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Abstract

Most mortality models are generally calibrated on national population. However, pensions funds

and annuity providers are mainly interested in the mortality rates of their own portfolio. In this

paper we put forward a multivariate approach for forecasting pairwise mortality rates of related

population. The investigated approach links national population mortality to a subset popula-

tion using an econometric model that captures a long-run relationship between both mortality

dynamics. This model does not lay the emphasis on the correlation that the two given mortal-

ity dynamics would present but rather on the long-term behaviour, which suggests that the two

time-series cannot wander off in opposite directions for very long without mean reverting force

on grounds of biological reasonableness. The model additionally captures the short-run adjust-

ment between the considered mortality dynamics.

Our aim is to propose a consistent approach to forecast pairwise mortality and to some extent

to better control and assess basis risk underlying index-based longevity securitization. An empir-

ical comparison of the forecast of one-year death probabilities of portfolio-experienced mortality

is performed using both a factor-based model and the proposed approach. The robustness of the

model is tested on mortality rate data for England & Wales and Continuous Mortality Investiga-

tion assured lives representing a sub-population.

Keywords: Longevity risk, national and insured mortality rates, co-integration, basis risk.

1 INTRODUCTION

National mortality indices provide a straightforward means to ease an overall view of

longevity evolution. Such indices play a key role in advancing the understanding of na-

tional populations ageing process but also other different sub-populations as they are

a major public and available source of information about the longevity improvements

at the national level. Moreover, through some quantitative assessments, mortality of

a group of individuals that are part of the whole population can be studied using na-

tional datasets. Indeed, a sub-population is likely to share some characteristics with the

"parent" population and thus offer scope for the comprehension and the assessment of

each through the acquaintance of the other. This potential relationship supported by
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1 INTRODUCTION 2

the presence of common factors that would affect mortality rates across multiple popu-

lations in a similar way.

Most notably, with regard to a population and its sub-partitions, some exogenous

factors might affect similarly each mortality patterns. For example, the benefits from

economic progress which would induce a significant decrease of mortality is fully shared

by the population at all levels. Also any medical development leading to greater well-

being might impact all the segments of a national population but with an incidence that

depends on their access to healthcare. Mortality rates across these populations might

also be affected in a similar fashion by pandemics, heat waves or other environmen-

tal changing conditions. Dowd et al. (2011) invoke the importance of such features

in modeling mortality. They suggest that a biologically reasonable model should allow

taking into account such behaviours and for interdependence of the mortality rates of

sub-populations with regard to the parent population. To a tackle this issue many ap-

proaches were proposed in the academic literature: Plat (2009), Cairns et al. (2011) and

Dowd et al. (2011) among others.

These methodologies that aim at modeling two different related populations are also

motivated by the need for insurers to better understand and predict the mortality under-

lying their own annuitants or pension portfolios. In such a case, experienced mortality

has some specific features that characterize the particular population of annuitants and

pensioners. More generally, these are known to show a low mortality profile compared

to the national population. This is due particularly both to adverse selection phenomena

and to the fact that annuitants are wealthier in comparison with the average population.

Generally, the reasons for this mismatch include heterogeneity of socioeconomic status

(assessed by income, occupation or education), nutritional standards or sanitation (see

Barrieu et al. (2012) for further details on the heterogeneity of longevity risk).

Recently, with the development of the so-called longevity-linked securities market,

a specific intent was devoted to the development of quantitative proxies and method-

ologies that intend to formalize the already observed relationship between the national

mortality and its sub-populations, i.e. insured mortality.

Traditionally, practitioners were used to pull-down the national mortality by some

fixed ratio to derive the insured ones. This is based upon the stability of the ratio of

the two related mortality time-series over time. These practices, nevertheless, are more

and more questioned especially by the new European regulation that promotes the use

of stochastic frameworks in order to circumvent this issue. Simultaneously, other tech-

niques have been considered in practice like relational models (see Brass (1971)). They

offer an alternative to the deterministic approach and suggest to link the two mortality
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time-series through a regressive model taking into consideration the logistic transform

of the time-series, see Hannerz (2001) and Delwarde et al. (2004) for further details.

It should be noted that mortality patterns have been decreasing during the last cen-

tury and the quantity of data that we already detain about mortality in most indus-

trialized countries should be useful for understanding their sub-populations mortal-

ity dynamics. The idea underlying the approach of Brass (1971) and its extensions are

making sense knowing that the recent development in the modeling of sub-populations

mortality rates argues the need to take account of their dependencies to "parent" pop-

ulation, especially when these are subject to common influences. However, the ade-

quacy of such a model especially with regard to dynamic properties of mortality rates

may be questioned. Indeed, this framework implicitly endorses a parallel evolution

of the two related mortality rates and that might be inadequate if we are considering,

for example, the quantification of the so-called basis risk. This risk emerges from the

mismatch between national mortality and the mortality to which pension funds or an-

nuity providers are exposed for instance. Typically, this emerges when those poten-

tial mortality-dependent risk hedgers choose to transfer their exposure using an index

hedge instrument predicated on some national mortality.

On the basis of the empirical findings of Cairns et al. (2011) and Dowd et al. (2011),

we can intrinsically assume that two related populations may share similar global im-

provement and are subject to common influences. As outlined before, this is likely to be

the case for our considered data in extent to which one of the considered populations

is an integral part of the national one. Such time-series are hence intended to move to-

gether sharing some global movement. This may be apparent when the both time-series

are placed side by side. Accordingly, we are looking at the joint econometric features

of these time-series and analysis the presence of common stochastic trends. To put this

another way, we check out that the two mortality rates have comparable long-run dy-

namic properties. Next, we propose an econometric model to link the two underlying

mortality rates by assuming the existence of common stochastic trends.

