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2 Katholieke Universiteit Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium

Abstract

Large data sets, either coming from a large number of independent replications, or because
of hierarchies in the data with large numbers of within-unit replication, may pose challenges to
the data analyst up to the point of making conventional inferential methods, such as maximum
likelihood, prohibitive. Based on general pseudo-likelihood concepts, we propose a method to
partition such a set of data, analyze each partition member, and properly combine the inferences
into a single one. It is shown that the method is fully efficient for independent partitions, while
with dependent sub-samples efficiency is sometimes but not always equal to one. It is argued
that, for important realistic settings, efficiency is often very high. Illustrative examples enhance
insight in the method’s operation, while real-data analysis underscores its power for practice.

Keywords: Asymptotic relative efficiency; Compound-symmetry; Small-sample relative effi-
ciency.

1 Introduction

Contemporary statistical analysis is confronted with data sets of ever increasing dimensions, not only

because the number of independent units may become very large, but also owing to hierarchies in the

data with large numbers of within-unit replication. While computational and data-analytic resources

have recently progressed tremendously, sheer size may be a limiting factor. Our method allows for

data analysis that otherwise would be prohibitive, either due to extremely large sample size or a large

amount of dependent replication.

Using pseudo-likelihood technology, we propose a method whereby a dataset can be chopped into

portions, each of which is then analyzed separately, followed by combining inferences into a single set.

The method is inspired by work of Fieuws and Verbeke (2006) and Fieuws et al (2006), reviewed in

Molenberghs and Verbeke (2005, Ch. 24), who constructed a tool for the analysis of high-dimensional

longitudinal data.

Our focus is on proper partitions, where every data point is a member of one and exactly one of the,

say M , subsamples. Our method could be generalized to situations with overlapping subsamples

as well. However, proper partitions allow us to use maximum likelihood on each subsample, thus

simplifying the combination of M inferences into a single one considerably.
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A particularly interesting special case is when partitioning is done in terms of independent units (i.e.,

dependent data are not spread over different members subsample). In that case, the method is fully

efficient in the sense that the Cramèr-Rao lower bound is reached. This is true, even though the

actual estimator may differ from the one that would result were the data analyzed in full. These

results are illustrated using univariate normal and univariate Bernoulli samples.

When correlated data are partitioned by splitting a sequence of dependent data across different

subsamples, then full efficiency is sometimes, but not always, reached. An example of this setting

is when for each subject in a longitudinal study, Mn repeated measurements are taken, which are

subsequently split into M sequences of length n. This results in M separate longitudinal sets of data,

each one having shorter length. This situation is useful when the length of a sequence is prohibiting

efficient computation. Unlike in the previous case, a dependent partition results. This case is

illustrated using the simple, insightful example of a multivariate normal sample with constant mean

and compound-symmetry covariance structure. It will be shown that such dependent partitioning

can be fully efficient for some but not necessarily for all parameters. The latter remarks begs the

questions as to the efficiency of the method. The advantage of our illustrative examples is that the

asymptotic relative efficiency, and its small-sample counterparts, can be studied without difficulty.

Of course, the illustrative examples have limited use in practice. The method is devised for settings

that genuinely poses computational challenges that can be alleviated by partitioning the data set.

We apply our method to a data comprising long binary repeated-measures sequences.

The paper is organized as follows. The motivating data are introduced in Section 2; their analysis is

relegated to Section 6. The methodology for our method is presented in Section 3, with attention for

general pseudo-likelihood concepts, the method of Fieuws and Verbeke, and our partitioned-sample

case, with emphasis on both independent and dependent partitions. The aforementioned illustrations

are described in Section 4 and efficiency scrutinized in Section 5.

2 Motivating Case Studies

The motivating case study encompasses data collected by the European Monitoring Centre for Drugs

and Drug Addiction (EMCDDA; Mathei et al 2006). It consist of annual serological surveys, providing

information about the hepatitis C virus (HCV) and human immunodeficiency virus (HIV) status and

related risk factors from the 20 Italian regions in the period 1998-2006. Respondents are drug users

who sought help in the drug treatment centers. In each year, large numbers of drug users are tested

for their HCV and HIV statuses. The resulting dataset is a sequence of binary outcomes for each of

the 20 Italian regions over the years. Not all regions are present at all years. We will focus on the

HCV data. The maximum number of respondents is 15,401 (average 3866.61), and the maximum of

positive tests is 10,875 (average 2578.12). The aim is to investigate the change in HCV over time,

i.e., whether year-effects are present in the profiles. Table 3 in the Supplementary Material lists the
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overall HCV prevalences for each of the 20 regions. Figure 1 in the Supplementary Material displays

the profiles for each of the 20 regions.

