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Abstract 

The validity of a diagnostic marker can be summarized using statistical measures either for the goodness 
of the fit like the deviance, measures of the explained variation like R2 or the misclassification rate. Other 
intuitive measures are sensitivity and specificity in the case of binary response. In the absence of censored 
data the calculation of these measures is widely used. In the presence of censoring the estimation of time-
dependent sensitivity and specificity is not well known. In this article we propose a new method of 
calculating ROC curves with censored data using the observed number of events and calculating the 
additional number of expected events for censored observations. The new method is illustrated with data 
for predicting mortality in patients surviving a myocardial infarction. 
 
Key words: Discrimination, Nelson-Aalen estimator, Sensitivity, Specificity  

1 Introduction 

The identification of clinical markers to predict a defined event is an important topic in medicine. The 
event can be the diagnosis of a certain disease, the recurrences of a disease, the response to a certain 
therapy or mortality. The outcome of these markers may influence further diagnostic procedures or the 
selection of the appropriate therapy. Good examples can be found in oncology and cardiology, e.g. the 
PSA-testing for the diagnosis of prostate cancer (which is currently under debate) or the use of left- 
ventricular ejection fraction (LVEF) in predicting mortality after surviving an acute myocardial 
infarction.  
The validity of these markers can be assessed with statistical measures either for the goodness of the fit, 
like the deviance, with measures of the explained variation like R2 (Schemper and Henderson, 2000; 
O’Quigley and Xu, 2001) or the miss-classification rate. However the clinicians prefer measures like 
sensitivity and specificity, which can be summarized in ROC curves. If the defined event can be assessed 
within a short period of time, the use of ROC curves in order to present the sensitivity and specificity of 
a continuous marker is very popular. ROC curves can also be estimated using a combination of markers 
based on a statistical model. With these curves one can select a cut point in order to divide the marker or 
the prognostic index into two regions (e.g. positive and negative) based on the choice for sensitivity and 
specificity depending on the consequences. Therefore ROC curves provide an index of a test's ability to 
discriminate between alternative states of health. 

 
* Corresponding author: e-mail: petra.wolf@tum.de, Phone: +49 89-41404348, Fax: +49 89-41404850 
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However in some studies there is a time lag between the measurement of the markers and the occurrence 
of the event. This is obvious when the event of interest is death. Some of the patients will die within the 
follow-up period, but there are always censored observations (patients still alive at the end of the 
observation period). In such a situation the ROC curves cannot be computed directly and it is difficult to 
demonstrate the validity of a prognostic marker. However there are some proposals in the literature how 
to calculate sensitivity and specificity in order to obtain ROC curves even in a study with failure time 
data (Heagerty et al., 2000;  Heagerty and Zheng, 2005; Cai et al., 2006). Unfortunately these extensions 
are not well-known in the medical community, e.g. in the December issue of the New England Journal of 
Medicine in 2006 the following statement can be found: “Because standard methods do not exist for 
deriving ROC curves for time-to-event data ...” (Wang et al., 2006). 
Besides the approaches by Heagerty et al. (2000), Heagerty and Zheng (2005) and Cai et al. (2006) 
calculating ROC curves, several related methods exist to evaluate the predictive accuracy: an often used 
and well-known measure is the concordance probability (c-index) (Harrell et al., 1996; Pencina and 
D'Agostino, 2004). Another possibility is the analytic calculation of the area under the ROC curve 
(AUC) (Chambless and Diao, 2006). If there is no censoring, c-index and AUC are identical and equate 
the Mann-Whitney statistics P(X>Y). The Mann-Whitney statistic measures the probability that an 
observation drawn at random from population X (e.g. patients with disease) will exceed an observation 
drawn at random from population Y (e.g. patients without disease). However under random censorship 
there are quite differences between these measures: it is shown that Harrell's concordance index does not 
meet the Mann-Whitney statistic under censorship (Koziol and Jia, 2009). There are many extensions of 
Harrell's c-index, like methods using the inverse probability weighting (Liu and Jin, 2009; Uno et al., 
2011) or with estimating the probability as a function of the Cox model (Gönen and Heller, 2005). These 
approaches got interesting characteristics and forms of application, but in order to use them properly one 
needs to know the objects they are measuring: the concordance index uses survival time as response 
whereas the AUC uses the binary endpoint event/no event at or up to a given time point. The Mann-
Whitney parameter on the other hand compares two survival curves instead of comparing subjects with 
events and subjects without event.  
Regarding the concordance probability also different definitions are possible: let T be the event time and 
Z a possible risk score. The conception in Harrell et al. (1996) and Pencina and D'Agostino (2004) is the 
evaluation of the probability P(Z1>Z2|T2>T1). This definition can be linked to the AUC proposed by 
Heagerty and Zheng (2005) as a weighted area under the ROC curve. Gönen and Heller (2005) in 
contrast define a slightly different concordance probability: P(T2>T1|Z2�Z1). With this definition it is 
possible to estimate the probability as a simple function of the Cox model. Another distinction must be 
made concerning the observation time: some measures quantify a probability at or until a given time, 
others are not interested in a particular time point and give an overall index for the whole course of time.  
 
