D. Selkoe, Alzheimer's Disease, Cold Spring Harbor Perspectives in Biology, vol.3, issue.7, pp.741-766, 2001.
DOI : 10.1101/cshperspect.a004457

J. Gotz and L. Ittner, Animal models of Alzheimer's disease and frontotemporal dementia, Nature Reviews Neuroscience, vol.12, issue.7, pp.532-544, 2008.
DOI : 10.1038/nrn2420

O. Philipson, Animal models of amyloid-??-related pathologies in Alzheimer???s disease, FEBS Journal, vol.427, issue.6, pp.1389-1409, 2010.
DOI : 10.1111/j.1742-4658.2010.07564.x

J. Jacobsen, Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer's disease, Proceedings of the National Academy of Sciences, vol.103, issue.13, pp.5161-5166, 2006.
DOI : 10.1073/pnas.0600948103

D. Selkoe, Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior, Behav Brain Res, vol.1921, pp.106-113, 2008.

W. Klein, G. Krafft, and C. Finch, Targeting small A?? oligomers: the solution to an Alzheimer's disease conundrum?, Trends in Neurosciences, vol.24, issue.4, pp.219-224, 2001.
DOI : 10.1016/S0166-2236(00)01749-5

S. Lesne, A specific amyloid-?? protein assembly in the brain impairs memory, Nature, vol.81, issue.7082, pp.352-357, 2006.
DOI : 10.1038/nature04533

G. Shankar, Amyloid-?? protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory, Nature Medicine, vol.28, issue.8, pp.837-842, 2008.
DOI : 10.1038/nm1782

S. Oddo, Triple-Transgenic Model of Alzheimer's Disease with Plaques and Tangles, Neuron, vol.39, issue.3, pp.409-421, 2003.
DOI : 10.1016/S0896-6273(03)00434-3

K. Duff and F. Suleman, Transgenic mouse models of Alzheimer's disease: How useful have they been for therapeutic development?, Briefings in Functional Genomics and Proteomics, vol.3, issue.1, pp.47-59, 2004.
DOI : 10.1093/bfgp/3.1.47

J. Dodart, C. Mathis, K. Bales, and S. Paul, Does my mouse have Alzheimer's disease?, Genes, Brain and Behavior, vol.2, issue.3, pp.142-155, 2002.
DOI : 10.1016/S0304-3940(00)01767-5

E. Johnstone, M. Chaney, F. Norris, R. Pascual, and S. Little, Conservation of the sequence of the Alzheimer's disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis, Molecular Brain Research, vol.10, issue.4, pp.299-305, 1991.
DOI : 10.1016/0169-328X(91)90088-F

M. Sarasa and P. Pesini, Natural Non-Trasgenic Animal Models for Research in Alzheimers Disease, Current Alzheimer Research, vol.6, issue.2, pp.171-178, 2009.
DOI : 10.2174/156720509787602834

N. Braidy, Recent rodent models for Alzheimer???s disease: clinical implications and basic research, Journal of Neural Transmission, vol.64, issue.9, 2011.
DOI : 10.1007/s00702-011-0731-5

M. Beck, V. Bigl, and S. Rossner, Guinea pigs as a nontransgenic model for APP processing in vitro and in vivo, Neurochem Res, vol.28, pp.3-4637, 2003.

N. Bons, F. Rieger, D. Prudhomme, A. Fisher, and K. Krause, Microcebus murinus: a useful primate model for human cerebral aging and Alzheimer's disease?, Genes, Brain and Behavior, vol.32, issue.2, pp.120-130, 2006.
DOI : 10.1016/S0197-4580(89)80005-3

N. Inestrosa, Human-like rodent amyloid-??-peptide determines Alzheimer pathology in aged wild-type Octodon degu, Neurobiology of Aging, vol.26, issue.7, pp.1023-10281651, 2005.
DOI : 10.1016/j.neurobiolaging.2004.09.016

S. Fitzjohn, Age-related impairment of synaptic transmission but normal long-term potentiation in transgenic mice that overexpress the human APP695SWE mutant form of amyloid precursor protein, J Neurosci, vol.21, issue.13, pp.4691-4698, 2001.

A. Hsia, Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models, Proceedings of the National Academy of Sciences, vol.96, issue.6, pp.3228-3233, 1999.
DOI : 10.1073/pnas.96.6.3228

H. Wang, A. Megill, K. He, A. Kirkwood, and H. Lee, Consequences of inhibiting amyloid precursor protein (APP) processing enzymes on synaptic function and plasticity, Neural Plasticity, 2012.