3 Methodology

3.1 Standard Pseudo-likelihood

Using Arnold and Strauss (1991), we introduce pseudo-likelihood, the principal idea of which is to

replace a numerically challenging joint density by a simpler function assembled from suitable factors.

Consider a sample of size N with repeated measures sequences of length n. Let S be the set of

all 2n − 1 vectors of length n consisting solely of zeros and ones, with each vector having at least

one non-zero entry. Denote by y
(s)
i the subvector of yi corresponding to the components of s that

are non-zero. The associated joint density is fs(y
(s)
i ; β). To define a pseudo-likelihood function,

one chooses a set δ = {δs|s ∈ S} of real numbers, with at least one non-zero component. This

is a general definition and the precise choice depends on inferential goals and the specific form of

the model being considered. A common choice is pairwise likelihood where δs = 1 for sequences s

with exactly two components equal to 1, and zero otherwise. Other choices include the set of full

conditionals, ensuring every outcome in a sequence is conditioned upon all other outcomes in the

sequence of repeated measures. Details can be found in Molenberghs and Verbeke (2005, Ch. 9, 12,

21, 22, 24, and 25). The log of the pseudo-likelihood is then

p` =
N∑

i=1

∑

s∈S

δs ln fs(y
(s)
i ; β). (1)

Adequate regularity conditions have to be invoked to ensure that (1) can be maximized by solving

the pseudo-likelihood (score) equations, the latter obtained by differentiating the logarithmic pseudo-

likelihood and equating its derivative to zero. These regularity conditions are spelled out in the

Supplementary Material. In particular, when the components in (1) result from a combination of

marginal and conditional distributions of the original distribution, then a valid pseudo-likelihood

function results. In particular, the classical log-likelihood function is found by setting δs = 1 if s is

the vector consisting solely of ones, and 0 otherwise. Broadly, a pseudo-likelihood is valid if composed

of marginal and conditional densities, derived from the full density describing the entire sequence of

measurements, thereby allowing for repetition and weighting. More details can be found in Varin

(2008), Lindsay (1988), and Joe and Lee (2008). Note that Joe and Lee (2008) use weighting for

reasons of efficiency in pairwise likelihood, similar in spirit to Geys, Molenberghs, and Lipsitz (1998),

but differently from its use here, which focuses on bias correction when data are incomplete. Another

important reference is Cox and Reid (2004).

Let β0 the true parameter. Under suitable regularity conditions (Arnold and Strauss 1991, Geys,

Molenberghs, and Ryan 1999, Aerts et al. 2002), it can be shown that maximizing (1) gives a
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consistent, asymptotically normal estimator β̃N so that
√

N (β̃N − β0) converges in distribution to

Np[0, I0(β0)
−1I1(β0)I0(β0)

−1]. (2)

Precise statements and additional discussion are given in Appendix A of the Supplementary Material

section.

3.2 Pseudo-likelihood for Partitioned Samples

3.2.1 Background

Fieuws and Verbeke (2006) and Fieuws et al. (2006) proposed a pseudo-likelihood-based method to

fit mixed models to high-dimensional longitudinal data. Their method is reviewed in Molenberghs and

Verbeke (2005, pp. 470ff). Precisely, when a large number of longitudinal sequences are modeled

simultaneously, standard (restricted) maximum likelihood becomes prohibitive. As an alternative,

they propose fitting corresponding mixed models to each pair of outcomes. Hence, if there are M

longitudinal sequences per subject, M(M − 1)/2 pairs ensue. The difference with standard pseudo-

likelihood, as reviewed in Section 3.1, is that the models are fitted to each pair separately, whereas (1)

assembles all contributions into a single pseudo-likelihood function, ensuring that all parameters are

estimated only once. In the pairwise approach, the mean parameters governing, for example, the first

longitudinal sequence, are estimated M −1 times, because the first second is paired with the second,

the third, and so on, up to the Mth. Nevertheless, these authors are able to cast their method in

the general pseudo-likelihood context. To see this, they first observe that fitting all bivariate models

is equivalent to maximizing the function

p`(θ) ≡ p`(y1i, y2i, . . . , yMi|θ) =
∑

r<s

`(yir, yis|θrs), (3)

where ymi is sequence m = 1, . . . , M for subject i = 1, . . . , N , θ is the overall parameter vector

and θrs is the parameter vector pertaining to pair (r, s). To proceed, one temporarily ignores that

some of the vectors θrs have common elements, i.e., assuming that all vectors θrs are completely

distinct. In (3), θ results from stacking all M(M − 1)/2 pair-specific parameter vectors θrs. The

actual parameter vector of interest is θ∗, the set of non-redundant parameters is θ.