This approach is concerned with the estimation of the state variables of the underly-

ing time-series on the long-term. Traditionally, such a framework is used by economists,

which could predict long-run behaviour linking up the evolution of one or more state

variables. This was used, for example, by Johansen and Juselius (1990) and Dickey et al.

(1991) to estimate the money demand function. The underlying methodology, the so-

called cointegrated process, was first introduced by Engle and Granger (1987) and is

based on the existence of a relationship linking two integrated processes of the same or-

der in such a way that the resulting process is also integrated, but of lower order. In the
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following, we focus both on the pairwise age-specific mortality and the entire mortality

table in order to better understand the behaviour of the common factors across ages or

bucket of ages. Moreover, we emphasize the use of such a methodology to enhance the

understanding of experienced mortality but also to forecasting future death rates. In

the recent years, cointegration analysis has been used to understand mortality dynam-

ics in various countries as to enhance the Lee and Carter (1992) model and advance the

understanding of the underlying assumptions related to the number of factors driving

the mortality; see e.g. Lazar and Denuit (2009) and Njenga and Sherris (2009), but also

the modeling of mortality by cause of death, Gaille and Sherris (2010); and the under-

standing of the impact of macroeconomic fluctuations on the mortality, see Hanewald

(2010).

The primary focus of this paper is then the characterisation of existing relationship

and the presence common factors among the considered populations. We conduct a

cointegration analysis in order to understand the relationship, if any, between these

populations. The nature of this relation is thoroughly analysed as well as the common

factors driving changes in mortality rates and of the number of significant factors to

include in a factor-based modeling framework briefly discussed in Section 2.

As an important preliminary remark, we want to stress that the adequacy of a model

can be assessed from two rather different standpoints. The first one, which we shall

adopt here, is to see how well our approach describes the dynamics of the primary ob-

ject, namely the mortality dynamics. The second one, more concerned with prediction

performances, asks how accurate and robust are the model’s projections across several

time horizons and more precisely with regards to the basis risks.

The remainder of the paper is organized as follows. First, in Section 2 we show how

the Lee and Carter model can be interpreted using the econometric techniques using the

dynamic factor models and the common stochastic trends approach. We further point

out the equivalence between the common stochastic trends framework and the cointe-

gration approach. Finally, in Section 3, the dynamic relationships among the series of

age-specific death rates are investigated with the help of the Johansen (1995) maximum

likelihood methodology. The forecast of mortality rates are generated using a vector

error-correction model (VECM) and comparisons are made with the original Lee and

Carter’s approach. Meanwhile, we discuss the cause and effect relationship between

the related populations.
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2 FROM SINGLE POPULATION MORTALITY MODELS TO

ECONOMETRIC ANALYSIS

Booth and Tickle (2008) and ? provide an exhaustive overview of the recent develop-

ment of stochastic mortality modeling. They discussed mainly the emergence of a new

class of models starting with the well-known Lee and Carter (1992) model. The latter

has a wide spread recognition in the academic literature and is widely used by life in-

surance and pension practitioners. The original framework has seen several extensions

[see among others: Lee and Miller (2001), Brouhns et al. (2002), Renshaw and Haberman

(2003) and more recently Cairns et al. (2009a)] and was used to forecast mortality in var-

ious countries. Among the proposed extensions many contributions have discussed the

validity of the single time-varying factor driving the entire mortality table. It is, for ex-

ample, shown that mortality patterns could differ from an age or a bucket of ages to

an other and thus lead to encounter for more than a factor in projecting mortality, see

Cairns et al. (2006a) for instance.

Lazar and Denuit (2009) show that such a model does not offer a universal frame-

work to handle the mortality modeling issue. In fact, the model has been shown to

violate the hypothesis that assumes a unique shared factor over ages for mortality evo-

lution for some different periods and populations. This implicitly suggests that in some

cases the mortality patterns are governed by more than one-dimensional factor. In this

regard, it is reasonable to introduce models where mortality evolution depends on mul-

tiple factors. Cairns et al. (2006b) lead some empirical analyses on the behaviour of the

logistic transform1 of mortality, logit qt(x), and shows that for fixed time t, it evolves

linearly in x. Consequently, they assumed that for each t

logit qnt (x) = κ1t + κ2tx + εt(x), (2.1)

where κ1 and κ2 are two stochastic factors.

On the other side and motivated by the approximation in the Lee and Carter ap-

proach that investigated the singular value decomposition of the centered logarithm of

mortality, more and more statistical studies on goodness-of-fit of models including sec-

ond and higher terms are made (see Cairns et al. (2009a) among others). Booth et al.

(2002) argued that a full expanded model shall be written as follows2

1 The logistic transform is defined for x ∈ [0, 1] as logit (x) = log (x/(1− x)).
2 The original proposition is given in terms of the centred death rates, i.e. logmt(x).
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logit qt(x) = α(x) +

r∑
i=1

βi(x)κit. (2.2)

Most of these works are focusing on the single population modeling. However,

in practice, the growing use of longevity-linked derivatives and especially the index-

based securities, initiated works on the joint modeling of two or more populations;

see e.g. Li and Lee (2005), Biatat and Currie (2010), Cairns et al. (2011), Plat (2009)

and Dowd et al. (2011). There are in particular models that are based on extensions

of the factorial approach of Lee and Carter (1992). Indeed, Li and Lee (2005) extend

this model by assuming a similar improvement process of the considered populations.

More formally, a time-varying factor drives both mortality rates while the idiosyncratic

variations around the shared process are mean-reverting. Biatat and Currie (2010) in-

vestigate the modeling issues of small national population’s mortality, i.e. Denmark,

together with a much larger population, i.e. Europe-wide.