For clinical purpose three main aspects can be defined considering the prognostic ability of a marker: 
first of all the prognostic ability of a marker as addressed with the AUC or the c-index is of interest. The 
next step is the search for an adequate cut point to differentiate between subjects with high risk, who e.g.  
should get a treatment and patients with low risk for which a treatment is not essential. To enable a 
clinician to make such a decision, measures like sensitivity and specificity are useful tools. The 
information given by a c-index or an AUC alone is not sufficient. Third another useful information can 
be found in the time-dependence of the AUC. Is the prognostic ability the same over the complete 
observation time or is the marker only a good measure for some extent of time?  
To answer these questions, we will present a new and simple method for calculating ROC curves for 
failure time data. Section 2 describes the estimation of time-dependent sensitivity and specificity in 
detail. In section 3 we compare the proposed method with the existing method of calculating time-
dependent ROC curves by Heagerty et al. (2000). Section 4 demonstrates the method on data predicting 
mortality in patients surviving a myocardial infarction.  
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2 Methods 

2.1 Notation 
Assume a continuous marker Z has to be divided into low and high in order to use it for diagnostic or 
therapeutic purpose. If the disease status D is known for all subjects (D = 0 for no disease, D = 1 with 
disease) than sensitivity and specificity for a cut point z are defined as  
 

Se (z) = P (Z > z | D = 1) and Sp (z) = P (Z ≤ z | D = 0). 
 
For this definition we assume that the risk of the disease is positively correlated with the marker Z, 
otherwise the two regions Z > z and Z < z have to be exchanged. 
In the situation of failure time data, the observation time t has to be taken into account. We use the 
following notation: Ti is the survival time for subject i and we are able to observe only the minimum of Ti 
and Ci where Ci is the independent censoring time. The follow-up time Xi is defined as the minimum of 
Ti and Ci (Xi = min (Ti, Ci)) and δi is the censoring indicator; δi = 1 represents an event at time Xi (Xi = 
Ti ≤ Ci) whereas δi = 0 indicates a censored observation (Xi = Ci < Ti). 
To denote failure (disease) status of subject i at any time t, we use Di(t) = 1 if Ti ≤ t and Di(t) = 0 if Ti > t. 