Evidently, (3), is of the form (1) and hence their pairwise fitting procedure fits within the general

framework of pseudo-likelihood. Conveniently, the set of parameters in θrs is treated pair-specific,

which allows separate maximization of each term in the pseudo log-likelihood function (3).

Because the pairwise approach fits within the pseudo-likelihood framework, an asymptotic multivari-

ate normal distribution for θ̂ can be derived, using the general pseudo-likelihood theory presented in

Section 3.1:
√

N(θ̂ − θ)
approx.∼ N (0, I−1

0 I1I
−1
0 ). To pass from θ to θ∗, Fieuws and Verbeke (2006)

take averages of all available estimates for that specific parameter, implying that θ̂∗ = A′θ̂ for an

4



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

appropriate linear combination matrix A. Hence, inference for the elements in θ̂
∗

will be based on

√
N(θ̂∗ − θ∗) =

√
N(A′θ̂ − A′θ)

approx.∼ N (0, A′I−1
0 I1I

−1
0 A). (4)

We will make use of these ideas to apply pseudo-likelihood estimation to partitioned samples, par-

tioned pseudo-likelihood (PPL) for short.

3.2.2 Independent Subsamples

Let us modify the ideas, reviewed in Section 3.2.1, to the case where a given sample, deemed too

large, is broken into m = 1, . . . , M subsamples, each of size n, such that N = M · n. While it is

possible to let the subsample size vary (with then N =
∑M

m=1 nm), to avoid cluttering notation we

focus on the equal subsample size case. The likelihood for sample m takes the form

p`m(θm) =
n∑

i=1

`(ymi|θm), (5)

where `(·) refers to the likelihood one would consider were the mth subsample the entire set of data.

Further, ymi is the ith subject in sample m. Note that all θm are equal to θ∗, the parameter vector

of interest. Note that θ in Section 3.2.1 now takes the form (θ∗, θ∗, . . . , θ∗). The overall estimator

is naturally defined as:

θ̂
∗

=
1

M

M∑

m=1

θ̂m. (6)

Owing to the independence of the subsamples, the off-diagonal blocks in the matrices I0 and I1 are

all zero. Because each of the M contributions to (5) pertains to a genuine likelihood, the diagonal

blocks in I0 and I1 are identical up to the sign, because

Hθ ≡ I0(θm, θm) = E

[
∂2`m(θm)

∂θT
m∂θm

]
= −E

[(
∂`m(θm)

∂θm

)T

.
∂`m(θm)

∂θm

]
= −I1(θm, θm).

Using the above results, the asymptotic variance (4) for (6) takes the form

var(θ̂
∗

) =
1

M
H−1

θ̂
. (7)

While (7) uses the expected information, one can also employ the observed information matrices,

denoted by H
θ̂,m

and derived as the second derivative of the pseudo-likelihood function, for each of

the subsamples:

1

M2

M∑

m=1

H−1

θ̂,m
. (8)

These derivations are based upon using

A =
1

M
(I, . . . , I) (9)

in (4), where I is an identity matrix with dimensions equal to the length of the vector θ∗.

5



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

3.2.3 Dependent Subsamples

In the above, the overall sample was partitioned into M independent parts, consisting each of n

subjects. A different, important area of application is when, say longitudinal or otherwise hier-

archical samples would be partitioned by splitting each outcome vector Y i into M sub-vectors:

(Y 1i, . . . , Y Mi)
′, each consisting of n measurements. Three remarks are in order. First, as before,

it is perfectly possible to let n vary with subsample, and even from subject to subject, but for ease of

exposition we will keep it constant throughout this section. Second, partitioning can be generalized

to that of the previous and the current section combined. Third, the difference with Section 3.2.1

is that we do not make multiple use of the same portions within an outcome sequence; should this

be desirable, this aspect can then be brought into the picture without trouble. The methodology

in the dependent case is entirely similar to that of the dependent case with the sole but important

exception that the off-diagonal blocks in I1 are generally non-zero. Indeed, the (m, m′) block of I1

takes the form

I1(θm, θm′) = E

[(
∂`m(θm)

∂θm

)T

.
∂`m′(θm′)

∂θm′

]
.