In Cairns et al. (2011), a new framework is introduced to handle the joint devel-

opment over time of mortality rates of two related populations with the primary aim

of producing consistent mortality forecasts for the two populations. It is achieved us-

ing an extended version of Lee and Carter model which incorporates a mean-reverting

stochastic spread that allows for different trends in mortality improvement rates in the

short-run, but with parallel improvements in the long run.

This paper is in the same vein as Plat (2009) and Cairns et al. (2011) in the sense that

we aim at linking two mortality dynamics on a stochastic framework. The starting point

of our analysis is a vector autoregressive (VAR) specification of the joint mortality rates,

which is a way to estimate dynamic relationships among jointly endogenous variables

without specifying any particular structural relationships or exogeneity of the variables.

Next, we look for any specific equilibrium that may exist and links the two time-series

on the long-run.

With this aim in mind, we adopt the following useful notation. We denote by x =

(xmin, · · · , xmax) the age groups that constitute the basis of our dataset andNx the num-

ber of these groups. Here, xmin and xmax are the first and the last observed individual

age or group of ages. Let t = (tmin, · · · , tmax) be the vector of calendar years and Nt the

number of calendar years, i.e. Nt = tmax − tmax + 13. Similarly, we introduce the mor-

tality table denoted by Nx × Nt-matrix qi = (qit(x))x,t where the subscript i indicates

the underlying population, i = nat for national population mortality and i = ins for the

experienced mortality or the insured population mortality. Finally, we consider the pair-

3 As we assumed to work on a 5-year age buckets, the notation makes sense to the extent that xmin =
60− 64, xmin = 65− 70, · · · , xmax = 84− 89 and consequently Nx = 6.
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wise age-specific mortality Q(x) = (qnat
t (x) qins

t (x))>t and the (Nx + Nx) × Nt-matrix

of the whole mortality surface Q = (Q(x))x.

On the basis of the above notation we specify the following generating process

and that Qt and qt(x) can be described respectively by a 2 · Nx-dimensional and a 2-

dimensional Gaussian VAR(p) process, taking into account up to p lags, of the following

type:

Qt = γt +

p∑
j=1

ΦjQt−j + εt and qt(x) = µt +

p∑
j=1

Ξjqt−j(x) + ut(x), (2.3)

where εt is a 2 ·Nx-dimensional Gaussian white noise with N (0,Σ) distribution, ut

denotes a 2-dimensional Gaussian noise with N (0,σ) distribution4. For j = 1, · · · p, Φj

and Ξj are respectively (2 ·Nx × 2 ·Nx)-dimensional and (2× 2)-dimensional matrices.

Differentiating Equation 2.3 leads to the following vector error-correction model

(VECM) specification:

∆Qt = γ+

p−1∑
i=1

Ψi∆Qt−i+ΠQt−1+εt and ∆qt(x) = µ+

p−1∑
i=1

Γi∆qt−i(x)+Π̃qt(x)+ut(x).

(2.4)

Let us now focus on the non-differentiated terms in Equation 2.4. While supposing

that Qt is a vector of non-stationary and integrated I(1) variables, all remaining differ-

entiated term ∆Qt are integrated I(0) and ΠQt must be integrated of order 0 to avoid

spurious regression.

Henceforth, we focus particularly on the term ΠQt which is of great importance

since the time-series Qt is integrated. The Qt being integrated is almost the case of the

mortality data as we will test later. The non-stationary feature is a specific characteristic

of mortality that arises from the improvements of mortality over years. Hence, the fact

that the time-series are integrated, and thus not stationary, could convey the presence

of the so-called cointegrating relationship in the vector Qt. As noted earlier, the cointe-

gration implies sharing a common stochastic trend in the vector Qt and thus makes it

possible to find a vector β such that βTQt is stationary.

For instance, there are three cases when this requirement that ΠQt ∼ I(0) is met.

First, the case where blΠ has full rank, i.e. there exist two linearly independent columns.

That would lead to a logical inconsistency in ??. This can be seen by considering Π = I

as a simple full rank matrix. In this case, ?? would define a stationary variable ∆Qt

to be equal to a non-stationary variable, Qt−1 plus a stationary lagged variables and a

stationary error term. Thus the case where Π is of full rank is not consistent with the

4 Σ and σ denotes respectively the (2 ·Nx × 2 ·Nx) and (2× 2) variance-covariance matrices.
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hypothesis of integrated logistic transformation of mortality time-series.

Second, if the rank of Π is zero, which implies that there is no stationary combination

of Qt. In fact, the model in ?? is reduced to a VAR(p) model. More precisely, it means

that the insured population and national mortality rates are not linked on the long-run

and no equilibrium may be found.

Third, the case where matrix Π has a rank equal to r, i.e. a stationary linear combina-

tion exists within the vectors of logit Qt(x), i.e. a co-integration relationship exists. Con-

versely, there exists a stochastic common factor that drives the pattern of the two death

rates. Furthermore, in this case, we denote Π = αβT , where α and β are (2×1) matrices.

The vector β contains the co-integration coefficient such that βlogit Qt−1(x) is integrated

of order 0, i.e. βT logit Qt−1(x) ∼ I(0). Under the hypothesis that logit Qt(x) ∼ I(1), all

stochastic component are stationary in the VEC model (i.e. ??) and the system is now

logically consistent. Here, α and β stand respectively for the speed of adjustment to

disequilibrium and the long-run coefficients.

3 EMPIRICAL ANALYSIS

3.1 SOURCE OF DATA

We focus on England & Wales national mortality data and the Continuous Mortality

investigation (CMI) assured lives data-set. The datasets consist of the number of deaths

and the central exposure to risk at each age from 60 to 89 in each calendar year 1947 −
2004.