 
There are two proposals for the calculation of the sensitivity and specificity for time-to-event data 
(Heagerty and Zheng, 2005), the cumulative/dynamic and the incident/dynamic version: 
 
a) cumulative/dynamic (=C): 
The sensitivity for a given cut point z at time t is defined as:  

)|(P),(SeC tTzZtz ≤>=  

The specificity is given by: 

)|(P),(SpC tTzZtz >≤=  

With this definition all subjects will be used at any fixed time t. Subject i with survival time Ti will be 
counted as control up to time Ti and as a case afterwards.  
 
b) incident/dynamic (=I): 

)|(P),(Se I tTzZtz =>=  

)|(P),(Sp I tTzZtz >≤=  

Using this definition, the number of subjects used will be decreasing with increasing observation time t. 
Subjects with a survival time Ti play the role of a control for time t < Ti and then, for Ti = t count as 
cases. But all subjects with Ti < t do not contribute to the calculation of sensitivity/specificity at time t. 
This definition is similar to the contribution of the observations available at time t to estimate certain 
parameters in the Cox-model using the partial likelihood method. 
Both definitions have interesting properties. The cumulative/dynamic definition is useful if all the 
markers of interest are measured at baseline and one is interested in the prognostic properties of the 
markers up to time t. 
The use of the incident/dynamic definition allows time-varying markers (Heagerty and Zheng, 2005). 
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In the following we are concentrating on the cumulative/dynamic definition. In the example considered 
the aim is to estimate sensitivity and specificity up to time t based on measurements obtained at baseline. 
Therefore we omit the superscript C for the cumulative/dynamic version of sensitivity and specificity. 
 

2.2 Estimation 
Using Bayes theorem we get 

)(P
)(P)|(P

)|(P),(Se
tT

zZzZtT
tTzZtz

≤
>⋅>≤=≤>=  

Consequently the specificity Sp(z, t) can be estimated as 

)(P
)(P)|(P

)|(P),(Sp
tT

zZzZtT
tTzZtz

>
≤⋅≤>=>≤=  

The problem in both formulas is related to the estimation of the probabilities P(T � t | Z > z) and  
P(T > t | Z � z) resp. P(T � t) and P(T > t). 
Heagerty et al. (2000) propose to use the Kaplan-Meier method to estimate theses probabilities. However 
the proportions of patients wit Z > z are varying over time due to censorship and events. Therefore one 
can not use the result of the Kaplan-Meier curve for the whole sample. For censored observations it does 
not hold 

)()|()()|()( zZPzZtTPzZPzZtTPtTP >⋅>≤+≤⋅≤≤=≤  
with fixed proportions P(Z � z) resp. P(Z > z), as should be valid under the  law of total probability. 
 
In order to obtain the ROC curve at time t one can estimate the expected number of events (e0(z,t) and 
e1(z,t) ) with n0(z) the number of observations wit Z �  z and n1(z) those with Z > z (n0(z) + n1(z) = n): 
 
Z � z: )()|(),( 00 znzZtTPtze ⋅≤≤=  
Z > z: )()|(),( 11 znzZtTPtze ⋅>≤=  

The sensitivity Se(z,t) can be estimated by 
),(),(

),(

10

1

tzetze
tze

+
and the specificity accordingly. 

 
The other option is to estimate the expected number of events at time t in using all observed events up to 
time t and calculate the additional number of events in using those who are censored before t.  
For censored observations one has to estimate the probability for having an event between the censoring 
time c and time t (t > c) where the ROC curve should be calculated. This probability P(T � t | T > c)  can 
be estimated in using the hazard rates between c and t. 
If the censoring occurs between tk-1 and tk, the probability for having an event up to time t is given as  

)(
)()(

)|()|()|()|(
cS

tStS
cTtTcPcTtTtPcTtTcPcTtTPe k

kkk
−+>≤<=>≤<+>≤<=>≤= . 

There are some possibilities to estimate the probability )|( cTtTcP k >≤< : the exact calculation would 
be using the definition of a poisson process 1)()|( −−≈>≤< kkk ctcTtTcP λ . With this definition a 
person which is censored shortly after tk-1 has a higher probability of having an event than a person how 
is censored just before tk. A slightly simplification is to assume that the event has occured in the middle 

between tk-1 and tk, so that the probability )|( cTtTcP k >≤<  can be estimated by 1
1

2 −
−−

k
kk tt λ . 