As a result, the straightforward expressions (7) and (8) no longer apply. Rather, general expression

(4) should be used, with A as in (9).

4 Illustrations

In this section, we provide some simple but insightful illustrations in the form of a univariate normal

sample, Bernoulli sampling, and a compound-symmetry multivariate normal sample. While a genuine

data analysis is relegated to Section 6, these three simple cases have the advantage of establishing

three qualitatively distinct situations: (1) No difference between likelihood (ML) and PPL. In

the normal sample as well as in the Bernoulli sample, parameterized using a probability, there is no

difference between either. The same is true for the mean parameter in the compound-symmetry case;

(2) Different estimator, same precision. When the Bernoulli experiment is characterized by the

logit instead, a different estimator emerges, with nevertheless the same asymptotic variance; Dif-

ferent estimator, precision loss. ML and PPL differ for both variance components (measurement

error, random-intercept variance) in the compound-symmetry case, in terms of both the estimators

as well as their asymptotic variance. Each of these three cases will be sketched next, with details

relegated to the Supplementary Material, where appropriate.

4.1 A Univariate Normal Sample

Assume Ymi ∼ N (µ, σ2). The PPL takes the form:

p`(µ1, . . . , µM , σ2
1, . . . , σ

2
M) ∝

M∑

m=1

n∑

i=1

{
−1

2
ln(σm) − 1

2

(
ymi − µm

σm

)2
}

. (10)

6
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Recall that all µm and all σm are equal across m, but in the process of deriving the estimator, each

subsample is given its own parameter vector. Focusing on the mean parameter, we obtain µ̂m = ymi.

The mean estimator becomes

µ̃ =
1

M

M∑

m=1

1

n

n∑

i=1

ymi = µ̂, (11)

where µ̃ refers to the PPL estimator, as opposed to the ML estimator µ̂. The second derivative of

(10) is −n/σ2
m. Given equality of the parameters, we can write I0(µm, µm) = −I1(µm, µm) = nσ2

and, with now A = 1
M

(1, . . . , 1)′, we obtain var(µ̃) = σ2/(Mn) = var(µ̂). Based upon similar

calculations, the asymptotic variance for σ2 becomes: var(σ̃2) = 2σ4/(Mn) = var(σ̂2). Note that

we have treated both estimators independent rather than joint, because µ and σ2 are independent,

a property carrying over onto both I0 and I1, so that also in the PPL case these are effectively two

scalar-parameter problems.

Hence, as stated earlier, for the univariate normal case, the PPL method produces the same estimators

and the same asymptotic variances as the classical one obtained with ML. Given the linearity of all

expressions involved, this result is also true for the observed information. When the sample sizes

would vary across sub-samples, then (11) has to be weighted appropriate to maintain equality.

4.2 A Univariate Bernoulli Sample

Assume that Ymi is Bernoulli with parameter π or, equivalently, logit α = ln[π/(1− π)]. The PPL

assumes the form:

p`(π1, . . . , πM) =
M∑

m=1

[zm ln πm + (n − zm) ln(1 − πm)] , (12)

with zm =
∑n

i=1 ymi, the number of successes in the mth subsample, for which πm is the corre-

sponding copy of the success probability π. It then follows that π̂m = zm/n and hence

π̃ =
1

Mn

M∑

m=1

zm = π̂,

where π̂ refers to the ML estimator and π̃ is the PPL counterpart. Further

E

(
∂2`m

∂π2
m

)
= − n

πm(1− πm)
,

leading to var(π̃) = [π(1 − π)]/(Mn) = var(π̂). Again, in analogy with the univariate normal case

above, there is no difference between the PPL and ML cases.

Switching to the logit parameterization, (12) is replaced with

p`(α1, . . . , αM) =
M∑

m=1

[zmαm − n ln (1 + eαm)] , (13)

7
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leading to the asymptotic variances

α̂m = ln

(
zm

n − zm

)
, and E

(
∂2`m

∂α2
m

)
= −n

eαm

(1 + eαm)2
,

and hence, the variance for the logit becomes:

var(α̃) =
1

M2n

M∑

m=1

1

π̂m(1− π̂m)
. (14)

In case we use the expected value, we obtain:

var(α̃) =
1

Mn

1

π(1 − π)
,

exactly the same as what would be obtained if the sample were not partitioned but rather conventional

ML were used. This is interesting, because the point estimator α̃ = 1
M

∑M
m=1 α̂m is different from

the ML version α̂ = ln[z/(Mn − z)], where z is the overall number of successes out of a total of

Mn Bernoulli trials.

