance matrix
√
TΣ. It is

straightforward to check that the matrix Σ inherits its symmetric positive definite feature from
the one of Γ and hence admits an orthonormal basis of eigenvectors with positive eigenvalues.
Let D be the diagonal matrix built up with these eigenvalues sorted in decreasing order and
let P be the corresponding matrix of eigenvectors sorted accordingly. Note that reordering the
columns of P does not change its orthonormal property and that we have P−1 = P t and as a
consequence Σ = P tDP . Now, if we let D

1

2 = diag(
√
D11, ...,

√
Ddd) and define the symmetric

matrix H = P tD
1

2P , we obtain Σ = HtH . This leads to the identity in distribution

(σ1WT , ..., σ2WT) =
√
THG

where G is a standard normal vector in R
d. Then, we can write the identity in law

Si
T = Si

0 exp

(
(r − σ2

i

2
)T +

√
THiG

)

where Hi denotes the i− th row of H. This new expression for S can help us to devise a reduced
model Ŝ with effective dimension l ≤ d such that Ŝ can be written

Ŝi
T = Si

0 exp

(
r − σ2

i

2
)T +

√
THiĜ

)

with Ĝ = (G1, ..., Gl, 0, ..., 0).

15

6.1.2. Control variates. If l is sufficiently small, namely less than 3 or 4, we can compute an
approximation Î of E(ψ(ŜT)) using the GRS both very accurately and with a small computational
cost. If the dimension reduction works well, we can also expect the random variable ψ(ŜT) to be
close to ψ(ST) and as a consequence to appear as a natural choice for a control variate. Our new
Monte Carlo estimator for E(ψ(ST)) will be

1

NMC

NMC∑

j=1

(ψ(S
(j)
T) − ψ(

ˆ
S

(j)
T)) + Î

where the NMC random samples S
(j)
T and

ˆ
S

(j)
T are built using the same independent drawings

G(j) from the standard normal distribution over R
d. Because the effective dimension l of Ĝ is a

lot smaller than d and the GRS is so efficient in low dimensions, one can implement this control
variate approach with almost no extra computational cost. The idea of using such a control variate
was already proposed for example in [4] but it was limited to a sum of control variates depending
on only one variable. Indeed this computation was relying on closed forms for the expectations
of the control variates which are only available in dimension one. Hence, our new approach is far
more general.

6.2. Numerical results.

6.2.1. Toy correlation structures. All the examples deal with basket options in dimension
5 with three different values of the correlation coefficient ρ from very correlated assets (ρ = 0.9) to
negatively correlated assets (ρ = −0.1). The different estimations of the price and its confidence
interval, named IE0

, IE1
, IE2

, IE3
, using the control variate method are given in table 6.1. We

compute the estimation of the price I5 using the GRS in order to obtain a reference value.

IE0
IE1

IE2
IE3

I5

Ex17 8.61236 ± 0.020 8.61333 ± 0.0013 8.61357 ± 0.0010 8.61407 ± 0.0003 8.61404
Ex18 7.51683 ± 0.0130 7.52217 ± 0.0072 7.52395 ± 0.0042 7.52621 ± 0.0023 7.52490
Ex19 7.29012 ± 0.0103 7.28436 ± 0.0074 7.27969 ± 0.0042 7.27931 ± 0.0038 7.27548

Table 6.1: Basket options with 0.95% confidence interval
d = 5, T = 1, r = 0.05,K = 45, S0 = 50
σ = (0.156, 0.442, 0.325, 0.134, 0.114) and 100, 000 samples
Ex17: ρ = 0.9, Ex18: ρ = 0.1, Ex19: ρ = −0.1

We observe that the control variate technique gives very good results. Especially with 3 PCA
components, the results are very close to I5. Moreover, the GRS becoming very costly in dimension
5, the control variate approach with 3 components seems now more efficient.