Under the assumption that the probability for a censored observation having an event is the same if it is 
censored at the beginning of the interval (tk-1; tk] or at the end of this interval or the interval is short, the 
probability for having an event reduces to 
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)()()))()((exp(1
)(
)(

1
)(

)()(
)(

)()(
)|()|(

ctct
cS
tS

cS
tStS

cS
tScS

cTtTtPcTtTcPe kk
kk

Λ−Λ≈Λ−Λ−−=

−=
−

+
−

=>≤<+>≤<=
 

The approximation results as a first order Taylor approximation and is valid under the condition 
.1))()(( <<Λ−Λ ct  

For this calculation, as an alternative to the Kalpan-Meier estimator, one can use the Nelson-Aalen 
estimator for the cumulative hazard rate  

��� ===Λ
≤ j

j
j

tt
j n

d
tt

j

λλ )()( )(  

with jd the number of events at time )( jt and jn the risk set at )( jt . 

This calculation has to be done for all censored observations before t and has to be performed in both 
groups separately (Z > z and Z � z). With these probabilities together with the observed number of events 
one gets the expected number of events up to time t and one is able to construct the corresponding table 
to calculate sensitivity and specificity (Table 1). 

 
Table 1.  Data for calculating sensitivity and specificity at time t 

 
time t with event without event � 

Z > z E1(t) n1 - E1(t) n1(z) 

Z < z E0(t) no - E0(t) n0(z) 

� E1(t) + E0(t) n - (E1(t) + E0(t)) n 

 
 

�
≤

+=
tt

jj
j

edt 111 )(E  observed and expected number of 
events for Z > z up to time t 

with 
�

≤
+=

tt
jj

j

edt 000 )(E  observed and expected number of 
events for Z � z up to time t 

Based on this table one can easily calculate sensitivity Se(z, t) and specificity Sp(z, t) for all possible 
values of z and plot the ROC curve for selected time-points t: 

)(E)(E
)(E

),(Se
01

1

tt
t

tz
+

= ; 
))(E)(E(n

)(En
),(Sp

01

00

tt
t

tz
+−

−
=  

 
One characteristic of a 'proper' ROC curve (Egan, 1975) is its monotonicity. The ROC curve is a 
monotone increasing function starting at (0,0) and ending at (1,1) (Pepe, 2003; Egan, 1975). Like with 
the proposed Kaplan-Meier estimator by Heagerty et al. (2000) there can be some situations where this 
assumption may be violated. 
There is a proposal in the literature how to solve this problem in using the nearest neighbour estimator 
(NNE). This method was first described by Akritas (1994) and adopted for the given situation by 
Heagerty et al. (2000). All Kaplan-Meier curves near the cut point z are investigated. This approach 
guarantees monotonicity but it highly depends on the choice of the smoothing parameter, which can 
result in quite different estimates of sensitivity and specificity. 
Another approach could be to calculate the ROC curves and apply afterwards a smoothing procedure to 
assure monotonicity. 
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One method available could be isotonic regression (Salanti and Ulm, 2005). If the monotonicity is failed 
than PAVA (Pooling Adjacent Violator Algorithm) has to be applied. With this algorithm the two 
adjacent points with (Se(z, t), Sp(z, t)) and (Se(z+1, t), Sp(z+1, t)) are pooled together 

( ) ( ) �
�

�
�
�

� ++++=++=
2

),1(S),(Sp
,

2
),1(Se),(Se

),1(pŜ),,1(eŜ),(pŜ),,(eŜ
tzptztztz

tztztztz  

in order to assure monotonicity. 
 
A usual measure of the performance of the prognostic power of the marker Z is the AUC, the area under 
the ROC curve. In studies without censored data the AUC can be estimated in several ways, the Mann-
Whitney-U statistic or the trapezoidal rule for integrating a function (Pepe, 2003). With censored data the 
trapezoidal rule seems to be appropriate. 
 