The CMI male dataset represents the mortality experience of male assured lives

holding endowment or whole life assurance policies with UK life insurance compa-

nies that have contributed to the CMI’s investigation over the concerned period. In

the sequel, we make an essential assumption relative to the composition of the CMI as-

sured lives data. In fact, we suppose that subset of the assured males population upon

which the mortality rates are computed remains unchanged in the future. The port-

folio of assured lives is considered closed to new entries and other exits except those

due to deaths. We further consider aggregate mortality statistics for death records and

exposure based on 5 year group of ages.

Figure 1 shows the mortality of both national and assured lives. First, the mortality

rates of assured lives are lower than those of the national population, which is explained

in Cairns et al. (2011) and emphasized by the fact that people holding this type of pol-

icy are generally coming from a richer social stratum than average population, or are

at least being able to purchase a life insurance policy. At first sight, we can also notice
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Fig. 1: One-year death probability for both CMI assured lives population (dashed line) and E&W
national population (solid line) for different age buckets.
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from Figure 1 the strong co-movement of the joint mortality rates at each age level. This

is also highlighted by Cairns et al. (2011) and Dowd et al. (2011) and might underpin

the presence of similar forces that drive the evolution of mortality rates. This specific

characteristic is widely recognized in the demographic literature as being the conse-

quence of the normalization of human being conditions across industrialized countries.

? and ?, among others, provide evidence for convergence in global mortality levels due

to convergence of social and economic factors. Consequently, separate modeling and

analyses of these related mortality rates shall compromise this empirical feature and

omit any long-run relationship or equilibrium. While doing so, we tend to exaggerate

the short-term differences that lead to diverging projections of mortality rates, which

seems highly implausible in view of the empirical similarities, see Cairns et al. (2011).

Before performing the cointegration analysis, we should keep in mind that the latter

implies a causal linkage between the related mortality rates, at least in one direction.

In Table 2 we report the results of the Granger causality test which aims at testing the

need of one time-series to forecast the other. This test highlights the presence of at least

a unidirectional causality linkages as an indication of some degree of integration. This

unidirectional causality informs about leader-follower relationships in terms of mortal-

ity improvements. On the basis of Granger causality test results presented in Table 2,

unidirectional causality from E&W mortality to CMI mortality is detected. Indeed, an

examination of the results indicates changes in national mortality rates leads that of CMI

rates. However, the presence of a similar relation in the opposite direction is denied.

This finding echoes the implicit hypothesis of Dowd et al. (2011) model, so co-called

the gravity model, which considers that the national population "[the larger popula-

tion] exerts a pull on the insured population [smaller one], but the pull of the smaller

population on the larger one is negligible". The gravity model focuses on the interde-

pendency between the two mortality rates by assuming that the period component in

Equation 2.2 are mean reverting and a gravitational force is imposed to the evolution of

the experienced population mortality. This framework as stated by Dowd et al. (2011)

does not discuss the adequacy of the underlying mortality model but rather concen-

trates on the linkage between the populations. In our case, the underlying model is not

a priori specified but we may, for example, conclude from Table 1 that models that are

based on up to five temporal factors are not well suited to capture the entire uncertainty

on the CMI mortality table. However, this is enhanced by the introduction of the E&W

population, see the right panel in Table 1, where the cumulative proportion of variance

explained by factor-based models raised while reducing the number of needed factors.

For example, the cumulative proportion of variance explained a three-factor model is
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roughly 95% for the joint populations while does not exceed 92% for the CMI popula-

tion considered separately.

Insured mortality National mortality Joint mortality

Std % of var. Cumul Std % of var. Cumul Std % of var. Cumul

5.31 91.00% 91.00% 5.48 96.80% 96.80% 7.6 93.00% 93.00%
0.57 1.06% 92.05% 0.71 1.60% 98.37% 0.9 1.30% 94.37%
0.53 0.92% 92.97% 0.36 0.42% 98.79% 0.75 0.90% 95.27%
0.5 0.82% 93.79% 0.24 0.19% 98.98% 0.55 0.50% 95.77%

0.45 0.65% 94.44% 0.19 0.11% 99.10% 0.52 0.44% 96.21%
0.45 0.64% 95.08% 0.17 0.09% 99.19% 0.5 0.41% 96.61%
0.42 0.58% 95.66% 0.16 0.08% 99.27% 0.46 0.34% 96.95%
0.39 0.50% 96.17% 0.15 0.07% 99.34% 0.43 0.29% 97.24%
0.38 0.47% 96.63% 0.14 0.07% 99.41% 0.4 0.26% 97.50%
0.36 0.42% 97.05% 0.14 0.06% 99.47% 0.37 0.23% 97.73%

Tab. 1: Percentage of the observed variation explained by the eigenvectors using principal com-
ponent analysis.

The integration of the national population reduced the number of factors that are

needed to effectively project the CMI mortality. However, the nature and the role of

these factors is not fully understood at this stage. In fact, we should further investigate

the relationship between the two considered mortality rates and especially in terms of

the econometric behaviour that these may exhibit. The aim of the sequel is the char-

acterization of the interdependency of the mortality rates at each bucket of age. The

analysis also aims at advancing the understanding of the two-population dynamics.
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3.2 VECM specification

3.3 UNIT-ROOT TESTS

As outlined above, Figure 1 suggests that each of the time-series from the log-death

rates vectors qt(x) and Qt, taken individually, is nonstationary. Then, the first step of

our modeling starts studying the presence of unit roots in the CMI assured lives and

E&W national mortality time-series.