4.3 Multivariate Normal Compound Symmetry

Consider the compound symmetry model

Y i = (Y 1i, . . . , Y Mi)
′ ∼ N (1µ, σ2I + dJ), (15)

where 1 is a vector of ones of appropriate length, I is the identity matrix, and J is a matrix of ones.

The dimensions of 1, I , and J will be suppressed from notation when no confusion can arise. We

will present the ML and PPL point and precision estimators. Details are relegated to Appendix B in

the Supplementary Material.

To simplify notation, let us consider the pseudo-likelihood contribution for a given arbitrary subsam-

ple, m, which comes down to the log-likelihood for a sample of N subjects with sequences of length

n. Recall that the full sequence length is Mn and that the sequences have been split into M equal

portions. The log-likelihood takes the form:

`(µm, σ2
m, dm) = −1

2

N∑

i=1

{
ln
[
σ2n + nσ2(n−1)dm

]

+(Y mi − µm1)′
1

σ2
m

(
I − dm

σ2
m + ndm

)
(Y mi − µm1)

}
. (16)

As in the univariate normal case, the mean µm on the one hand and the variance components σ2
m and

dm on the other can be treated separately, owing to their functional and statistical independence.

Considering µm first and setting the first derivative of (16) equal to zero leads to the conventional:

µ̂m =
1

Nn

N∑

i=1

n∑

j=1

Yij . (17)

8
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From (17) we immediately deduce:

µ̃ =
1

Nnm

M∑

m=1

N∑

i=1

n∑

j=1

Ymij . (18)

which is the overall mean. Evidently, this is also the estimator obtained, should one analyze the

sample as a whole, i.e., µ̃ = µ̂. Similarly, turning to the variance components, it follows that

σ̂2
m =

1

Nn(n − 1)

(
n

N∑

i=1

Z′

miZmi −
N∑

i=1

Z′

miJnZmi

)
, (19)

d̂m =
1

Nn(n − 1)

(
N∑

i=1

Z′

miJnZmi −
N∑

i=1

Z′

miZmi

)
, (20)

where Zmi = (Y mi − µ1n) and Jn is an n × n matrix of ones. From (19) and (20) it follows that:

σ̃2 =
1

MNn(n − 1)

(
n

M∑

m=1

N∑

i=1

Z′

miZmi −
M∑

m=1

N∑

i=1

Z ′

miJnZmi

)
, (21)

d̃ =
1

MNn(n − 1)

(
M∑

m=1

N∑

i=1

Z ′

miJnZmi −
M∑

m=1

N∑

i=1

Z′

miZmi

)
. (22)

Evaluating (19) and (20) for the case that the sample is analyzed at once, but then evidently for

sequences of length Mn, leads to:

σ̂2 =
1

MNn(Mn − 1)

(
Mn

N∑

i=1

Z′

iZ i −
N∑

i=1

Z′

iJMnZi

)
, (23)

d̂ =
1

MNn(Mn − 1)

(
N∑

i=1

Z′

iJMnZ i −
N∑

i=1

Z′

mZm

)
, (24)

where Zi = (Y i − µ1Mn) and JMn is an Mn × Mn matrix of ones. Thus, σ̃2 6= σ̂2 and d̃ 6= d̂.

Consider precision estimation. For this, the (block-diagonal) matrix I0 and the (non-block-diagonal)

I1 need to be derived. Details are found in Supplementary Material B. As stated earlier, the mean

can be treated separately from the variance components. Turning to µ, given that µ̃ = µ̂, it is not

surprising that both asymptotic variances are equal:

var(µ̃) = var(µ̂) =
σ2 + Mnd

MNm
. (25)

Focusing on the variance components, we find:

var(σ̃2) =
2σ4

MNn − MN
, (26)

var(σ̂2) =
2σ4

MNn − N
, (27)

9
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var(d̃) =
2

MNn

(
σ4

Mn − 1
+ 2dσ2 + Mnd2

)
, (28)

var(d̂) =
2

MNn

(
σ4

n − 1
+ 2dσ2 + Mnd2

)
. (29)