With the AUC one is able to address two interesting questions. 
a) Is there a difference between two markers (are two ROC curves different)? 
b) Is there a change in the prognostic power of a marker over time? 
For the comparison of two ROC curves their variances and covariances have to be calculated. Several 
methods are available for the comparison of two ROC curves if the event of interest is known (Pepe, 
2003). In the case of censored data one can use bootstrap methods for calculating variances and 
confidence intervals. All other methods depend on the disease status which is not known for censored 
observations. 
 

3 Comparison with existing methods 

The existing method to calculate survival ROC curves via the Kaplan-Meier estimator (Heagerty et al., 
2000) has one basic drawback. Despite the missing guarantee for monotonicity the major problem 
concerns the fact, that it doesn't satisfy the condition 0 � Se(z,t), Sp(z,t) � 1. There can be situations 
where this condition is violated. Figure 1 presents data that illustrate this problem. These data describe 
the time to death of 863 kidney transplant patients with age as prognostic factor. A detailed description 
of the data can be found in Klein and Moeschberger (2003). In Figure 1 the ROC curve for age at time 
t=9 years is shown. 
 

< insert figure 1 here > 
 
For this data a cut point beneath an age of 25 leads to a sensitivity above 1. This peculiarity can be 
explained through the varying probabilities P(Z > z) and P(Z � z) as is shown in the Appendix.   
Due to this inequality the simple approach with the Kaplan-Meier estimator together with the Bayes 
theorem doesn't provide a valid estimation of ROC curves in two respects. Besides the common problem 
with monotonicity particularly the problem with holding 0 � Se(z,t), Sp(z,t) � 1 necessitates the complex 
calculation of ROC curves with an approach like the nearest neighbour estimation. A simple smoothing 
technique like the isotonic regression would fail in this setting because of the missing theoretical 
justification of this approach. This approach only works without censored observations.  
To overcome this problem the nearest neighbour estimator was proposed. With this estimator 
monotonicity and the restriction 0 � Se(z,t), Sp(z,t) � 1 is guaranteed. Though this causes another 
problem: how to choose the appropriate bandwidth for smoothing and what is the best bandwidth? There 
are no clear instructions in literature how to choose the bandwidth. In examining the course of the AUC 
over time there can be different best bandwidths at different time points. Simulation studies showed two 
different outcomes (results not shown): in some situations there is a huge difference in AUC for different 
bandwidth, but in other situations the resulting AUC for different bandwidths is not substantial different. 
But although the AUC was similar there were partly large differences in the values for sensitivity and 
specificity for a defined cut point z. A small bandwidth results in few steps in the ROC curve, which is 
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equivalent with few different values of sensitivity and specificity and a ragged curve with big steps. If 
one chooses a large bandwidth the curve is very smooth with many little steps and therefore many 
different values for sensitivity and specificity. Using the data of kidney transplant patients there results 
with a span for the nearest neighbor estimation between 0 and 0.2 with increments of 0.01 an AUC for 
predicting 9-years-survival between 0.663 and 0.695. An even more different result arises if one only 
uses the female: there results an AUC between 0.619 and 0.685 for predicting 9-years-survival. 
 
The new proposed method for calculating ROC curves in the context of censored data overcomes these 
problems. Based on its definition the restriction 0 � Se(z,t), Sp(z,t) � 1 is naturally achieved.  
In this example the new ROC curve is similar to the one achieved with the Kaplan-Meier method but it 
can be seen in Figure 1 that there is a clear restriction to  0 � Se(z,t), Sp(z,t) � 1. 
A problem with monotonicity further persist but this can easy be solved with the introduced isotonic 
regression which is independent of any smoothing parameter and leads to an unique solution for 
sensitivity, specificity and the AUC. 
 