We apply classical unit root tests and we verify the presence of unit roots in the time-

series we analyze, see Table 3. The hypothesis of unit root is accepted at 5% level and

for every test when a constant is included in the test regression. When, also a linear time

trend is included in the test regression, the hypothesis of unit root in each time-series is

accepted at 5% level by the ADF test, and also at 5% level by the PP test. Furthermore,

when we consider the efficient unit root tests, the hypothesis of unit root is always

accepted at 5% level and for each test. Also we run the tests for the first differences of

the variables, and the null hypothesis of a unit root is rejected at the 5% level.

The results presented above and summarized in Table 3 suggest that CMI mortality

and E&W national mortality are I(1) time-series, thus, Qt and qt(x) are I(1) processes5.

The purpose of the sequel is to search for long-run equilibrium relationships (common

stochastic trends) among the components of qt(x), using cointegration techniques.

ADF test PP test

E&W CMI 5% C.V. E&W CMI 5% C.V.

60-64 -1.0658 -2.5745 -3.5262 -2.0045 -2.5906 -3.5190
65-69 -1.2256 -2.9771 -3.5263 -2.1105 -2.7472 -3.5191
70-74 -0.6193 -2.3202 -3.5264 -1.7584 -2.0338 -3.5192
75-79 -0.4816 -1.8891 -3.5265 -1.6076 -2.2697 -3.5193
80-84 -0.2289 -3.0830 -3.5266 -2.0470 -1.7384 -3.5194
85-89 -1.2691 -3.1641 -3.5267 -1.5196 -2.6291 -3.5195

Tab. 3: Unit root tests for univariate age-dependent mortality rates for CMI and E&W popu-
lations. The ADF unit root test, is based on the regression ∆qit = c + b0q

i
t−1(x) +∑p−1

j=1 bj∆qt−j(x)i + εt(x), with εt(x) are i.i.d. N (0, σ(x)2)-distributed. Table dis-
plays the t-statistic, to test the hypothesis b0 = 0.

5 In the Engle and Granger (1987) sense, that is, a vectorial process in which all univariate components are
integrated of the same order.
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3.4 COINTEGRATION ANALYSIS AND STATE DYNAMICS

SPECIFICATION

We study the presence of cointegrating relationships among the two population time-

series using the VAR-based Johansen (1988, 1995) Trace and Maximum Eigenvalue tests.

The VAR(p) specification is a way to estimate dynamic relationships among jointly

endogenous variables without specifying any particular structural relationships or exo-

geneity of the variables. The number of lags, i.e. p, in this model is selected minimizing

some criteria to have a parsimonious model with as few lags as possible. Based on the

results reported in Table 6, the lag length is selected (see p∗ in Table 6). Then we can re-

formulate the Gaussian VAR(2) model in the equivalent vector error correction model

(VECM) representation as follows:

∆Qt = γ + Ψ∆Qt−1 + ΠQt−1 + εt and ∆qt(x) = µ+ Γ∆qt−1(x) + Π̃qt(x) + ut(x).

(3.1)

We focus particularly on the terms Π̃qt−1(x) and ΠQt−1. The fact that the time-series

are integrated, and thus not stationary, could convey an existing so-called cointegration

relationships in the vectors qt(x) and Qt. The cointegration implies sharing one or more

stochastic trends in the vector respectively in qt(x) and Qt and thus makes it possible

to find a vector β and β̃ such that βTqt(x) and β̃TQt are stationary.

We determine the rank of the matrices Π and Π̃ using the (likelihood ratio) trace and

maximum eigenvalue tests. The rank() gives the number of cointegrating relations (the

so-called cointegrating rank, that is, the number of independent linear combinations of

the variables that are stationary), and (2− r)) and (Nx − r) are the number of unit roots

(or, equivalently, the number of common trends) driving respectively the time-series

qt(x) and Qt.

3.4.1 PAIRWISE AGE-SPECIFIC COINTEGRATION

The results, presented in the top panel of Table 4, indicate that both trace and maximum

eigenvalue tests accept the presence of one cointegrating relation (r = 1) at 5% level,

and, thus, they decide for the presence of two unit roots in the vector qt(x), for x in

{60−64, 65−69, 70−74, 75−79, 80−84, 85−89}. Consequently, we can write Π̃ = αβ>,

where α and β are (2 × 1) vectors (the second part of Table 4 provides the maximum

likelihood parameter estimates of these matrices), and β∗qt(x) will be I(0), see Engle

and Granger (1987) and Johansen (1995).

If we look more closely at the parameters of the cointegration relationship, we can

study the behaviour of the two mortality rates at an age (bucket of age) level. To sim-
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Trace Max Eigenvalue

r = 0 r <= 1 r = 0 r <= 1

5% C.V. 19.96 9.24 15.7 9.24 α β

60-64 41.58 4.53 37.1 4.53 -0.617
(0.132)

0.164
(0.093)

1 -1.080
(0.032)

65-69 38.62 5.93 32.7 5.93 - 0.15
(0.02)

0.06
(0.04)

1 - 1.24
(0.09)

70-74 33.12 2.99 30.1 2.99 - 0.36
(0.01)

0.15
(0.05)

1 - 1.59
(0.11)

75-79 19.29 3.02 16.3 3.02 - 0.19
(0.04)

0.11
(0.06)

1 - 1.07
(0.10)

80-84 23.36 5.12 18.2 5.12 - 0.27
(0.06)

0.21
(0.08)

1 - 0.87
(0.05)

85-89 16.12 5.37 10.8 5.37 - 0.14
(0.09)

0.52
(0.11)

1 - 0.74
(0.04)

r = 11 r = 10 r = 9 r = 8 r = 7 r = 6

5% C.V. 4.12 12.28 24.28 40.07 59.74 83.36
Test stat. 2.70E-3 7.29 24.07 45.45 69.83 100.88

r = 5 r = 4 r = 3 r = 2 r = 1 r = 0

5% C.V. 110.72 142.22 177.8 217.23 260.68 307.16
Test stat. 140.64 214.85 309.46 431.02 564.56 740.99