As it might be expected, we also noticed that when the assets are very correlated the variance
reduction is more efficient. With ρ = 0.9, the first component of the PCA contains almost all the
information of the model which ensures a huge variance reduction. When ρ = −0.1, even with
3 PCA components, the variance reduction is so small that it hardly compensates the additional
cost of the control. Indeed this latter is twice bigger than the initial Monte Carlo cost.

6.2.2. A more general correlation structure. In this paragraph, we are concerned with
testing our approach on more realistic covariance structures. We consider a block covariance
matrix GEx20, in which the assets can be split into two subsets which are negatively correlated,
whereas inside each set all the assets are positively correlated with the same correlation. Such
covariance structures are quite common in practice. We can find in Table 6.2 the results obtained
with a standard Monte Carlo and our control variate approach method for different numbers of
PCA components. At first sight, one could think that such a covariance structure could cause
trouble to our approach and yet it manages to divide the width of the confidence interval by a
factor of 10, which is really impressive if one remembers that to achieve such a confidence interval

16

with a crude Monte Carlo it would require 100 times more samples. We can see on this example
that to effectively reduce the variance, we need at least two PCA components and no closed form
formulae are available for basket options in dimension 2 and 3. This example highlights the key
role played by the GRS approach.

ΓEx20 =




1 0.8 0.8 0.8 0.8 −0.5 −0.5 −0.5 −0.5 −0.5
0.8 1 0.8 0.8 0.8 −0.5 −0.5 −0.5 −0.5 −0.5
0.8 0.8 1 0.8 0.8 −0.5 −0.5 −0.5 −0.5 −0.5
0.8 0.8 0.8 1 0.8 −0.5 −0.5 −0.5 −0.5 −0.5
0.8 0.8 0.8 0.8 1 −0.5 −0.5 −0.5 −0.5 −0.5

−0.5 −0.5 −0.5 −0.5 −0.5 1 0.4 0.4 0.4 0.4
−0.5 −0.5 −0.5 −0.5 −0.5 0.4 1 0.4 0.4 0.4
−0.5 −0.5 −0.5 −0.5 −0.5 0.4 0.4 1 0.4 0.4
−0.5 −0.5 −0.5 −0.5 −0.5 0.4 0.4 0.4 1 0.4
−0.5 −0.5 −0.5 −0.5 −0.5 0.4 0.4 0.4 0.4 1




E0 E1 E2 E3

Ex20 3.1912 ± 0.011 3.1899 ± 0.009 3.1908 ± 0.002 3.1906 ± 0.001

Table 6.2: Prices with 0.95% confidence interval for homogeneous call Basket
options on example Ex20 with
T = 2, r = 0.02,K = 105, σ = 0.2, S0 = 100 and 100, 000 samples

7. Conclusion. In this paper, we have developed a new numerical integration algorithm
based on a Geometrical Random Splitting. This new algorithm has been successfully applied to
the pricing of Vanilla options in dimensions up to five. In particular, this new algorithm efficiently
handles the difficult problems of pricing and hedging digital options. In most situations, the
accuracies we have obtained were out of reach for a crude Monte Carlo approach. For higher
dimensions, we have shown that the GRS can be used as a control variate when associated to a
principal component analysis. The resulting variance reduction was quite impressive especially
for very correlated assets. One important issue would be the development of other dimension
reduction techniques that could be coupled with the GRS. The GRS itself can obviously have
many other applications for instance in computer experiment or in the adaptive approximation of
partial differential equations. The GRS algorithm proposed in this paper is very satisfactory on
most examples studied.

REFERENCES

[1] E. I. ATANASSOV, I. T. DIMOV, A new optimal Monte Carlo method for calculating integral of
smooth functions, Monte Carlo Methods and Appl., Vol. 5, No. 2, pp. 149-167, 1999.

[2] G. DEELSTRA, J. LIINEV, M. VANMAELE, Pricing of arithmetic basket options by conditioning,
Insurance: Mathematics and Economics, vol 34, pp. 55-77, 2004.