4 Application 

To demonstrate the new method, data from a study on patients who survived an acute myocardial 
infarction (MI) are analyzed. 
This study has been used to derive a new prognostic marker (= DC) in order to predict mortality (Bauer 
et al., 2006). In this publication ROC curves were calculated to compare the prognostic impact of the 
new markers DC and AC with some of the established markers, e.g. LVEF and SDNN. In the publication 
the vital status at the end of an observation period of 2 years was used. There are only a limited number 
of patients with a follow-up less than two years. Therefore the effect of ignoring the censoring is fairly 
small. 
In the meantime the follow-up period was extended. We want to demonstrate the prognostic impact of 
two markers LVEF and DC on the whole sample of n = 2343 patients.  
The construction of the ROC curve will be first demonstrated using the established marker LVEF. The 
cut point used for defining the high risk population is z = 30%. The patients with a LVEF of 30% or less 
are at increased risk. All analyses for this paper were done using R 2.9.2 (R Foundation for Statistical 
Computing, Vienna, Austria). For the calculation of the expected number of events we used the exact 
formula via the poisson process as well as the simplification via 1-exp(-(Λ(t)-Λ(c))). The AUC between 
these methods for LVEF and DC at 2 and 5 years only differed about 0.1%. This is due to the fact that in 
this study the event times are measured almost daily. Therefore the reported results correspond to the 
simpler formula which was more feasible to deal with for a bootstrap analysis. 
Figure 2 shows the Kaplan-Meier curves for both subgroups (LVEF < 30% resp. LVEF > 30%).  

< insert figure 2 here > 
 
Within five years 181 patients died (39 with LVEF < 30%, 142 with LVEF > 30%) and 1022 
observations were censored (40 with LVEF < 30%, 982 with LVEF > 30%). The mortality rate at 5 years 
among patients with LVEF < 30% was 37.91% and 7.64% among patients with LVEF > 30%.  
 
The expected number of events at t=5 years, calculated as the sum of observed events and additional 
expected events for censored observations in both groups, results in 46.2 and 170.2 expected events 
compared to 39 and 142 observed events. 
These values lead to the following estimates for the sensitivity and specificity of z = 30% at 5 years: the 
sensitivity is 21.3% and the specificity is 96.5%. In Figure 3 the ROC curve for LVEF at time point 5 
years is shown. 
 

< insert figure 3 here > 
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In order to investigate the change of the impact of LVEF over time the areas under the ROC curves are 
calculated and plotted against time t (Figure 4). 
 

< insert figure 4 here > 
 
It is easy to see that the impact of LVEF for predicting total mortality is very high within the first 6 
months after the MI with a value of about 0.80. Afterwards the AUC drops down to values between 0.70 
and 0.75. 
The new marker DC is also a very powerful predictor. The ROC curve for DC at 5 years is shown in 
Figure 5. In order to compare both markers the area under each ROC curve is calculated and plotted over 
time. In Figure 6 the AUCs for both markers are shown. In this graph one can see the change of the 
impact of both markers over time. LVEF seems to be more powerful within the first 1.5 years. 
Afterwards there seems to be a slight advantage for DC. After 2.5 years both markers yield 
approximately the same AUC with values between 70% and 75%.  
 

< insert figure 5 here > 
< insert figure 6 here > 

 
We used bootstrap methods  to test the difference in AUC between the two markers at time points 2 and 
5 years. The mean AUC difference over the 100 bootstrap samples was calculated, and the central 95% 
of the differences used as a confidence interval. The 95% confidence intervals for the differences were   
[-0.097; 0.0267] at 2 years and [-0.089; 0.0179] at 5 years. By the bootstrap confidence interval the 
AUCs from LVEF and DC at 2 and 5 years were not significantly different.  