Tab. 4: Top panel: Johansen cointegration tests for the vector qt(x) observed from 1947 to 2004.
The null hypothesis is for both tests H0 : rank(Π) = r, where r = 0, 1. Both test
statistics accept at 5% the hypothesis rank(Π) = 1 (we use MacKinnon et al. (1999)
p-values). Under the restriction r = 1, the second half of the table provides the esti-
mates of the adjustment parameters α = (α1 α2)> (t-values are in brackets) and the
cointegrating vector β = (1 β2)>. Bottom panel: Johansen cointegration trace test for
the vector Qt. The null hypothesis is H0 : rank(Π) = r where r ∈ 0, 1, · · · , 11. The
critical values used are given in Trenkler (2003). The trace test accepts the hypothesis
rank(Π) = 9.

plify, we consider the mortality time-series for two age buckets 60 − 64. As we can see

the behaviour the time-series of each population is similar except in the speed of adjust-

ment. The cointegration relations for this time series induced by the component Πqt(x),

for the two populations, are given by:

− 0.617
(0.132)

(
− 0.003

(0.0006)
+ qnat

t (60− 64)− 1.080
(0.032)

qins
t (60− 64)

)
(3.2)

0.164
(0.093)

(
−0.0039

()
+ qnat

t (60− 64)− 1.080
(0.032)

qins
t (60− 64)

)
(3.3)

We shall recall that the cointegration relations act as an explanatory variable in the

VECM formulation for each pairwise mortality time-series. In Equation 3.2 and in view

of the adjustment coefficient α = (−0.617, 0.164) we see that the mortality, in logarith-
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mic scale, for both assured lives and national population is error-correcting at the group

age 60− 64. In other words, for any deviation from the equilibrium of the national mor-

tality qnat
t (60 − 64), say for example that qins

t (60 − 64) is above the equilibrium so that

−0.003+qnat
t (60−64)−1.080qins

t (60−64) > 0, follows an adjustment toward this equilib-

rium due to the negativity of α1 = −0.617. The same argument applies to assured lives

mortality which also adjust to equilibrium but with different speed. For national popu-

lation at age bucket 60− 64 the proportion of the deviation from the equilibrium that is

corrected each year is 60%. In other words, 60% of deviation is removed each year. On

the other hand, the correction for the assured lives corresponds to 16% per period. On

the real scale the speed of adjustment is inverted due to the logarithmic transformation

of initial data.

Aside from the particular joint influence of the two populations, a simple interpre-

tation of this behaviour - the adjustment - can be argued to explain the differentials.

First, we should notice that the CMI assured lives is a sub-population of the England

& Wales national population and represent roughly 10% in size6. The adjustment of

the assured lives to the equilibrium is partly attributed to this fact. The assured pop-

ulation is in fact adjusting because of the aggregate effect that is related to the global

environment in which the sub-population evolves. So, the sub-population benefits of

improvement at the national level. The same argument is raised by Li and Lee (2005)

and Cairns et al. (2011) and suppose that the factor - or the factors - driving the mortal-

ity of the two population are mean reverting. Li and Lee (2005) introduce the idea of a

global improvement process plus idiosyncratic variations for each population that are

mean reverting. In the long run, the global improvement process dominates, resulting

in consistent long-term developments in different population. The mean reverting hy-

pothesis assumed by Cairns et al. (2011) is verified by our the error correction model

since the insured mortality is correcting with regards to the national mortality and thus

will remain correspondingly lower in the future than that of the national population.

Regarding the national error-correction we can argue that mortality is adjusting de-

viations, caused by increasingly rapid improvements of assured, due to so-called diffu-

sion theory in demography, see e.g. Rogers and Adhikarya (1979). Indeed, as it was

outlined by Evandrou and Falkingham (2000), changes in health risk behaviour are

adopted first among the middle classes and then diffuse through the population. For

example, people in higher socioeconomic classes, who are more likely to be "assured

lives", gave up smoking sooner than those in lower socioeconomic classes. The effect

of such a change is first observed in assured lives mortality then the national mortality

6 The CMI data are a subset of the UK population, so are not strictly a subset of the population of England
& Wales. However, in the context of this analysis the difference is small.
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adjust due the diffusion effect.

On the other hand, the speed of adjustment of the national shows that the proportion

of deviation that is corrected each period is slower compared to the adjustment of the

insured population (the pace is inverted due to the logistic transformation). In Willets

(2004) and Willets et al. (2004) it is shown for example that cohort effect was first observed

in the CMI assured lives dataset and was "propagated" to national population few years

later.

To recap, the insured and national mortality time-series exhibit a long run equilib-

rium through a cointegration relationship. The time-series error correct and do not

wander too far away from each other with different adjustment. For all age buckets

the adjustment is quickest for assured lives whereas national population show a slow

pace to react to disequilibrium. Note also that changes on the national mortality, i.e. a

shock to the residuals in the VECM, will be transmitted more quickly to insured lives

than those affecting the insured population.

The purpose in the sequel is to search for long-run equilibrium relationships (com-

mon stochastic trends) among the components of Qt, using cointegration techniques.

The objective is fully understand how the common trends at group of age levels interact

and more precisely how the common trends are shared in the whole mortality tables.

3.4.2 AGGREGATE AGE-SPECIFIC COINTEGRATION

So far, the time-series of age-specific death rates exhibit a tendency to move together

in the long term. At an age level x the time-series qt(x) share one common stochastic

trend. This is ascribed to the cointegration relationship. In fact, the concepts of com-

mon trend and cointegration are two sides of the same coin, being equivalent from the

mathematical point of view (see Johansen (1995)).