5 Efficiency

5.1 Asymptotic Relative Efficiency

In Section 4, three distinct illustrations were used. In the univariate normal and univariate Bernoulli

cases (probability and logit scale), and for the mean parameter in the compound-symmetry case, the

asymptotic relative efficiency (ARE), defined as the variance ratio of the ML over the PPL estimator,

when the overall sample size tends to infinity, equals one. For the logit case, this may not be the

case for small samples, a point to which we will in Section 5.2. This is no longer the case for the

variance components in the compound-symmetry case. Indeed, for σ2, we find:

ARE(σ2) =
Mn − M

Mn − 1
. (30)

Three remarks are in place. First, if M = 1, there is no partitioning, and evidently ARE reduces

to 1. Second, if n = 1, the ARE ánd the variances are problematic. In particular, if n = 1 and

M > 1, the ML variance (27) is well defined, whereas PPL variance (26) is undefined, because for

the PPL each of the subsamples is univariate, from which σ2 and d cannot be disentangled. Third,

if n approaches infinity, with M bounded, the ARE approaches one. The above remarks also hold

for the random-intercepts variance d, even though the ARE is slightly more tedious:

ARE(d) =

1
Mn−1 + 2

(
d
σ2

)
+ Mn

(
d
σ2

)2

1
n−1 + 2

(
d
σ2

)
+ Mn

(
d
σ2

)2 =

(1−ρ)2

Mn−1 + 2ρ(1− ρ) + Mnρ2

(1−ρ)2

n−1 + 2ρ(1− ρ) + Mnρ2
, (31)

where ρ = d/(σ2 + d), the intraclass correlation. We will study these expressions in what follows.

The ARE for σ2 has a simple structure, and nicely shows the efficiency loss related to increasing the

number of partitions of the original sample. When the sequence length per component, n, is large

relative to the number of sub-samples, efficiency loss will be modest. For example, with M = 5

pieces and n = 20, the ARE is around 95%. The sequence length is realistic because, for very sort

sequences, the need to revert to sub-divided samples is usually not present.

ARE expression (31), shows that the two key quantities are M , the number of subsamples in the par-

tition, on the one hand, and the intraclass correlation ρ on the other. Evidently, ARE(d) approaches

1 when M approaches 1; for large M , there is a ‘partitioning penalty.’ When ρ is small, the penalty

is large, because then (31) approaches ARE(d|ρ = 0) = (n − 1)/(Mn − 1). For example, when the

correlation is close to 0 and M = 5, estimating the random-intercept variance is effectuated at a

10
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mere 20% of the ML efficiency. This is qualitatively among the worst scenarios. Of course, it actually

corresponds to the situation where the component d is unimportant in the first place. Luckily, on

the other hand, the penalty vanishes for d large, relative to σ2, because ARE(d|ρ = 1) = 1.

5.2 Small-sample Relative Efficiency for the Logit Parameter

To assess the small-sample impact when there is asymptotic equivalence, but not equality of the

estimators, we conduct limited simulations for a logit estimated from univariate Bernoulli samples, as

in Section 4.2. We compare partition-based variance (14) with its single-sample counterpart, when the

true logit is 0 (probability of 0.5). The number of partition components is M ∈ {1, 5, 10, 20, 50} and

the sample size per component is n ∈ {20, 50, 100, 500}. Results are in Table 4 of the Supplementary

Material. We see that the SSRE is very high. Given that the ARE has been shown to equal 1, it is

not a surprise that the SSRE is very close to 1 as well when n is large relative to M . Only when the

number of partition components is large relative to the sample size per partition component, does

the SSRE shrink somewhat, but the worst case remains at a comfortably high 90%.

6 Analysis of Case Study

We analyze the data of Section 2. For the ith region in year j, let Zij be the number of independent

reported cases of HCV out of nij . Assume a binomial model with success probability:

logit(πij) = α0 +
8∑

j=1

αjTij + bi, (32)

with the indicator for year defined as Tij = 1 if the year during which the measurement is taken

equals k = 1, . . . , 9, and 0 otherwise. The study spans 9 years, with the last year as reference.

The model is of the generalized linear mixed model type (Molenberghs and Verbeke 2005), with a

region-specific effect bi ∼ N (0, σ2). To study the effect of parameterization on efficiency, consider

the equivalent formulation:

logit(πij) =
9∑

j=1

βjTij + bi. (33)

For each of the parameterizations, we consider three approaches.

In the first analysis, the data are analyzed as if measurements are independent (i.e., omitting the

random effect). Results are summarized in Table 5 of the Supplementary Material. This assumption

is unrealistic; the analysis is included to make a few points about the methodology only. It confirm

the results for the (independent) Bernoulli case. The difference with Section 4.2 is that here we

assume logistic regression models. Not unexpectedly, the parameter estimates and standard errors

are the same, up to four decimal places for all of the values of M = 1, 2, 5, 10, 15. As a second

analysis, the data are split into M independent subsamples, for M = 1, 2, 4. Results are in Table 1.