 

5 Discussion 

With this article a new method of calculating sensitivity and specificity for censored data using the 
Nelson-Aalen estimator is introduced. When model development is intended to find important prognostic 
factors the key aspect is how to evaluate the predictive validity. A significant variable in a statistical 
model alone implies no reliable information about the additive prognostic value. An established 
discrimination measure is the area under the ROC curve. The AUC has a straightforward interpretation 
and in studies without censored data the ROC is a standard method. However, as mentioned in the 
introduction, there is no standard approach for deriving ROC curves for time-to-event data or more 
generally for the evaluation of the discriminating ability of prognostic markers. There a some proposals 
in literature, but no one has gained the standard approach.  
The method proposed provides a simple straightforward calculation of sensitivity and specificity and the 
AUC if censoring occurs. For estimating sensitivity and specificity the unknown vital status for censored 
data at time t is substituted by the expected number of events at time t, using the observed events and 
calculating the additional expected events for censored observations. To achieve monotonicity for the 
ROC curve isotonic regression was used after calculating the raw sensitivities and specificities. This 
method to assure monotonicity displays an intuitive and easy way and is independent of the choice of 
any smoothing parameter.  
Recently a new index was proposed for evaluating the added predictive ability of a new marker, the 
integrated discrimination index (IDI) (Pencina et al., 2008; Chambless et al., 2011). This index is based 
on integrated sensitivity and specificity and has a close relationship to the logistic regression R-square 
(Pepe et al., 2008). Like the AUC, it can be interpreted as a corrected average sensitivity. The idea for 
this approach is to overcome the drawback of the AUC in evaluating the added predictive ability of a 
new marker: to substantially improve the AUC a new marker must have a very large independent 
influence on the outcome. For this purpose the IDI is a more sensitive index. The increase in AUC is 
often small between a model with and without the new marker. In these cases the IDI can help to decide 
on the usefulness of a new marker.  
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Though an attractive approach, which was presented in this article, there are some more topics which 
warrant additional research. For our example we used bootstrap to obtain confidence intervals and to test 
the ability of discrimination of the two markers. But to make strong inference it would be desirable to 
have an analytic estimator for the variance of the ROC curve and the area under the curve. For evaluating 
long time periods the use of bootstrap is computationally intensive and it provides no rapid solution for 
practical application. 
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Appendix 

 
The law of total probability states: 
Let B1, B2, …, Bn be mutually exclusive events with �P(Bi)=1 for all i=1,…,n. Then  

�
=

⋅=
n

i
ii BPBAPAP

1

)()|()( . 

In the context of ROC curves with censored data the law of total probability can be formulated as: 
)()|()()|()( zZPzZtTPzZPzZtTPtTP >⋅>≤+≤⋅≤≤=≤ . 

But with censored observations and fixed probabilities P(Z � z) and P(Z > z) this equation does not hold, 
as can be shown with the following data of kidney transplant patients. As an example we use as cut point 
the median of age (43 years). An extract of the data is shown in the following table: 
 

 total age � 43 age > 43 
time n events S(t) n events S(t) n events S(t) 
1 863 0 1 425 0 1 438 0 1 
2 861 1 860/861 424 1 423/424 437 0 1 
3 860 1 859/861 423 0 423/424 437 1 436/437 
5 859 0 859/861 423 0 423/424 436 0 436/437 

7 857 2 
859/861� 
855/857 422 1 

423/424� 
421/422 435 1 

436/437� 
434/435 

…          
 
 
The first event occurs at t=2 but the first censoring is at t=1. It holds:  

).43|2()43|2()43()43|2(
863
438

1
863
425

424
423

861
860
)2(

>≤⋅>≤+≤⋅≤≤=

=⋅+⋅≠=

=≤

ageTPageTPagePageTP

TP
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Figure Legends 
Figure 1   ROC curves for 9-years-survival after kidney transplantation with age as prognostic marker. The solid   
                  line indicates the curve calculated with the Kaplan-Meier estimator and the dashed line indicates the new  

estimation with the Nelson-Aalen estimator. 

Figure 2    Kaplan-Meier curve of mortality stratified by risk, according to left-ventricular ejection fraction (LVEF). 

Figure 3 ROC curve for prediction of total mortality by LVEF at 5 years.  

Figure 4 AUC(t) for prediction of total mortality based on LVEF with pointwise 95% confidence intervals.  

Figure 5 ROC curve for prediction of total mortality by DC at 5 years. 

Figure 6 AUC(t) for prediction of total mortality based on the two markers LVEF and DC. 
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