[3] C. DE LUIGI, S. MAIRE, Adaptive integration and approximation over hyper-rectangular regions
with applications to basket option pricing, Monte Carlo Methods and Applications, 16, (3-4),
pp.265-282, 2010.

[4] S. M. T. EHRLICHMAN and S. G. HENDERSON. Adaptive control variates for pricing multi-
dimensional American options, Journal of Computational Finance, 11(1), pp.65–91, 2007.

[5] P. ETORE, G. FORT, B. JOURDAIN, E. MOULINES, On adaptive stratification, To appear in
Annals of operations research.

[6] P. W. GLYNN, Optimization of stochastic systems via simulation. Proceedings of the 21st conference
on Winter simulation, WSC ’89, pages 90–105, New York, NY, USA, 1989. ACM.

[7] P. HELLUY, S. MAIRE, P. RAVEL, Intégration numérique d’ordre élevé de fonctions régulières ou
singulières sur un intervalle, CR. Acad. Sci. Paris, Sér. 1, 327, pp. 843-848, 1998.

[8] B. JOURDAIN, J. LELONG, Robust adaptive importance sampling for normal random vectors,
Annals of applied probability,19 (5), pp. 1687-1718, 2009.

17

[9] A. R. KROMMER, C. W. UEBERHUBER. Computational integration. SIAM, 1998.
[10] D. LAMBERTON, B. LAPEYRE, Introduction to stochastic calculus applied to finance, Chapman

& Hall, London, 1996.
[11] B. LAPEYRE and J. LELONG, A framework for adaptive Monte-Carlo procedures, Monte Carlo

Methods Appl., vol. 17 (1), pp.77-98, 2011.
[12] G. P. LEPAGE, A New Algorithm for Adaptative Multidimensional Integration, Journal of Com-

putational Physics, Vol 27, pp. 192-203, 1978.
[13] S. MAIRE, Reducing variance using iterated control variates, The Journal of Statistical Computation

and Simulation, Vol. 73(1), pp. 1-29, 2003.
[14] S. MAIRE, An iterative computation of approximations on Korobov-like spaces. Journal of Compu-

tational and Applied Mathematics, 157, pp. 261-281, 2003.
[15] S. MAIRE, Polynomial Approximations of multivariate smooth functions from quasi-random data,

Statistics and Computing, 14, pp. 333-336, 2004.
[16] S. MAIRE, C. DE LUIGI, Quasi-Monte Carlo quadratures for multivariate smooth functions, Ap-

plied Numerical Mathematics, 56, no.2, pp. 146-162, 2006.
[17] H. NIEDERREITER, Quasi-Monte Carlo methods and pseudorandom numbers, Bull. Amer. Math.

Soc. 84, pp. 957-1041, 1978.
[18] E. NOVAK, K. RITTER, High dimensional integration of smooth functions over cubes, Numerishe

Mathematik, 75, pp.79-97, 1996.
[19] G. PAGES, A space vector quantization for numerical Integration, Journal of computational and

applied mathematics, 89, pp. 1-38, 1997.
[20] W. H. PRESS, G. R. FARRAR, Recursive Stratified Sampling for Multidimensional Monte Carlo

Integration, Computer in Physics, vol. 4, pp. 190-195, 1990.
[21] R. SCHURER, Adaptive quasi-Monte Carlo integration based on MISER and VEGAS. Monte Carlo

and quasi-Monte Carlo methods 2002, pp. 393-406, Springer, Berlin, 2004.
[22] R. SCHURER, A comparison between (quasi)-Monte Carlo and cubature rule based methods for

solving high-dimensional integration problems, Mathematics and computers in simulation, 62,
pp. 509-517, 2003.

[23] I. H. SLOAN, P. J. KACHOYAN, Lattice methods for multiple integration: Theory, error analysis
and examples, SIAM J. Numer. Anal. 24, pp. 116-128, 1987.

18