11
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Table 1: HCV data. Parameter estimates and standard errors for independent partitioning. For

M = 2, 4, 15 the proper empirically corrected standard errors are followed by their (inappropriate)

purely model-based counterparts.

Par. M = 1 (ML) M = 2 M = 4

Parameterization (32)

α0 0.592(0.112) 0.598(0.111) 0.593(0.108)

α1 0.223(0.011) 0.213(0.011) 0.243(0.012)

α2 0.209(0.011) 0.202(0.011) 0.215(0.011)

α3 0.288(0.011) 0.287(0.011) 0.300(0.012)

α4 0.179(0.011) 0.175(0.011) 0.170(0.011)

α5 0.106(0.011) 0.099(0.011) 0.095(0.011)

α6 0.114(0.011) 0.104(0.011) 0.106(0.011)

α7 0.072(0.011) 0.062(0.011) 0.068(0.011)

α8 -0.037(0.011) -0.043(0.011) -0.049(0.011)

σ 0.501(0.079) 0.493(0.078) 0.459(0.076)

Parameterization (33)

β1 0.815(0.113) 0.811(0.111) 0.836(0.108)

β2 0.801(0.113) 0.800(0.111) 0.808(0.108)

β3 0.880(0.113) 0.886(0.111) 0.894(0.108)

β4 0.771(0.113) 0.773(0.111) 0.763(0.108)

β5 0.698(0.112) 0.697(0.111) 0.689(0.108)

β6 0.706(0.112) 0.702(0.111) 0.699(0.108)

β7 0.664(0.112) 0.660(0.111) 0.662(0.108)

β8 0.555(0.113) 0.556(0.111) 0.544(0.108)

β9 0.592(0.112) 0.598(0.111) 0.593(0.108)

σ 0.501(0.079) 0.493(0.078) 0.459(0.076)

In line with Section 3.2.2, results are virtually identical across values of M . In the final analysis,

dependent samples are created by sub-dividing the sequences into M = 1, 2, 5, 10, 15 parts. Results

are in Table 2. Several observations can be made. First, sub-samples are not all of equal size.

This is a trivial extension of the methodology presented so far. For convenience, we ensured that

portions were roughly equal, because exact equality could not be achieved. Now, weighting matrix

A to take the form (9) may not be fully optimal; although this does not affect the validity of the

method, efficiency may be affected slightly. Second, the said efficiency in the dependent case is more

affected when parameterization (32) is used, for the parameters α1–α8, than with parameterization

12
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Table 2: HCV data. Parameter estimates and standard errors for dependent partitioning. For M =

1, 2, 5, 10, 15, the proper empirically corrected standard errors are followed by their (inappropriate)

purely model-based counterparts.

Par. M = 1 (ML) M = 2 M = 5 M = 10 M = 15

Parameterization (32)

α0 0.592(0.112) 0.592(0.119;0.080) 0.592(0.119) 0.593(0.119) 0.593(0.119;0.030)

α1 0.223(0.011) 0.223(0.077;0.011) 0.223(0.077) 0.223(0.077) 0.223(0.077;0.011)

α2 0.209(0.011) 0.209(0.070;0.011) 0.209(0.070) 0.209(0.070) 0.209(0.070;0.011)

α3 0.288(0.011) 0.288(0.063;0.011) 0.288(0.063) 0.288(0.063) 0.288(0.063;0.011)

α4 0.179(0.011) 0.179(0.061;0.011) 0.179(0.061) 0.179(0.061) 0.179(0.061;0.011)

α5 0.106(0.011) 0.106(0.055;0.011) 0.106(0.055) 0.106(0.055) 0.106(0.055;0.011)

α6 0.114(0.011) 0.114(0.051;0.011) 0.114(0.051) 0.114(0.051) 0.114(0.051;0.011)

α7 0.072(0.011) 0.072(0.054;0.011) 0.072(0.054) 0.072(0.054) 0.072(0.054;0.011)

α8 -0.037(0.011) -0.037(0.033;0.011) -0.037(0.033) -0.037(0.033) -0.037(0.033;0.011)

σ 0.501(0.079) 0.501(0.079;0.056) 0.500(0.079) 0.498(0.079) 0.496(0.079;0.021)