E. Chang, AMPA receptor downscaling at the onset of Alzheimer's disease pathology in double knockin mice, Proceedings of the National Academy of Sciences, vol.103, issue.9, pp.3410-3415, 2006.
DOI : 10.1073/pnas.0507313103

J. Ting, B. Kelley, T. Lambert, D. Cook, and J. Sullivan, Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms, Proceedings of the National Academy of Sciences, vol.104, issue.1, pp.353-358, 2007.
DOI : 10.1073/pnas.0608807104

S. Middei, Learning discloses abnormal structural and functional plasticity at hippocampal synapses in the APP23 mouse model of Alzheimer's disease, Learning & Memory, vol.17, issue.5, pp.236-240, 2010.
DOI : 10.1101/lm.1748310

R. Kayed, Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis, Science, vol.300, issue.5618, pp.486-489, 2003.
DOI : 10.1126/science.1079469

P. Arriagada, J. Growdon, E. Hedley-whyte, and B. Hyman, Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease, Neurology, vol.42, issue.3, pp.631-639, 1992.
DOI : 10.1212/WNL.42.3.631

L. Otvos and . Jr, Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404, 28. Goedert M, Jakes R, & Vanmechelen E (1995) Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205, pp.669-673167, 1994.
DOI : 10.1002/jnr.490390607

J. Palop and L. Mucke, Amyloid-?????induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks, Nature Neuroscience, vol.103, issue.7, pp.812-818, 2010.
DOI : 10.1038/nn.2583

M. Larson and S. Lesne, Soluble A?? oligomer production and toxicity, Journal of Neurochemistry, vol.30, issue.Pt 21, pp.125-139, 2012.
DOI : 10.1111/j.1471-4159.2011.07478.x

J. Cleary, Natural oligomers of the amyloid-?? protein specifically disrupt cognitive function, Nature Neuroscience, vol.62, issue.1, pp.79-84, 2005.
DOI : 10.1073/pnas.94.4.1550

D. Felice and F. , Abeta Oligomers Induce Neuronal Oxidative Stress through an N-Methyl-D-aspartate Receptor-dependent Mechanism That Is Blocked by the Alzheimer Drug Memantine, Journal of Biological Chemistry, vol.282, issue.15, pp.11590-11601, 2007.
DOI : 10.1074/jbc.M607483200

G. Cenini, Generation of reactive oxygen species by beta amyloid fibrils and oligomers involves different intra/extracellular pathways, Amino Acids, vol.38, issue.4, pp.1101-1106, 2010.
DOI : 10.1007/s00726-009-0339-3

P. Lacor, A?? Oligomer-Induced Aberrations in Synapse Composition, Shape, and Density Provide a Molecular Basis for Loss of Connectivity in Alzheimer's Disease, Journal of Neuroscience, vol.27, issue.4, pp.796-807, 2007.
DOI : 10.1523/JNEUROSCI.3501-06.2007

P. Lacor, Synaptic Targeting by Alzheimer's-Related Amyloid ?? Oligomers, Journal of Neuroscience, vol.24, issue.45, pp.10191-10200, 2004.
DOI : 10.1523/JNEUROSCI.3432-04.2004

J. Lauren, D. Gimbel, H. Nygaard, J. Gilbert, and S. Strittmatter, Cellular prion protein mediates impairment of synaptic plasticity by amyloid-?? oligomers, Nature, vol.22, issue.7233, pp.1128-1132, 2009.
DOI : 10.1038/nature07761

M. Renner, Deleterious Effects of Amyloid ?? Oligomers Acting as an Extracellular Scaffold for mGluR5, Neuron, vol.66, issue.5, pp.739-754, 2010.
DOI : 10.1016/j.neuron.2010.04.029

D. Walsh, Naturally secreted oligomers of amyloid ?? protein potently inhibit hippocampal long-term potentiation in vivo, Nature, vol.416, issue.6880, pp.535-539, 2002.
DOI : 10.1038/416535a

M. Townsend, G. Shankar, T. Mehta, D. Walsh, and D. Selkoe, Effects of secreted oligomers of amyloid ??-protein on hippocampal synaptic plasticity: a potent role for trimers, The Journal of Physiology, vol.64, issue.2, pp.477-492, 2006.
DOI : 10.1113/jphysiol.2005.103754

I. Cheng, Accelerating Amyloid-?? Fibrillization Reduces Oligomer Levels and Functional Deficits in Alzheimer Disease Mouse Models, Journal of Biological Chemistry, vol.282, issue.33, pp.23818-23828, 2007.
DOI : 10.1074/jbc.M701078200

M. Reed, Cognitive effects of cell-derived and synthetically derived Abeta oligomers, Neurobiol Aging, 2009.

S. Bernstein, Amyloid-?? protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease, Nature Chemistry, vol.212, issue.4, pp.326-331, 2009.
DOI : 10.1038/nchem.247

