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Ruin theory concerns the study of stochastic processes that represent the time evolution of the
surplus of a stylized non-life insurance company. The initial goal of early researchers of the field,
Lundberg (1903) and Cramér (1930), was to determine the probability for the surplus to become
negative. In those pioneer works, the authors show that the ruin probability ) (u) decreases expo-
nentially fast to zero with initial reserve v > 0 in numerous cases when the net profit condition is
satisfied: if the insurance company receives premium continuously at a deterministic rate ¢ > and
pays for claims that are described by a compound Poisson process, for all w > 0 we have an upper
bound for the ruin probability 1(u) < e~ %, as well as information on the asymptotic behaviour,
because ¥ (u) ~ Ce " as u — +oo, where 0 < C' < 1. This result is valid for light-tailed claim
amounts, i.e. when the probability of very large claims decreases fast enough. This condition is
satisfied in the particular case where claims amounts are bounded, which is often true in practice.
Following the approach of Gerber (1974), it is possible to link the Cramr-Lundberg adjustment
coefficient R with the risk aversion coefficient a. If one measures a random claim amount X
thanks to indifference pricing method (which means that the insurer does not show any preference
between not insuring the risk and bearing the risk after receiving premium ), with exponential
utility function u(x) = (1 — e~%) /a, the insurer would ask for premium!

1
= —In (E (e™)).
w1 (B (™))
Gerber (1974) notes that if the insurer determines the premium following this principle, then
the Cramér-Lundberg adjustement coefficient R is identical to the risk aversion parameter a.
Conversely, if the insurer wants the ruin probability to decrease exponentially fast, she can use

'Denote by E(Y') the mathematical expectation of an integrable random variable X, by Var(X) its variance if X
is square integrable. Denote VaRg(X) the Value-at-Risk (quantile) of level 5 € [0, 1] of a general random variable
X.
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indifference pricing principle with exponential utility function. Note that in this dynamic vi-
sion, at first order, the insurer uses a pricing principle that looks like the variance principle 7 ~
E(X) + $Var(X). This is different from the static framework, which consists (like in Solvency
II) in studying the probability that the net asset value of the company is negative in one year. If
one computes the risk margin thanks to the cost of capital approach, this leads to a theoretical
pricing as E(X) + b (VaRgg 5%(X) — E(X)). This corresponds at first order to the standard error
coefficient pricing principle 7 ~ F/(X) + bg\/Var(X), where b is a parameter that quantifies cost
of capital, and ¢ is a factor that links the standard error coefficient and the 99.5%-Value-at-Risk of
X (approximately 3 for a Gaussian distribution, 4 or 5 for heavier tails). Ruin theory thus provides
more sustainable valuation principle than the Value-at-Risk approach, because it takes into account
liquidity constraints and penalizes large position sizes.

In risk management, insurance companies start to set risk limits: more precisely, they want to
guarantee that the Solvency Capital Requirement (SCR) coverage ratio stays above a certain level
with a large enough probability. Modeling the evolution of the SCR coverage ratio is of course del-
icate. Internal models (that study the one year change in net asset value) are already very complex
and require large computation times. On the average term, insurers often merely study solvency
in some adverse scenarios, without trying to affect probability to each of those scenarios. Ruin
theory does not offer a precise, miraculous answer to this question, but it may provide interesting
insight thanks to different situations for which the ruin probability is known explicitly or can be
approximated. Note that the zero surplus level corresponds then to the minimum SCR coverage
ratio level in that case. Finite-time ruin probabilities have been studied among others by Picard
and Lefevre (1997), and Ignatov et al. (2001). The probability of ruin at inventory dates has been
studied by Rulliere and Loisel (2003). Researchers in ruin theory currently work on models with
credibility adjusted premium, with tax payments, with correlations and correlation crises between
claim amounts, as well as the ability for the insurer to invest into risky assets or to transfer part of
its risks. Less binary risk and profit indicators are also considered. For regularly varying claim size
distributions (Pareto distribution for example), Embrechts and Veraverbeke (1982) have shown that
the ruin probability decreases more slowly with u:

U(u) ~ Ku=

where o > 1. In several models with a non diversifiable and no compensable risk driver, Albrecher
et al. (2011) and Dutang et al. (2012) show that the ruin probability admits a positive limit as

U — +00:
B

where 0 < A < 1 and B > 0 are constant numbers. Here, ruin should be understood in a broader
sense, economic ruin or switch to run-off mode before being completely ruined. This corresponds
to the idea that capital is not always the answer and that the capacity to react fast is a key element of
efficient risk management. The book by Asmussen and Albrecher (2010) contains most references
of papers dealing with ruin theory.

Another classical problem of ruin theory is to determine optimal dividend strategies. In Switzer-
land, if ruin were not a problem, it would not be efficient to pay dividends, because they are taxed.
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It would be better to let the stock price increase faster in the absence of dividends, because capital
gains are not taxed. But as ruin may occur, the investor faces the problem of dividend optimization.
De Finetti, who was also actuary at Generali, shew in a simplified model that the optimal dividend
strategy consisted in paying dividends above some horizontal barrier (which of course increases
ruin probability) and computed the optimal barrier level. Dubourdieu (1952) formalized several
results on this issue and gave credit to De Finetti for the main ideas (see posterior paper by De
Finetti (1957)). In a more general setting, optimal strategies might involve several bands instead
of one single barrier. Since the works by Borch (1974) and by Gerber (see for example Gerber
(1979)), this subject had been almost forgotten, but has been addressed by numerous papers in
the recent years (see the survey by Avanzi (2009) on those issues and by Albrecher et Thonhauser
(2009) on optimal control strategies).

This theory could be useful to address the problem of determining appropriate Solvency Capital
Requirement coverage ratio target levels. In the new regulation framework Solvency II, in addition
to the technical provisions (composed of best estimate of liabilities and of a risk margin), the
insurer must have at least the so-called Solvency Capital Requirement (SCR). Most insurers have
now to choose a target SCR level, usually comprised between 110% and 200%. Besides, they
usually adopt a kind of dividend strategy that corresponds to a refraction strategy: if the SCR
coverage ratio becomes higher than a threshold, then the insurer starts to pay part of the excess as
dividends. If the SCR coverage ratio overshoots a certain level (250%, say), then all the excess is
paid as dividends, which corresponds to reflection from a barrier. For Enterprise Risk Management
purposes, it might be interesting to study the probability to become insolvent before 5 or 10 years
in a steady regime to check whether the activity would be sustainable in a steady regime, in the
absence of change of risk environment. With a first-order approximation, this corresponds to a
finite-time ruin problem with a certain dividend strategy, where the ruin level is the 100% coverage
ratio level (it is different from the economic ruin level where the net asset value of the company
becomes negative). The dynamic balance sheet is illustrated in Figure 1 and the simplified ruin
problem is illustrated in Figure 2.
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Figure 1: Evolution of economic balance sheet.



20 H. Gerber and S. Loisel

SCR Coverage ratio
attimet

280%

25006 [rrrerrennnnnnnn A e

180%

1009 1 1 1 ) timet

t=0 t=1 t=2 t=3

Figure 2: Evolution of SCR coverage ratio.

Nevertheless the simplified view is far from being perfect, because the insolvency threshold
depends on the evolution of the assets and liabilities. Of course, the evolution of the economic
balance sheet of a company is much more complicated than classical risk models. However, as
multi-period risk models are often intractable on a 5-year time horizon in practice, it may be
interesting to have benchmarks that come from ruin theory in mind while thinking about the risk
appetite implementation.
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