To fully understand the mechanism of stochastic trends driving the whole mortality

tables, i.e. assured lives and national mortality, we should lead a (2×Nx)-dimensional

analysis of cointegration. This is on order to find out which age-specific mortality rates

share the same common factors, or how those are shared among group of ages, an anal-

ysis of the full system of time-series is required, i.e. looking for cointegrating time-series

in Qt. The single age-specific mortality analysis can be of interest in case, for example,

the insurer enter into longevity linked security based on the so-called, for example a

q-forward contract. In this case, the analysis conducted so far allows to assess the rela-

tionship that links the index, i.e. national mortality index, and the insurer own portfolio

index, i.e. CMI assured lives.

The Lee and Carter (1992) model assumes that the log-death rates time-series share
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one common stochastic trend. This implies that there are Nx − 1 cointegrating relation-

ships in theNx-dimensional vector of national population mortality. Furthermore, if we

assume that the Lee and Carter (1992) model could fit the insured mortality and that the

stochastic trend, i.e. κ, is the same as in the national mortality we end up with a system

of 2.Nx− 1 cointegrating relationships, namely Π is of rank 2 ·Nx− 1 such that β>Qt is

stationary (β is a 2 ·Nx × (2 ·Nx − 1) matrix).

Based on results reported in the bottom panel in Table 4, the trace test indicates the

presence of 9 cointegrating relations (r = 9) at 5% level. Consequently, the vector Qt

contains r = 9 cointegration relations, being driven by Nx − r = 3 common stochastic

trends. Recall that the Lee and Carter model is based on the hypothesis that there is only

one common stochastic trend driving the mortality surface. The present analysis, thus,

contradicts this assumption. This shows that the basic assumption of the Lee-Carter

model is violated over the 1947− 2004 period.

A first approach for extracting factors from the data is to use Principal Components

Analysis (PCA). This technique transforms the original multivariate problem to another

multivariate setting with less number of time-series. It reduces the dimensionality of the

original dataset into a substantially smaller set of uncorrelated variables that captures

the most of the information in the original problem, see e.g. Booth et al. (2002) and

Koissi et al. (2006).

In the same spirit as Lazar and Denuit (2009) we can reformulate the above prob-

lem, Equation 2.2 in a state-space basis with one or more common stochastic factors.

The state-space theory, based on the Kalman filtering technique, has been used to esti-

mate the model by Lazar (2009) and Hari et al. (2007). The concepts of common trend

and cointegration are two sides of the same coin, being equivalent from the mathe-

matical point of view. Both methodologies are extrapolative approaches, based on the

reduction of the data dimensionality. Working in an appropriate inferential statistical

framework for projecting death rates is essential, in order to achieve correct inferences,

to derive the properties of estimators and to capture the actual dynamics of the death

rates. These issues are essential to efficiently manage the longevity risk. In the next sec-

tion we approach the problem of mortality modeling using the cointegration approach.

We first look for an equilibrium in the pairwise mortality time-series. Then we tackle

the problem of the number of common factors to include by analysis the cointegration

of the whole time-series.

Another way to extract and forecast the common stochastic trends shared by the set

of log-death rates time-series, the common factors can be modelled as a multivariate

random walk with drift. Since the dynamics of Qt can be reformulated as a state space
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model given by: Qt = βγt + εt,

γt = c+ γt−1 + ρt,
(3.4)

where β is a (Nx × 3)-matrix of loadings parameter and γt is (3 × 1)-vector of the

common factors.

Notice that the fact that the mortality tables are driven by 3 common factors is consis-

tent with some empirical studies. Indeed, Cairns et al. (2009b) shows that the so-called

M7 model fits quite well the England & Wales mortality surface. In this model, national

mortality time-series are driven by 3 stochastic factors.

4 BACKTESTING AND MODEL PERFORMANCE

We assess the performance of the proposed cointegration model with error correction.

For that, an out-of-sample forecasting exercise is performed in the second half of our

sample, i.e. starting in 1975 while fixing the parameters at their estimated values. At

each time horizon 5, 10, 15 and 20 step ahead forecasts are computed by iterating for-

ward through time. In order to evaluate the prediction performances of the VECM

model, we measure the error magnitude by means of the root mean squared error, de-

noted RMSE. Our forecasts are compared to the original Lee and Carter (1992) model

where the parameters are estimated separately on datasets of the assured lives and na-

tional population. The relative performance of the VECM model is reported compared

to the Lee and Carter model. The results of the out-of-sample forecasting comparison

are reported in Table 5.

The conclusion standing out from Table 5 is that the VECM generally outperforms

the Lee and Carter model over any forecasting horizon for both population except at the

shorter term (h = 5 and h = 10) for high ages. The Lee and Carter model appears to be

more accurate at older ages for the shorter horizon than the VECM. We notice that the

differences in model performance tend to increase with the length of the forecast hori-

zon, with the largest divergence corresponding to lower ages, where RMSE over these

age-buckets for the Lee and Carter approach is approximately 12 percent greater than

for the VECM(1) model for 15-20 horizons for both populations. As far as CMI mor-

tality is considered, VECM(1) model forecasts tend to outperform the Lee and Carter

approach in most cases, where roughly of the mortality forecasts involve underpredic-

tions. The same pattern holds true for E&W population, where most Lee and Carter

forecasts underpredict mortality except for high ages, i.e. 80− 84 and 85− 89.