J. Pavia, M. De-ceballos, and F. Sanchez-de-la-cuesta, Alzheimer's disease: relationship between muscarinic cholinergic receptors, ??-amyloid and tau proteins, Fundamental & Clinical Pharmacology, vol.94, issue.suppl B, pp.473-481, 1998.
DOI : 10.1111/j.1472-8206.1998.tb00975.x

S. Oddo, Reduction of Soluble Abeta and Tau, but Not Soluble Abeta Alone, Ameliorates Cognitive Decline in Transgenic Mice with Plaques and Tangles, Journal of Biological Chemistry, vol.281, issue.51, pp.39413-39423, 2006.
DOI : 10.1074/jbc.M608485200

K. Rank, Direct interaction of soluble human recombinant tau protein with A?? 1-42 results in tau aggregation and hyperphosphorylation by tau protein kinase II, FEBS Letters, vol.293, issue.2-3, pp.263-268, 2002.
DOI : 10.1016/S0014-5793(02)02376-1

H. Zempel, E. Thies, E. Mandelkow, and E. Mandelkow, A?? Oligomers Cause Localized Ca2+ Elevation, Missorting of Endogenous Tau into Dendrites, Tau Phosphorylation, and Destruction of Microtubules and Spines, Journal of Neuroscience, vol.30, issue.36, pp.11938-11950, 2010.
DOI : 10.1523/JNEUROSCI.2357-10.2010

H. Decker, K. Lo, S. Unger, S. Ferreira, and M. Silverman, Amyloid-?? Peptide Oligomers Disrupt Axonal Transport through an NMDA Receptor-Dependent Mechanism That Is Mediated by Glycogen Synthase Kinase 3?? in Primary Cultured Hippocampal Neurons, Journal of Neuroscience, vol.30, issue.27, pp.9166-9171, 2010.
DOI : 10.1523/JNEUROSCI.1074-10.2010

O. Shipton, Tau Protein Is Required for Amyloid ??-Induced Impairment of Hippocampal Long-Term Potentiation, Journal of Neuroscience, vol.31, issue.5, pp.1688-1692, 2011.
DOI : 10.1523/JNEUROSCI.2610-10.2011

Z. Gu, W. Liu, and Z. Yan, ??-Amyloid Impairs AMPA Receptor Trafficking and Function by Reducing Ca2+/Calmodulin-dependent Protein Kinase II Synaptic Distribution, Journal of Biological Chemistry, vol.284, issue.16, pp.10639-10649, 2009.
DOI : 10.1074/jbc.M806508200

C. Almeida, Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses, Neurobiology of Disease, vol.20, issue.2, pp.187-198, 2005.
DOI : 10.1016/j.nbd.2005.02.008

F. Kamenetz, APP Processing and Synaptic Function, Neuron, vol.37, issue.6, pp.925-937, 2003.
DOI : 10.1016/S0896-6273(03)00124-7

O. Lazarov, M. Lee, D. Peterson, and S. Sisodia, Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice, J Neurosci, vol.22, issue.22, pp.9785-9793, 2002.

C. Zhang, Presenilins are essential for regulating neurotransmitter release, Nature, vol.5, issue.7255, pp.632-636, 2009.
DOI : 10.1038/nature08177

K. Boric, P. Munoz, M. Gallagher, and A. Kirkwood, Potential Adaptive Function for Altered Long-Term Potentiation Mechanisms in Aging Hippocampus, Journal of Neuroscience, vol.28, issue.32, pp.8034-8039, 2008.
DOI : 10.1523/JNEUROSCI.2036-08.2008

H. Lee, S. Min, M. Gallagher, and A. Kirkwood, NMDA receptor???independent long-term depression correlates with successful aging in rats, Nature Neuroscience, vol.284, issue.12, pp.1657-1659, 2005.
DOI : 10.1038/nn1586

E. Rosenzweig and C. Barnes, Impact of aging on hippocampal function: plasticity, network dynamics, and cognition, Progress in Neurobiology, vol.69, issue.3, pp.143-179, 2003.
DOI : 10.1016/S0301-0082(02)00126-0

F. Willig, Short-term memory, exploration and locomotor activity in aged rats, Neurobiology of Aging, vol.8, issue.5, pp.393-402, 1987.
DOI : 10.1016/0197-4580(87)90033-9

I. Lukaszewska and A. Radulska, Object recognition is not impaired in old rats, Acta Neurobiol Exp, vol.54, issue.2, pp.143-150, 1994.

A. Ponce, W. Cerpa, N. Inestrosa, and A. Palacios, Aging and Spatial Memory in the rodent Octodon degus, C139, page 39. Curico 27-29 Sept. II Annual Meeting of the Chilean Neuroscience Society. Chile, 2006.