Parameterization (33)

β1 0.815(0.113) 0.815(0.096;0.080) 0.815(0.096) 0.815(0.096) 0.816(0.096;0.030)

β2 0.801(0.113) 0.801(0.116;0.080) 0.802(0.116) 0.802(0.116) 0.802(0.116;0.030)

β3 0.880(0.113) 0.880(0.127;0.080) 0.880(0.127) 0.881(0.127) 0.881(0.127;0.030)

β4 0.771(0.113) 0.771(0.112;0.080) 0.772(0.112) 0.771(0.113) 0.771(0.113;0.030)

β5 0.698(0.112) 0.698(0.121;0.080) 0.699(0.121) 0.699(0.121) 0.699(0.121;0.030)

β6 0.706(0.112) 0.706(0.119;0.080) 0.706(0.119) 0.707(0.119) 0.707(0.119;0.030)

β7 0.664(0.112) 0.664(0.131;0.080) 0.665(0.131) 0.666(0.131) 0.666(0.131;0.030)

β8 0.555(0.113) 0.555(0.118;0.080) 0.556(0.118) 0.556(0.118) 0.557(0.118;0.030)

β9 0.592(0.112) 0.592(0.119;0.080) 0.593(0.119) 0.593(0.119) 0.593(0.119;0.030)

σ 0.501(0.079) 0.501(0.079;0.079) 0.500(0.079) 0.498(0.079) 0.496(0.079;0.021)

(33), with efficiency largely unaffected. Also, under (32), the overall intercept parameter α0 is

unaffected by partitioning. Note that parameters β1–β9 have the meaning of an intercept parameter

as well, be it for a specific year, whereas α1–α8 are contrasts between a given year and the last

one. Hence, in some parameterizations, the efficiency loss may be spread out relatively evenly across

parameters, whereas others may segregate parameters that are largely unaffected from others that

are more severely impacted. Even for strongly affected parameters, α1–α8, it seems to be more a

consequence of partitioning as such, rather than of the number of components, M , in the partition.

This is not general; counterexamples are given by (31) and (30), which are smooth, continuous
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functions of M . Arguably, efficiency will be more at risk for parameters that have a within-subject

meaning. This agrees with the fact that, in the compound-symmetry case (4.3), µ is unaffected by

partitioning, whereas the variance components, especially d, can be affected considerably stronger.

Third, it is unwise to replace the empirically corrected standard errors, based on I−1
0 I1I

−1
0 with their

purely model-based counterparts, using I−1
0 only, as can be seen when comparing the appropriate

empirically corrected standard errors with their model-based counterparts, in Tables 1 and 2. This is

in line with other uses of pseudo-likelihood (Molenberghs and Verbeke 2005).

7 Concluding Remarks

We have presented a convenient, simple, pseudo-likelihood based method to partition large data

sets to facilitate estimation. Partitions into dependent as well as independent subsamples have been

studied. In the independent subsample case, full efficiency can be reached. This is not always so for

dependent samples, but in important realistic settings high to very high efficiency can be obtained.

Especially in such cases, it is recommendable to ensure the sub-sample size is not too small.

Needless to say that large sets of data are extremely common in current-day empirical research,

including but not limited to large surveys, microarray experiments, consumer databases, etc. When

confronted with choice, independent sub-samples are preferred, because of efficiency. Dependent

sub-samples become indispensable whenever analyzing the sequences in full is practically prohibitive.

Finally, whether splitting in sub-sampling is done and, if so, in how many components, strongly

depends on what is practically and numerically feasible. Indeed, given the potential loss in efficiency,

fewer components is better than more.

Apart from illustrative examples, real-data analysis has been employed to underscore the practical

power of the method. While the illustrative examples allow for closed-form derivation of point and

precision estimators, this is relevant from theoretical and illustrative perspectives only. In particular,

it is is clear that efficiency loss in the dependent case is relative to a particular parameter, which

is why the mean, variance, and correlation parameters all exhibit different behavior. Therefore, the

data analyst is advised to study efficiency loss, perhaps using a simulation study designed after the

real application at hand. Of course, there are cases where maximum likelihood is not even feasible,

underscoring our method’s use.

For data analysis, such as that based on the generalized linear mixed model in Section 6, closed-form

derivations are neither feasible (because even conventional ML defies closed forms) nor necessary

(because our methodology is presented in generic terms and can be applied whenever score-vector

contributions are available, either in analytical or numerical form). SAS code used for the purpose

of this article are available from the authors’ web site.
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