Since, in this work, one of the main objectives is to project the mortality for both
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Forecast horizon CMI

60-64 65-69 70-74 75-79 80-84 85-89
5 53.20% 45.56% 37.46% 13.33% 11.30% 9.15%

10 37.34% 23.33% 31.15% 10.03% 9.51% 6.52%
15 23.91% 20.71% 17.04% 7.90% 8.76% 5.12%
20 12.08% 9.84% 11.03% 5.71% 3.73% 3.11%

E&W

60-64 65-69 70-74 75-79 80-84 85-89
5 79.30% 77.30% 73.18% 91.43% 112.3% 102.2%

10 65.20% 72.90% 67.10% 87.20% 108.0% 109.1%
15 62.80% 67.20% 63.34% 82.37% 91.70% 83.31%
20 51.50% 56.19% 57.77% 91.21% 88.30% 81.22%

Tab. 5: Out-of-sample root mean squared errors analysis. Table displays the VECM model’s root
mean squared errors out of the Lee and Carter’s RMSE. The Lee and Carter’s model is
estimated and projected separately. We implicitly assume that the mortality of any of
one population are independent of the other.

populations in the long term the error correction model and the cointegration relations

have significant forecast performances over the Lee and Carter model. The VECM per-

formance comes from its ability to capture the long run equilibrium between the two

population. Moreover, as we have seen earlier the Lee and Carter model fails to cap-

ture the whole information in the data. In fact, the one-factor specification of mortality

evolution is not suitable to model and project the mortality in period considered so far.

Finally, Figure 2 shows the point projection of mortality rates at age-bucket 60− 65.

The figure depicts the mortality content of the 95-percent forecast confidence intervals

generated by the models over 35 forecast horizon. For this age level, it is evident that

over all the projection period, the Lee and Carter yields interval projections that exhibit

greater probability content than the VECM(1) model, but are also much wider. The Lee

and Carter model seems more likely to generate mortality intervals that are too wide.

Conversely, the VECM(1) model tends to produce intervals that are too narrow. On the

other hand, the VECM(1) model tend to overestimate the mortality improvements in

comparison to the Lee and Carter approach, see Figure 2.

In order to further improve the projection performance of the considered approach

we should focus on the entire mortality table.

5 CONCLUDING REMARKS

We have proposed a way to jointly model the evolution of national and policyholders

mortality. In this paper we have used and developed an econometric model to study
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Fig. 2: One-year death probability for both CMI assured lives population (dashed line) and E&W
national population (solid line) for different age buckets.

issues concerned with the dynamic relationships between mortality rates for two related

populations. As far as joint mortality models are concerned, we have used the theory

of cointegrating time-series to build the inter-dependence of mortality rates dynamics

of the England & Wales population and the CMI assured lives population. In addition,

this inter-dependency is analysed in terms of the causality between the two populations

and the performance of the projections across different horizons using the cointegration

relationships is investigated as well.

Our study suggests that our method seems to perform quite well in the present en-

vironment. Of course, it may happen in the future that inequalities increase and that

a 2-speed health system develops. In that case, it may happen that the general pop-

ulation does not benefit enough from some key advances of medical science. To take

this into account, some stress tests could be performed, with some relation to the evo-

lution of some socio-economic indicators. Some more work would be needed to study

correlations between policyholders and national populations in several countries.

A Additional tables
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Short-term parameter Long-term parameter

Γ1 µ β̃ α̃ m̃

60-64 -0.377 -0.078 0.0046 1 -0.9348 0.0164 2.65070.1934 -0.5135 -0.0066 0.0113

65-69 -0.1934 -0.1567 0.0016 1 -1.2439 0.0218 -7.76620.6259 -0.6142 -0.0192 0.0108

70-74 -0.3523 -0.1328 0.0039 1 -1.6341 0.023 7.87170.1884 -0.4289 -0.0094 0.0158

75-79 -0.2896 -0.1432 0.0039 1 -1.0795 0.0187 3.98880.2865 -0.7125 -0.012 0.0143

80-84 -0.289 -0.1145 -0.0026 1 -0.855 0.0175 -2.03130.0236 -0.3524 -0.0163 0.0054

85-89 -0.4267 0.0399 -0.0142 1 -0.7067 -0.0033 11.9987-0.415 -0.0707 -0.0051 0.0144

Tab. 7: Parameter estimates of the state dynamics ∆qt(x) = µ + Γ1∆qt−1(x) +

α̃>(β̃qt−1(x) + m̃) + ut(x) with qt(x) = (q1t q
2
t )> for x ∈ {60 − 64, 65 − 69, 70 −

74, 75− 79, 80− 84, 85− 89}.

CMI E&W

60-64 65-69 70-74 75-79 80-84 85-89 60-64 65-69 70-74 75-79 80-84 85-89

z1t 1 -0.515 -0.234 0.386 -0.031 -0.066 -0.306 -0.038 0.241 -0.320 -0.002 0.091
z2t 1 -0.112 0.140 -0.040 0.025 -0.055 -0.924 0.239 -0.077 0.026 0.092 -0.055
z3t 1 -5.350 1.266 -0.480 0.441 0.635 1.482 2.722 -1.653 -0.685 0.314 -0.396
z4t 1 0.190 -0.206 -0.012 -0.004 0.021 -0.987 0.231 -0.132 0.208 0.028 -0.092
z5t 1 -0.274 1.270 0.508 -0.631 0.099 -2.063 0.337 -1.709 1.276 0.665 -0.710
z6t 1 -0.024 0.015 -0.107 -0.138 0.020 -0.321 -1.149 1.052 -0.291 0.021 0.108
z7t 1 -0.401 0.343 -0.136 0.055 0.108 -5.739 3.609 -2.350 1.376 0.296 -0.171
z8t 1 -0.582 -0.164 -0.546 -0.035 -0.248 4.169 -0.447 -3.713 4.301 -1.980 0.411
z9t 1 -0.727 -0.436 0.004 -0.445 -0.033 0.942 3.714 -1.423 -1.122 -0.084 0.583

Tab. 8: Cointegration relationships Π for the entire mortality rates Qt. The r = 9 relationships
are reported.
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